
xlwings - Make Excel Fly!
Release dev

Zoomer Analytics LLC

Apr 19, 2021

Getting Started

1 Video course 1

2 Installation 3
2.1 Prerequisites . 3
2.2 Installation . 3
2.3 Add-in . 4
2.4 Dependencies . 4
2.5 How to activate xlwings PRO . 4
2.6 Optional Dependencies . 5
2.7 Update . 5
2.8 Uninstall . 6

3 Quickstart 7
3.1 1. Interacting with Excel from a Jupyter notebook . 7
3.2 2. Scripting: Automate/interact with Excel from Python 7
3.3 3. Macros: Call Python from Excel . 8
3.4 4. UDFs: User Defined Functions (Windows only) . 9

4 Connect to a Book 11
4.1 Python to Excel . 11
4.2 Excel to Python (RunPython) . 12
4.3 User Defined Functions (UDFs) . 12

5 Syntax Overview 13
5.1 Active Objects . 13
5.2 Full qualification . 14
5.3 Range indexing/slicing . 14
5.4 Range Shortcuts . 14
5.5 Object Hierarchy . 15

6 Data Structures Tutorial 17
6.1 Single Cells . 17
6.2 Lists . 18

i

6.3 Range expanding . 19
6.4 NumPy arrays . 19
6.5 Pandas DataFrames . 19
6.6 Pandas Series . 20
6.7 Chunking: Read/Write big DataFrames etc. 20

7 Add-in & Settings 23
7.1 Run main . 23
7.2 Installation . 24
7.3 User Settings . 24
7.4 Environment Variables . 25
7.5 User Config: Ribbon/Config File . 25
7.6 Workbook Directory Config: Config file . 26
7.7 Workbook Config: xlwings.conf Sheet . 26
7.8 Alternative: Standalone VBA module . 27

8 RunPython 29
8.1 xlwings add-in . 29
8.2 Call Python with “RunPython” . 29
8.3 Function Arguments and Return Values . 30

9 User Defined Functions (UDFs) 31
9.1 One-time Excel preparations . 31
9.2 Workbook preparation . 31
9.3 A simple UDF . 32
9.4 Array formulas: Get efficient . 33
9.5 Array formulas with NumPy and Pandas . 34
9.6 @xw.arg and @xw.ret decorators . 34
9.7 Dynamic Array Formulas . 35
9.8 Docstrings . 36
9.9 The “caller” argument . 36
9.10 The “vba” keyword . 37
9.11 Macros . 37
9.12 Call UDFs from VBA . 37
9.13 Asynchronous UDFs . 38

10 Matplotlib & Plotly Charts 39
10.1 Matplotlib . 39
10.2 Plotly static charts . 42

11 Jupyter Notebooks: Interact with Excel 45
11.1 The view function . 45
11.2 The load function . 45

12 Command Line Client (CLI) 47

13 xlwings Reports 49
13.1 Quickstart . 49
13.2 Frames . 52

ii

13.3 Excel Tables . 53
13.4 Excel Charts . 55
13.5 Shape Text . 56
13.6 Markdown . 60

14 Markdown Formatting 63

15 Deployment 67
15.1 Zip files . 67
15.2 RunFrozenPython . 67
15.3 Embedded Code . 68
15.4 One-Click Zero-Config Installer . 69
15.5 Deployment Key . 71

16 Troubleshooting 73
16.1 Issue: dll not found . 73
16.2 Issue: Couldn’t find the local location of your OneDrive 73

17 xlwings PRO 75
17.1 PRO Features . 75
17.2 More Infos . 76

18 Converters and Options 77
18.1 Default Converter . 78
18.2 Built-in Converters . 80
18.3 Custom Converter . 84

19 Debugging 89
19.1 RunPython . 90
19.2 UDF debug server . 90

20 Extensions 93
20.1 In-Excel SQL . 93

21 Custom Add-ins 95
21.1 Quickstart . 95
21.2 Changing the Ribbon menu . 96
21.3 Importing UDFs . 96
21.4 Configuration . 98
21.5 Installation . 98
21.6 Renaming your add-in . 98
21.7 Deployment . 99

22 Threading and Multiprocessing 101
22.1 Threading . 101
22.2 Multiprocessing . 102

23 Missing Features 105
23.1 Example: Workaround to use VBA’s Range.WrapText 105

iii

24 xlwings with other Office Apps 107
24.1 How To . 107
24.2 Config . 108

25 xlwings with R and Julia 109
25.1 R . 109
25.2 Julia . 110

26 Python API 113
26.1 Top-level functions . 113
26.2 Object model . 114
26.3 UDF decorators . 152
26.4 Reports . 154

27 REST API 157
27.1 Quickstart . 157
27.2 Run the server . 159
27.3 Indexing . 159
27.4 Range Options . 159
27.5 Endpoint overview . 159
27.6 Endpoint details . 160

Index 187

iv

CHAPTER 1

Video course

Those who prefer a didactically structured video course over this documentation should have a look at our
video course:

https://training.xlwings.org/p/xlwings

It’s also a great way to support the ongoing development of xlwings :)

1

https://training.xlwings.org/p/xlwings

xlwings - Make Excel Fly!, Release dev

2 Chapter 1. Video course

CHAPTER 2

Installation

2.1 Prerequisites

• xlwings requires an installation of Excel and therefore only works on Windows and macOS. Note
that macOS currently does not support UDFs.

• xlwings requires at least Python 3.6.

Here are the last versions of xlwings to support:

• Python 3.5: 0.19.5

• Python 2.7: 0.16.6

2.2 Installation

xlwings comes pre-installed with

• Anaconda (Windows and macOS)

• WinPython (Windows only) Make sure not to take the dot version as this only contains Python.

If you are new to Python or have trouble installing xlwings, one of these distributions is highly recom-
mended. Otherwise, you can also install it manually with pip:

pip install xlwings

or conda:

conda install xlwings

3

https://www.anaconda.com/products/individual
https://winpython.github.io

xlwings - Make Excel Fly!, Release dev

Note that the official conda package might be a few releases behind. You can, however, use the
conda-forge channel (replace install with upgrade if xlwings is already installed):

conda install -c conda-forge xlwings

Note: When you are on macOS and are installing xlwings with conda (or use the version that comes with
Anaconda), you’ll need to run $ xlwings runpython install once to enable the RunPython
calls from VBA. This is done automatically if you install the addin via $ xlwings addin install.

2.3 Add-in

To install the add-in, run the following command:

xlwings addin install

To call Excel from Python, you don’t need an add-in. Also, you can use a single file VBA module (stan-
dalone workbook) instead of the add-in. For more details, see Add-in & Settings.

Note: The add-in needs to be the same version as the Python package. Make sure to re-install the add-in
after upgrading the xlwings package.

2.4 Dependencies

• Windows: pywin32

• Mac: psutil, appscript

The dependencies are automatically installed via conda or pip.

2.5 How to activate xlwings PRO

xlwings PRO offers access to additional functionality. All PRO features are marked with xlwings PRO in
the docs.

Note: To get access to the additional functionality of xlwings PRO, you need a license key and at least xl-
wings v0.19.0. Everything under the xlwings.pro subpackage is distributed under a commercial license.
See xlwings PRO for more details.

To activate the license key, run the following command:

4 Chapter 2. Installation

xlwings - Make Excel Fly!, Release dev

xlwings license update -k LICENSE_KEY

Make sure to replace LICENSE_KEY with your personal key. This will store the license key under your
xlwings.conf file (see User Config: Ribbon/Config File for where this is on your system). Alternatively,
you can also store the license key as an environment variable with the name XLWINGS_LICENSE_KEY.

xlwings PRO requires additionally the cryptography and Jinja2 packages which come preinstalled
with Anaconda and WinPython. Otherwise, install them via pip or conda.

With pip, you can also run pip install "xlwings[pro]" which will take care of the extra depen-
dencies for xlwings PRO.

2.6 Optional Dependencies

• NumPy

• Pandas

• Matplotlib

• Pillow/PIL

• Flask (for REST API)

• cryptography (for xlwings.pro)

• Jinja2 (for xlwings.pro.reports)

These packages are not required but highly recommended as they play very nicely with xlwings. They are
all pre-installed with Anaconda. With pip, you can install xlwings with all optional dependencies as follows:

pip install "xlwings[all]"

2.7 Update

To update to the latest xlwings version, run the following in a command prompt:

pip install --upgrade xlwings

or:

conda update -c conda-forge xlwings

Make sure to keep your version of the Excel add-in in sync with your Python package by running the
following (make sure to close Excel first):

xlwings addin install

2.6. Optional Dependencies 5

xlwings - Make Excel Fly!, Release dev

2.8 Uninstall

To uninstall xlwings completely, first uninstall the add-in, then uninstall the xlwings package using the same
method (pip or conda) that you used for installing it:

xlwings addin remove

Then

pip uninstall xlwings

or:

conda remove xlwings

Finally, manually remove the .xlwings directory in your home folder if it exists.

6 Chapter 2. Installation

CHAPTER 3

Quickstart

This guide assumes you have xlwings already installed. If that’s not the case, head over to Installation.

3.1 1. Interacting with Excel from a Jupyter notebook

If you’re just interested in getting a pandas DataFrame in and out of your Jupyter notebook, you can use the
view and load functions, see Jupyter Notebooks: Interact with Excel.

3.2 2. Scripting: Automate/interact with Excel from Python

Establish a connection to a workbook:

>>> import xlwings as xw
>>> wb = xw.Book() # this will create a new workbook
>>> wb = xw.Book('FileName.xlsx') # connect to a file that is open or in the
→˓current working directory
>>> wb = xw.Book(r'C:\path\to\file.xlsx') # on Windows: use raw strings to
→˓escape backslashes

If you have the same file open in two instances of Excel, you need to fully qualify it and include the app
instance. You will find your app instance key (the PID) via xw.apps.keys():

>>> xw.apps[10559].books['FileName.xlsx']

Instantiate a sheet object:

>>> sht = wb.sheets['Sheet1']

7

xlwings - Make Excel Fly!, Release dev

Reading/writing values to/from ranges is as easy as:

>>> sht.range('A1').value = 'Foo 1'
>>> sht.range('A1').value
'Foo 1'

There are many convenience features available, e.g. Range expanding:

>>> sht.range('A1').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]
>>> sht.range('A1').expand().value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Powerful converters handle most data types of interest, including Numpy arrays and Pandas DataFrames
in both directions:

>>> import pandas as pd
>>> df = pd.DataFrame([[1,2], [3,4]], columns=['a', 'b'])
>>> sht.range('A1').value = df
>>> sht.range('A1').options(pd.DataFrame, expand='table').value

a b
0.0 1.0 2.0
1.0 3.0 4.0

Matplotlib figures can be shown as pictures in Excel:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
[<matplotlib.lines.Line2D at 0x1071706a0>]
>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Workbook4]Sheet1>>

3.3 3. Macros: Call Python from Excel

You can call Python functions either by clicking the Run button (new in v0.16) in the add-in or from VBA
using the RunPython function:

The Run button expects a function called main in a Python module with the same name as your workbook.
The great thing about that approach is that you don’t need your workbooks to be macro-enabled, you can
save it as xlsx.

If you want to call any Python function no matter in what module it lives or what name it has, use
RunPython:

Sub HelloWorld()
RunPython "import hello; hello.world()"

End Sub

Note: Per default, RunPython expects hello.py in the same directory as the Excel file with the same
name, but you can change both of these things: if your Python file is an a different folder, add that folder

8 Chapter 3. Quickstart

xlwings - Make Excel Fly!, Release dev

to the PYTHONPATH in the config. If the file has a different name, change the RunPython command
accordingly.

Refer to the calling Excel book by using xw.Book.caller():

hello.py
import numpy as np
import xlwings as xw

def world():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 'Hello World!'

To make this run, you’ll need to have the xlwings add-in installed or have the workbooks setup in the
standalone mode. The easiest way to get everything set up is to use the xlwings command line client from
either a command prompt on Windows or a terminal on Mac: xlwings quickstart myproject.

For details about the addin, see Add-in & Settings.

3.4 4. UDFs: User Defined Functions (Windows only)

Writing a UDF in Python is as easy as:

import xlwings as xw

@xw.func
def hello(name):

return 'Hello {0}'.format(name)

Converters can be used with UDFs, too. Again a Pandas DataFrame example:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame)
def correl2(x):

x arrives as DataFrame
return x.corr()

Import this function into Excel by clicking the import button of the xlwings add-in: For a step-by-step
tutorial, see User Defined Functions (UDFs).

3.4. 4. UDFs: User Defined Functions (Windows only) 9

xlwings - Make Excel Fly!, Release dev

10 Chapter 3. Quickstart

CHAPTER 4

Connect to a Book

When reading/writing data to the active sheet, you don’t need a book object:

>>> import xlwings as xw
>>> xw.Range('A1').value = 'something'

4.1 Python to Excel

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances and
returns an error, should the same book be open in multiple instances. To connect to a book in the active app
instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or something like xw.apps[10559] for existing apps, get
→˓the available PIDs via xw.apps.keys()
>>> app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()
Unsaved book xw.Book('Book1') xw.books['Book1']
Book by
(full)name

xw.Book(r'C:/path/to/
file.xlsx')

xw.books.open(r'C:/path/to/
file.xlsx')

Note: When specifying file paths on Windows, you should either use raw strings by putting an r in front
of the string or use double back-slashes like so: C:\\path\\to\\file.xlsx.

11

xlwings - Make Excel Fly!, Release dev

4.2 Excel to Python (RunPython)

To reference the calling book when using RunPython in VBA, use xw.Book.caller(), see Call
Python with “RunPython”. Check out the section about Debugging to see how you can call a script from
both sides, Python and Excel, without the need to constantly change between xw.Book.caller() and
one of the methods explained above.

4.3 User Defined Functions (UDFs)

Unlike RunPython, UDFs don’t need a call to xw.Book.caller(), see User Defined Functions
(UDFs). You’ll usually use the caller argument which returns the xlwings range object from where
you call the function.

12 Chapter 4. Connect to a Book

CHAPTER 5

Syntax Overview

The xlwings object model is very similar to the one used by VBA.

All code samples below depend on the following import:

>>> import xlwings as xw

5.1 Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sht = xw.sheets.active # in active book
>>> sht = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

A Range can be instantiated with A1 notation, a tuple of Excel’s 1-based indices, a named range or two
Range objects:

xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))

(continues on next page)

13

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

xw.Range((1,1), (3,3))
xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

5.2 Full qualification

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based
indexing/slicing. As an example, the following expressions all reference the same range:

xw.apps[763].books[0].sheets[0].range('A1')
xw.apps(10559).books(1).sheets(1).range('A1')
xw.apps[763].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(10559).books('Book1').sheets('Sheet1').range('A1')

Note that the apps keys are different for you as they are the process IDs (PID). You can get the list of your
PIDs via xw.apps.keys().

5.3 Range indexing/slicing

Range objects support indexing and slicing, a few examples:

>>> rng = xw.Book().sheets[0].range('A1:D5')
>>> rng[0, 0]
<Range [Workbook1]Sheet1!A1>

>>> rng[1]
<Range [Workbook1]Sheet1!B1>

>>> rng[:, 3:]
<Range [Workbook1]Sheet1!D1:D5>
>>> rng[1:3, 1:3]
<Range [Workbook1]Sheet1!B2:C3>

5.4 Range Shortcuts

Sheet objects offer a shortcut for range objects by using index/slice notation on the sheet object. This evalu-
ates to either sheet.range or sheet.cells depending on whether you pass a string or indices/slices:

>>> sht = xw.Book().sheets['Sheet1']
>>> sht['A1']
<Range [Book1]Sheet1!A1>
>>> sht['A1:B5']
<Range [Book1]Sheet1!A1:B5>
>>> sht[0, 1]
<Range [Book1]Sheet1!B1>
>>> sht[:10, :10]
<Range [Book1]Sheet1!A1:J10>

14 Chapter 5. Syntax Overview

xlwings - Make Excel Fly!, Release dev

5.5 Object Hierarchy

The following shows an example of the object hierarchy, i.e. how to get from an app to a range object and
all the way back:

>>> rng = xw.apps[10559].books[0].sheets[0].range('A1')
>>> rng.sheet.book.app
<Excel App 10559>

5.5. Object Hierarchy 15

xlwings - Make Excel Fly!, Release dev

16 Chapter 5. Syntax Overview

CHAPTER 6

Data Structures Tutorial

This tutorial gives you a quick introduction to the most common use cases and default behaviour of xlwings
when reading and writing values. For an in-depth documentation of how to control the behavior using the
options method, have a look at Converters and Options.

All code samples below depend on the following import:

>>> import xlwings as xw

6.1 Single Cells

Single cells are by default returned either as float, unicode, None or datetime objects, depending
on whether the cell contains a number, a string, is empty or represents a date:

>>> import datetime as dt
>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = 1
>>> sheet.range('A1').value
1.0
>>> sheet.range('A2').value = 'Hello'
>>> sheet.range('A2').value
'Hello'
>>> sheet.range('A3').value is None
True
>>> sheet.range('A4').value = dt.datetime(2000, 1, 1)
>>> sheet.range('A4').value
datetime.datetime(2000, 1, 1, 0, 0)

17

xlwings - Make Excel Fly!, Release dev

6.2 Lists

• 1d lists: Ranges that represent rows or columns in Excel are returned as simple lists, which means
that once they are in Python, you’ve lost the information about the orientation. If that is an issue, the
next point shows you how to preserve this info:

>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = [[1],[2],[3],[4],[5]] # Column
→˓orientation (nested list)
>>> sheet.range('A1:A5').value
[1.0, 2.0, 3.0, 4.0, 5.0]
>>> sheet.range('A1').value = [1, 2, 3, 4, 5]
>>> sheet.range('A1:E1').value
[1.0, 2.0, 3.0, 4.0, 5.0]

To force a single cell to arrive as list, use:

>>> sheet.range('A1').options(ndim=1).value
[1.0]

Note: To write a list in column orientation to Excel, use transpose: sheet.range('A1').
options(transpose=True).value = [1,2,3,4]

• 2d lists: If the row or column orientation has to be preserved, set ndim in the Range options. This
will return the Ranges as nested lists (“2d lists”):

>>> sheet.range('A1:A5').options(ndim=2).value
[[1.0], [2.0], [3.0], [4.0], [5.0]]
>>> sheet.range('A1:E1').options(ndim=2).value
[[1.0, 2.0, 3.0, 4.0, 5.0]]

• 2 dimensional Ranges are automatically returned as nested lists. When assigning (nested) lists to a
Range in Excel, it’s enough to just specify the top left cell as target address. This sample also makes
use of index notation to read the values back into Python:

>>> sheet.range('A10').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10, 20,
→˓30]]
>>> sheet.range((10,1),(11,3)).value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Note: Try to minimize the number of interactions with Excel. It is always more efficient to do sheet.
range('A1').value = [[1,2],[3,4]] than sheet.range('A1').value = [1, 2] and
sheet.range('A2').value = [3, 4].

18 Chapter 6. Data Structures Tutorial

xlwings - Make Excel Fly!, Release dev

6.3 Range expanding

You can get the dimensions of Excel Ranges dynamically through either the method expand or through the
expand keyword in the options method. While expand gives back an expanded Range object, options
are only evaluated when accessing the values of a Range. The difference is best explained with an example:

>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sheet.range('A1').expand('table') # or just .expand()
>>> rng2 = sheet.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sheet.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

'table' expands to 'down' and 'right', the other available options which can be used for column or
row only expansion, respectively.

Note: Using expand() together with a named Range as top left cell gives you a flexible setup in Excel:
You can move around the table and change its size without having to adjust your code, e.g. by using
something like sheet.range('NamedRange').expand().value.

6.4 NumPy arrays

NumPy arrays work similar to nested lists. However, empty cells are represented by nan instead of None.
If you want to read in a Range as array, set convert=np.array in the options method:

>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = np.eye(3)
>>> sheet.range('A1').options(np.array, expand='table').value
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

6.5 Pandas DataFrames

>>> sheet = xw.Book().sheets[0]
>>> df = pd.DataFrame([[1.1, 2.2], [3.3, None]], columns=['one', 'two'])
>>> df

(continues on next page)

6.3. Range expanding 19

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

one two
0 1.1 2.2
1 3.3 NaN
>>> sheet.range('A1').value = df
>>> sheet.range('A1:C3').options(pd.DataFrame).value

one two
0 1.1 2.2
1 3.3 NaN
options: work for reading and writing
>>> sheet.range('A5').options(index=False).value = df
>>> sheet.range('A9').options(index=False, header=False).value = df

6.6 Pandas Series

>>> import pandas as pd
>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.], name='myseries')
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64
>>> sheet.range('A1').value = s
>>> sheet.range('A1:B7').options(pd.Series).value
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64

Note: You only need to specify the top left cell when writing a list, a NumPy array or a Pandas DataFrame
to Excel, e.g.: sheet.range('A1').value = np.eye(10)

6.7 Chunking: Read/Write big DataFrames etc.

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a
memory error. The ideal chunksize will depend on your system and size of the array, so you will have to
try out a few different chunksizes to find one that works well:

20 Chapter 6. Data Structures Tutorial

xlwings - Make Excel Fly!, Release dev

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

6.7. Chunking: Read/Write big DataFrames etc. 21

xlwings - Make Excel Fly!, Release dev

22 Chapter 6. Data Structures Tutorial

CHAPTER 7

Add-in & Settings

The xlwings add-in is the preferred way to be able to use the Run main button, RunPython or UDFs.
Note that you don’t need an add-in if you just want to manipulate Excel by running a Python script.

Note: The ribbon of the add-in is compatible with Excel >= 2007 on Windows and >= 2016 on Mac. On
Mac, all UDF related functionality is not available.

Note: The add-in is password protected with the password xlwings. For debugging or to add new
extensions, you need to unprotect it. Alternatively, you can also install the add-in via xlwings addin
install --unprotected.

7.1 Run main

New in version 0.16.0.

The Run main button is the easiest way to run your Python code: It runs a function called main in a
Python module that has the same name as your workbook. This allows you to save your workbook as
xlsx without enabling macros. The xlwings quickstart command will create a workbook that will
automatically work with the Run button.

23

xlwings - Make Excel Fly!, Release dev

7.2 Installation

To install the add-in, use the command line client:

xlwings addin install

Technically, this copies the add-in from Python’s installation directory to Excel’s XLSTART folder. Then,
to use RunPython or UDFs in a workbook, you need to set a reference to xlwings in the VBA editor,
see screenshot (Windows: Tools > References..., Mac: it’s on the lower left corner of the VBA
editor). Note that when you create a workbook via xlwings quickstart, the reference should already
be set.

7.3 User Settings

When you install the add-in for the first time, it will get auto-configured and therefore, a quickstart
project should work out of the box. For fine-tuning, here are the available settings:

• Interpreter: This is the path to the Python interpreter. This works also with virtual or conda
envs on Mac. If you use conda envs on Windows, then leave this empty and use Conda Path
and Conda Env below instead. Examples: "C:\Python39\pythonw.exe" or "/usr/
local/bin/python3.9". Note that in the settings, this is stored as Interpreter_Win or
Interpreter_Mac, respectively, see below!

• PYTHONPATH: If the source file of your code is not found, add the path to its directory here.

• Conda Path: If you are on Windows and use Anaconda or Miniconda, then type here the path to
your installation, e.g. C:\Users\Username\Miniconda3 or %USERPROFILE%\Anaconda.

24 Chapter 7. Add-in & Settings

xlwings - Make Excel Fly!, Release dev

NOTE that you need at least conda 4.6! You also need to set Conda Env, see next point.

• Conda Env: If you are on Windows and use Anaconda or Miniconda, type here the name of your
conda env, e.g. base for the base installation or myenv for a conda env with the name myenv.

• UDF Modules: Names of Python modules (without .py extension) from which the UDFs are be-
ing imported. Separate multiple modules by “;”. Example: UDF_MODULES = "common_udfs;
myproject" The default imports a file in the same directory as the Excel spreadsheet with the same
name but ending in .py.

• Debug UDFs: Check this box if you want to run the xlwings COM server manually for debugging,
see Debugging.

• RunPython: Use UDF Server: Uses the same COM Server for RunPython as for UDFs. This
will be faster, as the interpreter doesn’t shut down after each call.

• Restart UDF Server: This restarts the UDF Server/Python interpreter.

• Show Console: Check the box in the ribbon or set the config to TRUE if you want the command
prompt to pop up. This currently only works on Windows.

7.3.1 Anaconda/Miniconda

If you use Anaconda or Miniconda on Windows, you will need to set your Conda Path and Conda Env
settings, as you will otherwise get errors when using NumPy etc. In return, leave Interpreter empty.

7.4 Environment Variables

With environment variables, you can set dynamic paths e.g. to your interpreter or PYTHONPATH:

• On Windows, you can use all environment variables like so: %USERPROFILE%\Anaconda.

• On macOS, the following special variables are supported: $HOME, $APPLICATIONS,
$DOCUMENTS, $DESKTOP.

7.5 User Config: Ribbon/Config File

The settings in the xlwings Ribbon are stored in a config file that can also be manipulated externally. The
location is

• Windows: .xlwings\xlwings.conf in your home folder, that is usually
C:\Users\<username>

• macOS: ~/Library/Containers/com.microsoft.Excel/Data/xlwings.conf

The format is as follows (currently the keys are required to be all caps) - note the OS specific Interpreter
settings!

7.4. Environment Variables 25

xlwings - Make Excel Fly!, Release dev

"INTERPRETER_WIN","C:\path\to\python.exe"
"INTERPRETER_MAC","/path/to/python"
"PYTHONPATH",""
"CONDA PATH",""
"CONDA ENV",""
"UDF MODULES",""
"DEBUG UDFS",""
"USE UDF SERVER",""
"SHOW CONSOLE",""
"ONEDRIVE_WIN",""
"ONEDRIVE_MAC",""

Note: The ONEDRIVE_WIN/_MAC setting has to be edited directly in the file, there is currently no
possibility to edit it via the ribbon. Usually, it is only required if you are either on macOS or if your
environment variables on Windows are not correctly set or if you have a private and corporate location and
don’t want to go with the default one. ONEDRIVE_WIN/_MAC has to point to the root folder of your local
OneDrive folder.

7.6 Workbook Directory Config: Config file

The global settings of the Ribbon/Config file can be overridden for one or more workbooks by creating a
xlwings.conf file in the workbook’s directory.

7.7 Workbook Config: xlwings.conf Sheet

Workbook specific settings will override global (Ribbon) and workbook directory config files: Workbook
specific settings are set by listing the config key/value pairs in a sheet with the name xlwings.conf.
When you create a new project with xlwings quickstart, it’ll already have such a sheet but you need
to rename it to xlwings.conf to make it active.

26 Chapter 7. Add-in & Settings

xlwings - Make Excel Fly!, Release dev

7.8 Alternative: Standalone VBA module

Sometimes, it might be useful to run xlwings code without having to install an add-in first. To do so, you need
to use the standalone option when creating a new project: xlwings quickstart myproject
--standalone.

This will add the content of the add-in as a single VBA module so you don’t need to set a reference to
the add-in anymore. It will also include Dictionary.cls as this is required on macOS. It will still
read in the settings from your xlwings.conf if you don’t override them by using a sheet with the name
xlwings.conf.

7.8. Alternative: Standalone VBA module 27

xlwings - Make Excel Fly!, Release dev

28 Chapter 7. Add-in & Settings

CHAPTER 8

RunPython

8.1 xlwings add-in

To get access to Run main (new in v0.16) button or the RunPython VBA function, you’ll need the
xlwings addin (or VBA module), see Add-in & Settings.

For new projects, the easiest way to get started is by using the command line client with the quickstart
command, see Command Line Client (CLI) for details:

$ xlwings quickstart myproject

8.2 Call Python with “RunPython”

In the VBA Editor (Alt-F11), write the code below into a VBA module. xlwings quickstart
automatically adds a new module with a sample call. If you rather want to start from scratch, you can add a
new module via Insert > Module.

Sub HelloWorld()
RunPython ("import hello; hello.world()")

End Sub

This calls the following code in hello.py:

hello.py
import numpy as np
import xlwings as xw

def world():

(continues on next page)

29

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 'Hello World!'

You can then attach HelloWorld to a button or run it directly in the VBA Editor by hitting F5.

Note: Place xw.Book.caller() within the function that is being called from Excel and not outside as
global variable. Otherwise it prevents Excel from shutting down properly upon exiting and leaves you with
a zombie process when you use Use UDF Server = True.

8.3 Function Arguments and Return Values

While it’s technically possible to include arguments in the function call within RunPython, it’s not very
convenient. Also, RunPython does not allow you to return values. To overcome these issues, use UDFs,
see User Defined Functions (UDFs) - however, this is currently limited to Windows only.

30 Chapter 8. RunPython

CHAPTER 9

User Defined Functions (UDFs)

This tutorial gets you quickly started on how to write User Defined Functions.

Note:

• UDFs are currently only available on Windows.

• For details of how to control the behaviour of the arguments and return values, have a look at Con-
verters and Options.

• For a comprehensive overview of the available decorators and their options, check out the correspond-
ing API docs: UDF decorators.

9.1 One-time Excel preparations

1) Enable Trust access to the VBA project object model under File > Options >
Trust Center > Trust Center Settings > Macro Settings

2) Install the add-in via command prompt: xlwings addin install (see Add-in & Settings).

9.2 Workbook preparation

The easiest way to start a new project is to run xlwings quickstart myproject on a command
prompt (see Command Line Client (CLI)). This automatically adds the xlwings reference to the generated
workbook.

31

xlwings - Make Excel Fly!, Release dev

9.3 A simple UDF

The default addin settings expect a Python source file in the way it is created by quickstart:

• in the same directory as the Excel file

• with the same name as the Excel file, but with a .py ending instead of .xlsm.

Alternatively, you can point to a specific module via UDF Modules in the xlwings ribbon.

Let’s assume you have a Workbook myproject.xlsm, then you would write the following code in
myproject.py:

import xlwings as xw

@xw.func
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

• Now click on Import Python UDFs in the xlwings tab to pick up the changes made to
myproject.py.

• Enter the formula =double_sum(1, 2) into a cell and you will see the correct result:

• The docstring (in triple-quotes) will be shown as function description in Excel.

Note:

• You only need to re-import your functions if you change the function arguments or the function name.

• Code changes in the actual functions are picked up automatically (i.e. at the next calculation of the
formula, e.g. triggered by Ctrl-Alt-F9), but changes in imported modules are not. This is the
very behaviour of how Python imports work. If you want to make sure everything is in a fresh state,
click Restart UDF Server.

• The @xw.func decorator is only used by xlwings when the function is being imported into Excel. It
tells xlwings for which functions it should create a VBA wrapper function, otherwise it has no effect
on how the functions behave in Python.

32 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.4 Array formulas: Get efficient

Calling one big array formula in Excel is much more efficient than calling many single-cell formulas, so it’s
generally a good idea to use them, especially if you hit performance problems.

You can pass an Excel Range as a function argument, as opposed to a single cell and it will show up in
Python as list of lists.

For example, you can write the following function to add 1 to every cell in a Range:

@xw.func
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

To use this formula in Excel,

• Click on Import Python UDFs again

• Fill in the values in the range A1:B2

• Select the range D1:E2

• Type in the formula =add_one(A1:B2)

• Press Ctrl+Shift+Enter to create an array formula. If you did everything correctly, you’ll see
the formula surrounded by curly braces as in this screenshot:

9.4.1 Number of array dimensions: ndim

The above formula has the issue that it expects a “two dimensional” input, e.g. a nested list of the form [[1,
2], [3, 4]]. Therefore, if you would apply the formula to a single cell, you would get the following
error: TypeError: 'float' object is not iterable.

To force Excel to always give you a two-dimensional array, no matter whether the argument is a single cell,
a column/row or a two-dimensional Range, you can extend the above formula like this:

@xw.func
@xw.arg('data', ndim=2)
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

9.4. Array formulas: Get efficient 33

xlwings - Make Excel Fly!, Release dev

9.5 Array formulas with NumPy and Pandas

Often, you’ll want to use NumPy arrays or Pandas DataFrames in your UDF, as this unlocks the full power
of Python’s ecosystem for scientific computing.

To define a formula for matrix multiplication using numpy arrays, you would define the following function:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
@xw.arg('y', np.array, ndim=2)
def matrix_mult(x, y):

return x @ y

Note: If you are not on Python >= 3.5 with NumPy >= 1.10, use x.dot(y) instead of x @ y.

A great example of how you can put Pandas at work is the creation of an array-based CORREL formula.
Excel’s version of CORREL only works on 2 datasets and is cumbersome to use if you want to quickly
get the correlation matrix of a few time-series, for example. Pandas makes the creation of an array-based
CORREL2 formula basically a one-liner:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame, index=False, header=False)
@xw.ret(index=False, header=False)
def CORREL2(x):

"""Like CORREL, but as array formula for more than 2 data sets"""
return x.corr()

9.6 @xw.arg and @xw.ret decorators

These decorators are to UDFs what the options method is to Range objects: they allow you to apply
converters and their options to function arguments (@xw.arg) and to the return value (@xw.ret). For
example, to convert the argument x into a pandas DataFrame and suppress the index when returning it, you
would do the following:

@xw.func
@xw.arg('x', pd.DataFrame)
@xw.ret(index=False)
def myfunction(x):

x is a DataFrame, do something with it
return x

For further details see the Converters and Options documentation.

34 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.7 Dynamic Array Formulas

Note: If your version of Excel supports the new native dynamic arrays, then you don’t have to do anything
special, and you shouldn’t use the expand decorator! To check if your version of Excel supports it, see if
you have the =UNIQUE() formula available. Native dynamic arrays were introduced in Office 365 Insider
Fast at the end of September 2018.

As seen above, to use Excel’s array formulas, you need to specify their dimensions up front by selecting the
result array first, then entering the formula and finally hitting Ctrl-Shift-Enter. In practice, it often
turns out to be a cumbersome process, especially when working with dynamic arrays such as time series
data. Since v0.10, xlwings offers dynamic UDF expansion:

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):

return np.random.randn(int(r), int(c))

Note:

• Expanding array formulas will overwrite cells without prompting

9.7. Dynamic Array Formulas 35

xlwings - Make Excel Fly!, Release dev

• Pre v0.15.0 doesn’t allow to have volatile functions as arguments, e.g. you cannot use functions like
=TODAY() as arguments. Starting with v0.15.0, you can use volatile functions as input, but the UDF
will be called more than 1x.

• Dynamic Arrays have been refactored with v0.15.0 to be proper legacy arrays: To edit a dynamic
array with xlwings >= v0.15.0, you need to hit Ctrl-Shift-Enter while in the top left cell. Note
that you don’t have to do that when you enter the formula for the first time.

9.8 Docstrings

The following sample shows how to include docstrings both for the function and for the arguments x and y
that then show up in the function wizard in Excel:

import xlwings as xw

@xw.func
@xw.arg('x', doc='This is x.')
@xw.arg('y', doc='This is y.')
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

9.9 The “caller” argument

You often need to know which cell called the UDF. For this, xlwings offers the reserved argument caller
which returns the calling cell as xlwings range object:

@xw.func
def get_caller_address(caller):

caller will not be exposed in Excel, so use it like so:

(continues on next page)

36 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

=get_caller_address()
return caller.address

Note that caller will not be exposed in Excel but will be provided by xlwings behind the scenes.

9.10 The “vba” keyword

By using the vba keyword, you can get access to any Excel VBA object in the form of a pywin32 object.
For example, if you wanted to pass the sheet object in the form of its CodeName, you can do it as follows:

@xw.func
@xw.arg('sheet1', vba='Sheet1')
def get_name(sheet1):

call this function in Excel with:
=get_name()
return sheet1.Name

Note that vba arguments are not exposed in the UDF but automatically provided by xlwings.

9.11 Macros

On Windows, as an alternative to calling macros via RunPython, you can also use the @xw.sub decorator:

import xlwings as xw

@xw.sub
def my_macro():

"""Writes the name of the Workbook into Range("A1") of Sheet 1"""
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = wb.name

After clicking on Import Python UDFs, you can then use this macro by executing it via Alt + F8
or by binding it e.g. to a button. To do the latter, make sure you have the Developer tab selected under
File > Options > Customize Ribbon. Then, under the Developer tab, you can insert a button
via Insert > Form Controls. After drawing the button, you will be prompted to assign a macro to
it and you can select my_macro.

9.12 Call UDFs from VBA

Imported functions can also be used from VBA. For example, for a function returning a 2d array:

Sub MySub()

Dim arr() As Variant
(continues on next page)

9.10. The “vba” keyword 37

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Dim i As Long, j As Long

arr = my_imported_function(...)

For j = LBound(arr, 2) To UBound(arr, 2)
For i = LBound(arr, 1) To UBound(arr, 1)

Debug.Print "(" & i & "," & j & ")", arr(i, j)
Next i

Next j

End Sub

9.13 Asynchronous UDFs

Note: This is an experimental feature

New in version v0.14.0.

xlwings offers an easy way to write asynchronous functions in Excel. Asynchronous functions return im-
mediately with #N/A waiting.... While the function is waiting for its return value, you can use Excel
to do other stuff and whenever the return value is available, the cell value will be updated.

The only available mode is currently async_mode='threading', meaning that it’s useful for I/O-
bound tasks, for example when you fetch data from an API over the web.

You make a function asynchronous simply by giving it the respective argument in the function decorator. In
this example, the time consuming I/O-bound task is simulated by using time.sleep:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):

time.sleep(5) # long running tasks
return a

You can use this function like any other xlwings function, simply by putting =myfunction("abcd")
into a cell (after you have imported the function, of course).

Note that xlwings doesn’t use the native asynchronous functions that were introduced with Excel 2010, so
xlwings asynchronous functions are supported with any version of Excel.

38 Chapter 9. User Defined Functions (UDFs)

CHAPTER 10

Matplotlib & Plotly Charts

10.1 Matplotlib

Using pictures.add(), it is easy to paste a Matplotlib plot as picture in Excel.

10.1.1 Getting started

The easiest sample boils down to:

>>> import matplotlib.pyplot as plt
>>> import xlwings as xw

>>> fig = plt.figure()
>>> plt.plot([1, 2, 3])

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True)

Note: If you set update=True, you can resize and position the plot on Excel: subsequent calls to
pictures.add()with the same name ('MyPlot') will update the picture without changing its position
or size.

10.1.2 Full integration with Excel

Calling the above code with RunPython and binding it e.g. to a button is straightforward and works cross-
platform.

39

xlwings - Make Excel Fly!, Release dev

However, on Windows you can make things feel even more integrated by setting up a UDF along the
following lines:

@xw.func
def myplot(n, caller):

fig = plt.figure()
plt.plot(range(int(n)))
caller.sheet.pictures.add(fig, name='MyPlot', update=True)
return 'Plotted with n={}'.format(n)

If you import this function and call it from cell B2, then the plot gets automatically updated when cell B1
changes:

10.1.3 Properties

Size, position and other properties can either be set as arguments within pictures.add(), or by manip-
ulating the picture object that is returned, see xlwings.Picture().

For example:

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True,

left=sht.range('B5').left, top=sht.range('B5').top)

or:

40 Chapter 10. Matplotlib & Plotly Charts

xlwings - Make Excel Fly!, Release dev

10.1. Matplotlib 41

xlwings - Make Excel Fly!, Release dev

>>> plot = sht.pictures.add(fig, name='MyPlot', update=True)
>>> plot.height /= 2
>>> plot.width /= 2

10.1.4 Getting a Matplotlib figure

Here are a few examples of how you get a matplotlib figure object:

• via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

or:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4, 5])
fig = plt.gcf()

• via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

• via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

10.2 Plotly static charts

This feature requires xlwings PRO.

10.2.1 Prerequisites

In addition to plotly you will need orca. The easiest way to get it is via conda:

$ conda install -c plotly plotly-orca psutil requests

For alternative ways of installation, see: https://plotly.com/python/static-image-export/

42 Chapter 10. Matplotlib & Plotly Charts

https://plotly.com/python/static-image-export/

xlwings - Make Excel Fly!, Release dev

10.2.2 How to use

It works the same as with Matplotlib, however, rendering a Plotly chart takes slightly longer. Here is a
sample:

import xlwings as xw
import plotly.express as px

Plotly chart
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")

Add it to Excel
wb = xw.Book()
wb.sheets[0].pictures.add(fig, name='IrisScatterPlot', update=True)

10.2. Plotly static charts 43

xlwings - Make Excel Fly!, Release dev

44 Chapter 10. Matplotlib & Plotly Charts

CHAPTER 11

Jupyter Notebooks: Interact with Excel

When you work with Jupyter notebooks, you may use Excel as an interactive data viewer or scratchpad from
where you can load DataFrames. The two convenience functions view and load make this really easy.

Note: The view and load functions should exclusively be used for interactive work. If you write scripts,
use the xlwings API as introduced under Quickstart and Syntax Overview.

11.1 The view function

The view function accepts pretty much any object of interest, whether that’s a number, a string, a nested
list or a NumPy array or a pandas DataFrame. By default, it writes the data into an Excel table in a
new workbook. If you wanted to reuse the same workbook, provide a sheet object, e.g. view(df,
sheet=xw.sheets.active), for further options see view .

Changed in version 0.22.0: Earlier versions were not formatting the output as Excel table

11.2 The load function

To load in a range in an Excel sheet as pandas DataFrame, use the load function. If you only select one
cell, it will auto-expand to cover the whole range. If, however, you select a specific range that is bigger than
one cell, it will load in only the selected cells. If the data in Excel does not have an index or header, set them
to False like this: xw.load(index=False), see also load.

New in version 0.22.0.

45

xlwings - Make Excel Fly!, Release dev

46 Chapter 11. Jupyter Notebooks: Interact with Excel

CHAPTER 12

Command Line Client (CLI)

xlwings comes with a command line client. On Windows, type the commands into a Command Prompt,
on Mac, type them into a Terminal. To get an overview of all commands, simply type xlwings and hit
Enter:

addin Run "xlwings addin install" to install the Excel add-
in (will be copied to the XLSTART folder). Instead of
"install" you can also use "update", "remove" or
"status". Note that this command may take a while. Use
the "--unprotected" flag to install the add-in without
password protection. You can install your custom add-
in by providing the name or path via the --file flag,
e.g. "xlwings add-in install --file custom.xlam"
(New in 0.6.0, the unprotected flag was added in 0.20.4)

quickstart Run "xlwings quickstart myproject" to create a folder
called "myproject" in the current directory with an
Excel file and a Python file, ready to be used. Use
the "--standalone" flag to embed all VBA code in the
Excel file and make it work without the xlwings add-
in.

runpython macOS only: run "xlwings runpython install" if you
want to enable the RunPython calls without installing
the add-in. This will create the following file:
~/Library/Application
Scripts/com.microsoft.Excel/xlwings.applescript
(new in 0.7.0)

restapi Use "xlwings restapi run" to run the xlwings REST API
via Flask dev server. Accepts "--host" and "--port" as
optional arguments.

license xlwings PRO: Use "xlwings license update -k KEY" where
"KEY" is your personal (trial) license key. This will
update ~/.xlwings/xlwings.conf with the LICENSE_KEY

(continues on next page)

47

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

entry. If you have a paid license, you can run
"xlwings license deploy" to create a deploy key. This
is not available for trial keys.

config Run "xlwings config create" to create the user config
file (~/.xlwings/xlwings.conf) which is where the
settings from the Ribbon add-in are stored. It will
configure the Python interpreter that you are running
this command with. To reset your configuration, run
this with the "--force" flag which will overwrite your
current configuration.
(New in 0.19.5)

code Run "xlwings code embed" to embed all Python modules
of the current dir in your active Excel file. Use the
"--file" flag to only import a single file by
providing its path. To run embedded code, you need an
xlwings PRO license.
(New in 0.20.2)

48 Chapter 12. Command Line Client (CLI)

CHAPTER 13

xlwings Reports

This feature requires xlwings PRO.

13.1 Quickstart

xlwings Reports is part of xlwings PRO and a solution for template-based Excel and PDF reporting. It
allows business users without Python knowledge to create & maintain Excel templates without having to
go back to a Python developer for every change: xlwings Reports separates the Python code (that gets and
prepares all the data) from the Excel template (that defines which data goes where and how it should be
formatted). See also the xlwings Reports homepage. You can render one sheet at the time via mysheet.
render_template or use the higher-level convenience function xw.create_report which first
copies the template workbook and then loops through all sheets.

13.1.1 Render Sheets

Let’s first look at how to render a single sheet. This is a workbook stored as Book1.xlsx:

Running the following code:

import xlwings as xw
wb = xw.Book('Book1.xlsx')
sheet = wb.sheets['template'].copy(name='report')
sheet.render_template(title='A Demo!', table=[[1, 2], [3, 4]])
wb.to_pdf() # requires xlwings >=0.21.1

Leaves you with this:

See also the API reference.

49

https://www.xlwings.org/reporting

xlwings - Make Excel Fly!, Release dev

50 Chapter 13. xlwings Reports

xlwings - Make Excel Fly!, Release dev

New in version 0.22.0.

13.1.2 Render Workbooks

If your template is a full workbook, you can use the create_report function. Start by creating the
following Python script my_template.py:

from xlwings.pro.reports import create_report
import pandas as pd

df = pd.DataFrame(data=[[1,2],[3,4]])
wb = create_report('my_template.xlsx', 'my_report.xlsx', title='MyTitle',
→˓df=df)
wb.to_pdf() # requires xlwings >=0.21.1

Then create the following Excel file called my_template.xlsx:

Now run the Python script:

python my_template.py

This will copy the template and create the following output by replacing the variables in double curly braces
with the value from the Python variable:

The last line (wb.to_pdf()) will print the workbook as PDF, for more details on the options, see Book.
to_pdf().

Apart from Strings and Pandas DataFrames, you can also use numbers, lists, simple dicts, NumPy arrays,
Matplotlib figures and PIL Image objects that have a filename.

13.1. Quickstart 51

xlwings - Make Excel Fly!, Release dev

By default, xlwings Reports overwrites existing values in templates if there is not enough free space for your
variable. If you want your rows to dynamically shift according to the height of your array, use Frames.

See also the API reference.

13.2 Frames

Frames are vertical containers in which content is being aligned according to their height. That is, within
Frames:

• Variables do not overwrite existing cell values as they do without Frames.

• Formatting is applied dynamically, depending on the number of rows your object uses in Excel

To use Frames, insert <frame> into row 1 of your Excel template wherever you want a new dyanmic
column to start. Row 1 will be removed automatically when creating the report. Frames go from one
<frame> to the next <frame> or the right border of the used range.

How Frames behave is best demonstrated with an example: The following screenshot defines two frames.
The first one goes from column A to column E and the second one goes from column F to column I, since
this is the last column that is used.

You can define and format table-like objects by formatting exactly

• one header and

• one data row

as shown in the screenshot:

However, also make sure to check out how to use Excel Tables below, as they make the formatting easier.

Running the following code:

from xlwings.pro.reports import create_report
import pandas as pd

df1 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df2 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14,
→˓15]])

data = dict(df1=df1, df2=df2)

(continues on next page)

52 Chapter 13. xlwings Reports

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

create_report('my_template.xlsx',
'my_report.xlsx',

**data)

will generate this report:

13.3 Excel Tables

Using Excel tables is the recommended way to format tables as the styling can be applied dynamically
across columns and rows. You can also use themes and apply alternating colors to rows/columns. On top of
that, they are the easiest way to make the source of a chart dynamic. Go to Insert > Table and make
sure that you activate My table has headers before clicking on OK. Add the placeholder as usual on
the top-left of your Excel table:

Running the following script:

from xlwings.pro.reports import create_report
import pandas as pd

nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],

columns=['col ' + str(i) for i in range(ncols)])

create_report('template.xlsx', 'output.xlsx', df=df.set_index('col 0'))

Will produce the following report:

Note:

• If you would like to exclude the DataFrame index, make sure to set the index to the first column e.g.:
df.set_index('column_name').

13.3. Excel Tables 53

xlwings - Make Excel Fly!, Release dev

54 Chapter 13. xlwings Reports

xlwings - Make Excel Fly!, Release dev

• At the moment, you can only assign pandas DataFrames to tables.

• For Excel table support, you need at least version 0.21.0 and the index behavior was changed in 0.21.3

13.4 Excel Charts

Note: To use charts with a dynamic source, you’ll need at least xlwings version 0.22.1

To use Excel charts in your reports, follow this process:

1. Add some sample/dummy data to your Excel template:

2. If your data source is dynamic, turn it into an Excel Table (Insert > Table). Make sure you do
this before adding the chart in the next step.

3. Add your chart and style it:

4. Reduce the Excel table to a 2 x 2 range and add the placeholder in the top-left corner (in our example
chart_data) . You can leave in some dummy data or clear the values of the Excel table:

5. Assuming your file is called mytemplate.xlsx and your sheet template like on the previous
screenshot, you can run the following code:

13.4. Excel Charts 55

xlwings - Make Excel Fly!, Release dev

import xlwings as xw
import pandas as pd

df = pd.DataFrame(data={'Q1': [1000, 2000, 3000],
'Q2': [4000, 5000, 6000],
'Q3': [7000, 8000, 9000]},

index=['North', 'South', 'West'])

wb = xw.Book("mytemplate.xlsx")
sheet = wb.sheets['template'].copy(name='report')
sheet.render_template(chart_data=df)

This will produce the following report, with the chart source correctly adjusted:

Note: If you don’t want the source data on your report, you might want to place it on a separate sheet. It’s
easiest if you add and design the chart on the separate sheet, before cutting the chart and pasting it on your
report template.

13.5 Shape Text

New in version 0.21.4.

You can also use Shapes like Text Boxes or Rectangles with template text:

from xlwings.pro.reports import create_report

create_report('template.xlsx', 'output.xlsx', temperature=12.3)

This code turns this template:

into this report:

56 Chapter 13. xlwings Reports

xlwings - Make Excel Fly!, Release dev

13.5. Shape Text 57

xlwings - Make Excel Fly!, Release dev

58 Chapter 13. xlwings Reports

xlwings - Make Excel Fly!, Release dev

13.5. Shape Text 59

xlwings - Make Excel Fly!, Release dev

While this works for simple text, you will loose the formatting if you have any. To prevent that, use a
Markdown object, see below.

13.6 Markdown

New in version 0.23.0.

You can format text in cells or shapes via Markdown syntax:

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet

* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

The first sheet requires a shape as shown on the screenshot
sheet = xw.Book("MyTemplate.xlsx").sheets[0]
sheet.render_template(myplaceholder=Markdown(mytext, style)

60 Chapter 13. xlwings Reports

xlwings - Make Excel Fly!, Release dev

This will render this template with the placeholder in a cell and a shape:

Like this (this uses the default formatting):

For more on Markdown, especially how to change the styling, see Markdown Formatting.

13.6. Markdown 61

xlwings - Make Excel Fly!, Release dev

62 Chapter 13. xlwings Reports

CHAPTER 14

Markdown Formatting

This feature requires xlwings PRO.

New in version 0.23.0.

Markdown offers an easy and intuitive way of styling text components in your cells and shapes. For an
introduction to Markdown, see e.g., Mastering Markdown.

Markdown support is in an early stage and currently only supports:

• First-level headings

• Bold (i.e., strong)

• Italic (i.e., emphasis)

• Unordered lists

It doesn’t support nested objects yet such as 2nd-level headings, bold/italic within bullet points or nested
bullet points.

Let’s go through an example to see how everything works!

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet

* A second bullet

Another Title

(continues on next page)

63

https://guides.github.com/features/mastering-markdown/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext)

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text:

But why not make things a tad more stylish? By providing a MarkdownStyle object, you can define your
style. Let’s change the previous example like this:

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet

* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

(continues on next page)

64 Chapter 14. Markdown Formatting

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

sheet = xw.Book("Book1.xlsx").sheets[0]

Styling
style = MarkdownStyle()
style.h1.font.color = (255, 0, 0)
style.h1.font.size = 14
style.h1.font.name = 'Comic Sans MS' # No, that's not a font recommendation..
→˓.
style.h1.blank_lines_after = 0
style.unordered_list.bullet_character = '\N{heavy black heart}' # Emojis are
→˓fun!

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext, style) # <= provide your style object
→˓here

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext, style)

Here is the output of this:

You can override all properties, i.e., you can change the emphasis from italic to a red font or anything else
you want:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

Markdown objects can also be used with template-based reporting, see xlwings Reports.

Note: macOS currently doesn’t support the formatting (bold, italic, color etc.) of Markdown text due to a

65

xlwings - Make Excel Fly!, Release dev

bug with AppleScript/Excel. The text will be rendered correctly though, including bullet points.

See also the API reference:

• Markdown class

• MarkdownStyle class

66 Chapter 14. Markdown Formatting

CHAPTER 15

Deployment

15.1 Zip files

New in version 0.15.2.

To make it easier to distribute, you can zip up your Python code into a zip file. If you use UDFs, this will
disable the automatic code reload, so this is a feature meant for distribution, not development. In practice,
this means that when your code is inside a zip file, you’ll have to click on re-import to get any changes.

If you name your zip file like your Excel file (but with .zip extension) and place it in the same folder as
your Excel workbook, xlwings will automatically find it (similar to how it works with a single python file).

If you want to use a different directory, make sure to add it to the PYTHONPATH in your config (Ribbon or
config file):

PYTHONPATH, "C:\path\to\myproject.zip"

15.2 RunFrozenPython

Changed in version 0.15.2.

You can use a freezer like PyInstaller, cx_Freeze, py2exe etc. to freeze your Python module into an exe-
cutable so that the recipient doesn’t have to install a full Python distribution.

Note:

• This does not work with UDFs.

• Currently only available on Windows, but support for Mac should be easy to add.

67

xlwings - Make Excel Fly!, Release dev

• You need at least 0.15.2 to support arguments whereas the syntax changed in 0.15.6

Use it as follows:

Sub MySample()
RunFrozenPython "C:\path\to\dist\myproject\myproject.exe", "arg1 arg2"

End Sub

15.3 Embedded Code

This feature requires xlwings PRO.

xlwings PRO allows you to store your Python code directly in Excel so you don’t have to distribute separate
Python files.

On a command line, run the following command which will import all Python files from the current directory
and paste them into sheets with the same name of the currently active workbook:

$ xlwings code embed

Then, use the VBA function RunPython ("import mymodule;mymodule.myfunction()") as
usual.

Note that you can have multiple Excel sheets and import them like normal Python files. Consider this
example:

68 Chapter 15. Deployment

xlwings - Make Excel Fly!, Release dev

You can call this function from VBA like so:

Sub RandomNumbers()
RunPython ("import random_numbers;random_numbers.main()")

End Sub

Note: UDFs modules don’t have to be added to the UDF Modules explicitly when using embedded code.
However, in contrast to how it works with external files, you currently need to re-import the functions when
you change them.

Note: While you can hide your sheets with your code, they will be written to a temporary directory in clear
text.

15.4 One-Click Zero-Config Installer

This feature requires xlwings PRO.

With xlwings PRO you get access to a private GitHub repository that will build your custom installer in
the cloud — no local installation required. Using a custom installer to deploy the Python runtime has the
following advantages:

15.4. One-Click Zero-Config Installer 69

xlwings - Make Excel Fly!, Release dev

• Zero Python knowledge required from end users

• Zero configuration required by end users

• No admin rights required

• Works for both UDFs and RunPython

• Works for external distribution

• Easy to deploy updates

15.4.1 End User Instructions

• Installing

Give the end user your Excel workbook and the installer. The user only has to double-click the
installer and confirm a few prompts — no configuration is required.

• Updating

If you use the embedded code feature (see: Embedded Code), you can deploy updates by simply
giving the user a new Excel file. Only when you change a dependency, you will need to create a new
installer.

• Uninstalling

The application can be uninstalled again via Windows Settings > Apps & Features.

15.4.2 Build the Installer

Before you can build the installer, the project needs to be configured correctly, see below.

In the GitHub repo, go to x releases > Draft/Create a new release. Add a version like 1.
0.0 to Tag version, then hit Publish release.

Wait a few minutes and refresh the page: the installer will appear under the release from where you can
download it. You can follow the progress under the Actions tab.

15.4.3 Configuration

Excel file

You can add your Excel file to the repository if you like but it’s not a requirement. Configure the Excel file
as follows:

• Add the standalone xlwings VBA module, e.g. via xlwings quickstart project
--standalone

• Make sure that in the VBA editor (Alt-F11) under Tools > References xlwings is unchecked

• Rename the _xlwings.conf sheet into xlwings.conf

70 Chapter 15. Deployment

xlwings - Make Excel Fly!, Release dev

• In the xlwings.conf sheet, as Interpreter, set the following value:
%LOCALAPPDATA%\project while replacing project with the name of your project

• If you like, you can hide the xlwings.conf sheet

Source code

Source code can either be embedded in the Excel file (see Embedded Code) or added to the src directory.
The first option requires xlwings-pro in requirements.txt, the second option will also work with
xlwings.

Dependencies

Add your dependencies to requirements.txt. For example:

xlwings==0.18.0
numpy==1.18.2

Code signing (optional)

Using a code sign certificate will show a verified publisher in the installation prompt. Without it, it will
show an unverified publisher.

• Store your code sign certificate as sign_cert_file in the root of this repository (make sure your
repo is private).

• Go to Settings > Secrets and add the password as code_sign_password.

Project details

Update the following under .github/main.yml:

PROJECT:
APP_PUBLISHER:

Python version

Set your Python version under .github/main.yml:

python-version: '3.7'
architecture: 'x64'

15.5 Deployment Key

This feature requires xlwings PRO.

If you have an xlwings PRO developer license, you can generate a deployment key. A deployment key
allows you to send an xlwings PRO tool to an end user without them requiring a paid license. A deployment
key is also perpetual, i.e. doesn’t expire like a developer license.

In return, a deployment key only works with the version of xlwings that was used to generate the deployment
key. A developer can generate new deployment keys for new versions of xlwings as long as they have an
active xlwings PRO subscription.

15.5. Deployment Key 71

xlwings - Make Excel Fly!, Release dev

Note: You need a paid developer license to generate a deployment key. A trial license won’t work.

To create a deployment key, run the following command:

xlwings license deploy

Then paste the generated key into the xlwings config as LICENSE_KEY. For deployment purposes, usually
the best place to do that is on a sheet called xlwings.conf, but you can also use an xlwings.conf file
in either the same folder or in the .xlwings folder within the user’s home folder. To use an environment
variable, use XLWINGS_LICENSE_KEY. See also User Settings.

72 Chapter 15. Deployment

CHAPTER 16

Troubleshooting

16.1 Issue: dll not found

Solution:

1) xlwings32-<version>.dll and xlwings64-<version>.dll are both in the same direc-
tory as your python.exe. If not, something went wrong with your installation. Reinstall it with
pip or conda, see Installation.

2) Check your Interpreter in the add-in or config sheet. If it is empty, then you need to be
able to open a windows command prompt and type python to start an interactive Python session.
If you get the error 'python' is not recognized as an internal or external
command, operable program or batch file., then you have two options: Either add
the path of where your python.exe lives to your Windows path (see https://www.computerhope.
com/issues/ch000549.htm) or set the full path to your interpreter in the add-in or your config sheet,
e.g. C:\Users\MyUser\anaconda\pythonw.exe

16.2 Issue: Couldn’t find the local location of your OneDrive

Solution:

On either the xlwings.conf sheet or on the xlwings.conf file under your home folder (for location
see User Config: Ribbon/Config File), add the following setting:

"ONEDRIVE_WIN", "C:\path\to\OneDrive"

Note: Don’t use quotes on the xlwings.conf sheet and if you are on macOS, use ONEDRIVE_MAC
instead.

73

https://www.computerhope.com/issues/ch000549.htm
https://www.computerhope.com/issues/ch000549.htm

xlwings - Make Excel Fly!, Release dev

74 Chapter 16. Troubleshooting

CHAPTER 17

xlwings PRO

The purpose of xlwings PRO is to finance the continued maintenance and enhancement of xlwings. This
will allow you to rely on the package without being left with the dreaded “this library currently has no active
maintainers” message that happens to too many open-source packages after a couple of years.

xlwings PRO offers access to additional functionality. All PRO features are marked with xlwings PRO in
the docs.

Note: To get access to the additional functionality of xlwings PRO, you need a license key and at least xl-
wings v0.19.0. Everything under the xlwings.pro subpackage is distributed under a commercial license.

17.1 PRO Features

• Table.update(): An easy way to keep an Excel table in sync with a pandas DataFrame

• Embedded Code: Store your Python source code directly in Excel for easy deployment.

• xlwings Reports: A template based reporting mechanism, allows business users to change the layout
of the report without having to change Python code.

• Plotly static charts: Support for Plotly static charts.

• One-Click Zero-Config Installer: Guarantees that the end user does not need to know anything about
Python.

75

https://github.com/python-excel/xlrd
https://github.com/python-excel/xlrd

xlwings - Make Excel Fly!, Release dev

17.2 More Infos

• Pricing: https://www.xlwings.org/pricing

• Trial license key: https://www.xlwings.org/trial

76 Chapter 17. xlwings PRO

https://www.xlwings.org/pricing
https://www.xlwings.org/trial

CHAPTER 18

Converters and Options

Introduced with v0.7.0, converters define how Excel ranges and their values are converted both during
reading and writing operations. They also provide a consistent experience across xlwings.Range objects
and User Defined Functions (UDFs).

Converters are explicitly set in the optionsmethod when manipulating Range objects or in the @xw.arg
and @xw.ret decorators when using UDFs. If no converter is specified, the default converter is applied
when reading. When writing, xlwings will automatically apply the correct converter (if available) according
to the object’s type that is being written to Excel. If no converter is found for that type, it falls back to the
default converter.

All code samples below depend on the following import:

>>> import xlwings as xw

Syntax:

xw.Range UDFs
read-
ing

xw.Range.options(convert=None,

**kwargs).value
@arg('x',
convert=None,

**kwargs)
writ-
ing

xw.Range.options(convert=None,

**kwargs).value = myvalue
@ret(convert=None,

**kwargs)

Note: Keyword arguments (kwargs) may refer to the specific converter or the default converter. For
example, to set the numbers option in the default converter and the index option in the DataFrame
converter, you would write:

77

xlwings - Make Excel Fly!, Release dev

xw.Range('A1:C3').options(pd.DataFrame, index=False, numbers=int).value

18.1 Default Converter

If no options are set, the following conversions are performed:

• single cells are read in as floats in case the Excel cell holds a number, as unicode in case it holds
text, as datetime if it contains a date and as None in case it is empty.

• columns/rows are read in as lists, e.g. [None, 1.0, 'a string']

• 2d cell ranges are read in as list of lists, e.g. [[None, 1.0, 'a string'], [None, 2.0,
'another string']]

The following options can be set:

• ndim

Force the value to have either 1 or 2 dimensions regardless of the shape of the range:

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1, 2], [3, 4]]
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(ndim=1).value
[1.0]
>>> sht.range('A1').options(ndim=2).value
[[1.0]]
>>> sht.range('A1:A2').value
[1.0 3.0]
>>> sht.range('A1:A2').options(ndim=2).value
[[1.0], [3.0]]

• numbers

By default cells with numbers are read as float, but you can change it to int:

>>> sht.range('A1').value = 1
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(numbers=int).value
1

Alternatively, you can specify any other function or type which takes a single float argument.

Using this on UDFs looks like this:

@xw.func
@xw.arg('x', numbers=int)
def myfunction(x):

(continues on next page)

78 Chapter 18. Converters and Options

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

all numbers in x arrive as int
return x

Note: Excel always stores numbers internally as floats, which is the reason why the int converter
rounds numbers first before turning them into integers. Otherwise it could happen that e.g. 5 might be
returned as 4 in case it is represented as a floating point number that is slightly smaller than 5. Should
you require Python’s original int in your converter, use raw int instead.

• dates

By default cells with dates are read as datetime.datetime, but you can change it to datetime.
date:

– Range:

>>> import datetime as dt
>>> sht.range('A1').options(dates=dt.date).value

– UDFs: @xw.arg('x', dates=dt.date)

Alternatively, you can specify any other function or type which takes the same keyword arguments as
datetime.datetime, for example:

>>> my_date_handler = lambda year, month, day, **kwargs: "%04i-%02i-%02i
→˓" % (year, month, day)
>>> sht.range('A1').options(dates=my_date_handler).value
'2017-02-20'

• empty

Empty cells are converted per default into None, you can change this as follows:

– Range: >>> sht.range('A1').options(empty='NA').value

– UDFs: @xw.arg('x', empty='NA')

• transpose

This works for reading and writing and allows us to e.g. write a list in column orientation to Excel:

– Range: sht.range('A1').options(transpose=True).value = [1, 2, 3]

– UDFs:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):

x will be returned unchanged as transposed both when reading
→˓and writing

return x

• expand

This works the same as the Range properties table, vertical and horizontal but is only
evaluated when getting the values of a Range:

18.1. Default Converter 79

xlwings - Make Excel Fly!, Release dev

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sht.range('A1').expand()
>>> rng2 = sht.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sht.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

Note: The expand method is only available on Range objects as UDFs only allow to manipulate
the calling cells.

• chunksize

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout
or a memory error. The ideal chunksize will depend on your system and size of the array, so you
will have to try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

18.2 Built-in Converters

xlwings offers several built-in converters that perform type conversion to dictionaries, NumPy arrays,
Pandas Series and DataFrames. These build on top of the default converter, so in most cases the options
described above can be used in this context, too (unless they are meaningless, for example the ndim in the
case of a dictionary).

It is also possible to write and register a custom converter for additional types, see below.

The samples below can be used with both xlwings.Range objects and UDFs even though only one
version may be shown.

80 Chapter 18. Converters and Options

xlwings - Make Excel Fly!, Release dev

18.2.1 Dictionary converter

The dictionary converter turns two Excel columns into a dictionary. If the data is in row orientation, use
transpose:

>>> sht = xw.sheets.active
>>> sht.range('A1:B2').options(dict).value
{'a': 1.0, 'b': 2.0}
>>> sht.range('A4:B5').options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

Note: instead of dict, you can also use OrderedDict from collections.

18.2.2 Numpy array converter

options: dtype=None, copy=True, order=None, ndim=None

The first 3 options behave the same as when using np.array() directly. Also, ndim works the same
as shown above for lists (under default converter) and hence returns either numpy scalars, 1d arrays or 2d
arrays.

Example:

>>> import numpy as np
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').options(transpose=True).value = np.array([1, 2, 3])
>>> sht.range('A1:A3').options(np.array, ndim=2).value
array([[1.],

[2.],
[3.]])

18.2.3 Pandas Series converter

options: dtype=None, copy=False, index=1, header=True

The first 2 options behave the same as when using pd.Series() directly. ndim doesn’t have an effect
on Pandas series as they are always expected and returned in column orientation.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.

18.2. Built-in Converters 81

xlwings - Make Excel Fly!, Release dev

When writing, include or exclude the index by setting it to True or False.

header: Boolean

When reading, set it to False if Excel doesn’t show either index or series names.
When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

>>> sht = xw.Book().sheets[0]
>>> s = sht.range('A1').options(pd.Series, expand='table').value
>>> s
date
2001-01-01 1
2001-01-02 2
2001-01-03 3
2001-01-04 4
2001-01-05 5
2001-01-06 6
Name: series name, dtype: float64
>>> sht.range('D1', header=False).value = s

18.2.4 Pandas DataFrame converter

options: dtype=None, copy=False, index=1, header=1

The first 2 options behave the same as when using pd.DataFrame() directly. ndim doesn’t have an
effect on Pandas DataFrames as they are automatically read in with ndim=2.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.
When writing, include or exclude the index by setting it to True or False.

header: int or Boolean

When reading, it expects the number of column headers shown in Excel.
When writing, include or exclude the index and series names by setting it to True or False.

82 Chapter 18. Converters and Options

xlwings - Make Excel Fly!, Release dev

For index and header, 1 and True may be used interchangeably.

Example:

>>> sht = xw.Book().sheets[0]
>>> df = sht.range('A1:D5').options(pd.DataFrame, header=2).value
>>> df

a b
c d e

ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> sht.range('A1').value = df

(continues on next page)

18.2. Built-in Converters 83

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Writing back and changing some of the options, e.g. getting rid of the
→˓index:
>>> sht.range('B7').options(index=False).value = df

The same sample for UDF (starting in Range('A13') on screenshot) looks like this:

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):

x is a DataFrame, do something with it
return x

18.2.5 xw.Range and ‘raw’ converters

Technically speaking, these are “no-converters”.

• If you need access to the xlwings.Range object directly, you can do:

@xw.func
@xw.arg('x', 'range')
def myfunction(x):

return x.formula

This returns x as xlwings.Range object, i.e. without applying any converters or options.

• The raw converter delivers the values unchanged from the underlying libraries (pywin32 on Win-
dows and appscript on Mac), i.e. no sanitizing/cross-platform harmonizing of values are being
made. This might be useful in a few cases for efficiency reasons. E.g:

>>> sht.range('A1:B2').value
[[1.0, 'text'], [datetime.datetime(2016, 2, 1, 0, 0), None]]

>>> sht.range('A1:B2').options('raw').value # or sht.range('A1:B2').raw_
→˓value
((1.0, 'text'), (pywintypes.datetime(2016, 2, 1, 0, 0,
→˓tzinfo=TimeZoneInfo('GMT Standard Time', True)), None))

18.3 Custom Converter

Here are the steps to implement your own converter:

• Inherit from xlwings.conversion.Converter

• Implement both a read_value and write_value method as static- or classmethod:

– In read_value, value is what the base converter returns: hence, if no base has been spec-
ified it arrives in the format of the default converter.

84 Chapter 18. Converters and Options

xlwings - Make Excel Fly!, Release dev

– In write_value, value is the original object being written to Excel. It must be returned
in the format that the base converter expects. Again, if no base has been specified, this is the
default converter.

The options dictionary will contain all keyword arguments specified in the xw.Range.options
method, e.g. when calling xw.Range('A1').options(myoption='some value') or as
specified in the @arg and @ret decorator when using UDFs. Here is the basic structure:

from xlwings.conversion import Converter

class MyConverter(Converter):

@staticmethod
def read_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

@staticmethod
def write_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

• Optional: set a base converter (base expects a class name) to build on top of an ex-
isting converter, e.g. for the built-in ones: DictCoverter, NumpyArrayConverter,
PandasDataFrameConverter, PandasSeriesConverter

• Optional: register the converter: you can (a) register a type so that your converter becomes the default
for this type during write operations and/or (b) you can register an alias that will allow you to explicitly
call your converter by name instead of just by class name

The following examples should make it much easier to follow - it defines a DataFrame converter that extends
the built-in DataFrame converter to add support for dropping nan’s:

from xlwings.conversion import Converter, PandasDataFrameConverter

class DataFrameDropna(Converter):

base = PandasDataFrameConverter

@staticmethod
def read_value(builtin_df, options):

dropna = options.get('dropna', False) # set default to False
if dropna:

converted_df = builtin_df.dropna()
else:

converted_df = builtin_df
This will arrive in Python when using the DataFrameDropna converter

→˓for reading
return converted_df

@staticmethod
(continues on next page)

18.3. Custom Converter 85

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

def write_value(df, options):
dropna = options.get('dropna', False)
if dropna:

converted_df = df.dropna()
else:

converted_df = df
This will be passed to the built-in PandasDataFrameConverter when

→˓writing
return converted_df

Now let’s see how the different converters can be applied:

Fire up a Workbook and create a sample DataFrame
sht = xw.Book().sheets[0]
df = pd.DataFrame([[1.,10.],[2.,np.nan], [3., 30.]])

• Default converter for DataFrames:

Write
sht.range('A1').value = df

Read
sht.range('A1:C4').options(pd.DataFrame).value

• DataFrameDropna converter:

Write
sht.range('A7').options(DataFrameDropna, dropna=True).value = df

Read
sht.range('A1:C4').options(DataFrameDropna, dropna=True).value

• Register an alias (optional):

DataFrameDropna.register('df_dropna')

Write
sht.range('A12').options('df_dropna', dropna=True).value = df

Read
sht.range('A1:C4').options('df_dropna', dropna=True).value

• Register DataFrameDropna as default converter for DataFrames (optional):

DataFrameDropna.register(pd.DataFrame)

Write
sht.range('A13').options(dropna=True).value = df

Read
sht.range('A1:C4').options(pd.DataFrame, dropna=True).value

86 Chapter 18. Converters and Options

xlwings - Make Excel Fly!, Release dev

These samples all work the same with UDFs, e.g.:

@xw.func
@arg('x', DataFrameDropna, dropna=True)
@ret(DataFrameDropna, dropna=True)
def myfunction(x):

...
return x

Note: Python objects run through multiple stages of a transformation pipeline when they are being written
to Excel. The same holds true in the other direction, when Excel/COM objects are being read into Python.

Pipelines are internally defined by Accessor classes. A Converter is just a special Accessor which converts
to/from a particular type by adding an extra stage to the pipeline of the default Accessor. For example, the
PandasDataFrameConverter defines how a list of lists (as delivered by the default Accessor) should
be turned into a Pandas DataFrame.

The Converter class provides basic scaffolding to make the task of writing a new Converter easier. If you
need more control you can subclass Accessor directly, but this part requires more work and is currently
undocumented.

18.3. Custom Converter 87

xlwings - Make Excel Fly!, Release dev

88 Chapter 18. Converters and Options

CHAPTER 19

Debugging

Since xlwings runs in every Python environment, you can use your preferred way of debugging.

• RunPython: When calling Python through RunPython, you can set a mock_caller to make it
easy to switch back and forth between calling the function from Excel and Python.

• UDFs: For debugging User Defined Functions, xlwings offers a convenient debugging server

To begin with, Excel will show Python errors in a Message Box:

Note: On Mac, if the import of a module/package fails before xlwings is imported, the popup will

89

xlwings - Make Excel Fly!, Release dev

not be shown and the StatusBar will not be reset. However, the error will still be logged in the log file
(/Users/<User>/Library/Containers/com.microsoft.Excel/Data/xlwings.log).

19.1 RunPython

Consider the following sample code of your Python source code my_module.py:

my_module.py
import os
import xlwings as xw

def my_macro():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 1

if __name__ == '__main__':
Expects the Excel file next to this source file, adjust accordingly.
xw.Book('myfile.xlsm').set_mock_caller()
my_macro()

my_macro() can now easily be run from Python for debugging and from Excel via RunPython without
having to change the source code:

Sub my_macro()
RunPython "import my_module; my_module.my_macro()"

End Sub

19.2 UDF debug server

Windows only: To debug UDFs, just check the Debug UDFs in the Add-in & Settings, at the top of
the xlwings VBA module. Then add the following lines at the end of your Python source file and run it.
Depending on which IDE you use, you might need to run the code in “debug” mode (e.g. in case you’re
using PyCharm or PyDev):

if __name__ == '__main__':
xw.serve()

When you recalculate the Sheet (Ctrl-Alt-F9), the code will stop at breakpoints or output any print calls
that you may have.

The following screenshot shows the code stopped at a breakpoint in the community version of PyCharm:

Note: When running the debug server from a command prompt, there is currently no gracious way to
terminate it, but closing the command prompt will kill it.

90 Chapter 19. Debugging

xlwings - Make Excel Fly!, Release dev

19.2. UDF debug server 91

xlwings - Make Excel Fly!, Release dev

92 Chapter 19. Debugging

CHAPTER 20

Extensions

It’s easy to extend the xlwings add-in with own code like UDFs or RunPython macros, so that they can
be deployed without end users having to import or write the functions themselves. Just add another VBA
module to the xlwings addin with the respective code.

UDF extensions can be used from every workbook without having to set a reference.

20.1 In-Excel SQL

The xlwings addin comes with a built-in extension that adds in-Excel SQL syntax (sqlite dialect):

=sql(SQL Statement, table a, table b, ...)

As this extension uses UDFs, it’s only available on Windows right now.

93

xlwings - Make Excel Fly!, Release dev

94 Chapter 20. Extensions

CHAPTER 21

Custom Add-ins

New in version 0.22.0.

Custom add-ins work on Windows and macOS and are white-labeled xlwings add-ins that include all your
RunPython functions and UDFs (as usual, UDFs work on Windows only). You can build add-ins with and
without an Excel ribbon.

The useful thing about add-in is that UDFs and RunPython calls will be available in all workbooks right out
of the box without having to add any references via the VBA editor’s Tools > References.... You
can also work with standard xlsx files rather than xlsm files. This tutorial assumes you’re familiar with
how xlwings and its configuration works.

21.1 Quickstart

Start by running the following command on a command line (to create an add-in without a ribbon, you
would leave away the --ribbon flag):

$ xlwings quickstart myproject --addin --ribbon

This will create the familiar quickstart folder with a Python file and an Excel file, but this time, the Excel
file is in the xlam format.

• Double-click the Excel add-in to open it in Excel

• Add a new empty workbook (Ctrl+N on Windows or Command+N on macOS)

You should see a new ribbon tab called MyAddin like this:

The add-in and VBA project are currently always called myaddin, no matter what name you chose in the
quickstart command. We’ll see towards the end of this tutorial how we can change that, but for now we’ll
stick with it.

95

xlwings - Make Excel Fly!, Release dev

Compared to the xlwings add-in, the custom add-in offers an additional level of configuration: the configura-
tion sheet of the add-in itself which is the easiest way to configure simple add-ins with a static configuration.

Let’s open the VBA editor by clicking on Alt+F11 (Windows) or Option+F11 (macOS). In our project,
select ThisWorkbook, then change the Property IsAddin from True to False, see the following
screenshot:

This will make the sheet _myaddin.conf visible (again, we’ll see how to change the name of myaddin
at the end of this tutorial):

• Activate the sheet config by renaming it from _myaddin.conf to myaddin.conf

• Set your Interpreter_Win/_Mac or Conda settings (you may want to take them over from the
xlwings settings for now)

Once done, switch back to the VBA editor, select ThisWorkbook again, and change IsAddin back to
True before you save your add-in from the VBA editor. Switch back to Excel and click the Run button
under the My Addin ribbon tab and if you’ve configured the Python interpreter correctly, it will print
Hello xlwings! into cell A1 of the active workbook.

21.2 Changing the Ribbon menu

To change the buttons and items in the ribbon menu or the Backstage View, download and install the Office
RibbonX Editor. While it is only available for Windows, the created ribbons will also work on macOS. Open
your add-in with it so you can change the XML code that defines your buttons etc. You will find a good
tutorial here. The callback function for the demo Run button is in the RibbonMyAddin VBA module that
you’ll find in the VBA editor.

21.3 Importing UDFs

To import your UDFs into the custom add-in, run the ImportPythonUDFsToAddin Sub towards the
end of the xlwings module (click into the Sub and hit F5). Remember, you only have to do this whenever
you change the function name, argument or decorator, so your end users won’t have to deal with this.

96 Chapter 21. Custom Add-ins

https://github.com/fernandreu/office-ribbonx-editor/releases
https://github.com/fernandreu/office-ribbonx-editor/releases
https://www.rondebruin.nl/win/s2/win001.htm

xlwings - Make Excel Fly!, Release dev

21.3. Importing UDFs 97

xlwings - Make Excel Fly!, Release dev

If you are only deploying UDFs via your add-in, you probably don’t need a Ribbon menu and can leave
away the --ribbon flag in the quickstart command.

21.4 Configuration

As mentioned before, configuration works the same as with xlwings, so you could have your users override
the default configuration we did above by adding a myaddin.conf sheet on their workbook or you could
use the myaddin.conf file in the user’s home directory. For details see Add-in & Settings.

21.5 Installation

If you want to permanently install your add-in, you can do so by using the xlwings CLI:

$ xlwings addin install --file C:\path\to\your\myproject.xlam

This, however, means that you will need to adjust the PYTHONPATH for it to find your Python code (or move
your Python code to somewhere where Python looks for it—more about that below under deployment). The
command will copy your add-in to the XLSTART folder, a special folder from where Excel will open all
files everytime you start it.

21.6 Renaming your add-in

Admittedly, this part is a bit cumbersome for now. Let’s assume, we would like to rename the addin from
MyAddin to Demo:

• In the xlwings VBA module, change Public Const PROJECT_NAME As String =
"myaddin" to Public Const PROJECT_NAME As String = "demo". You’ll find this
line at the top, right after the Declare statements.

• If you rely on the myaddin.conf sheet for your configuration, rename it to demo.conf

• Right-click the VBA project, select MyAddin Properties... and rename the Project Name
from MyAddin to Demo.

• If you use the ribbon, you want to rename the RibbonMyAddin VBA module to RibbonDemo.
To do this, select the module in the VBA editor, then rename it in the Properties window. If you
don’t see the Properties window, hit F4.

• Open the add-in in the Office RibbonX Editor (see above) and replace all occurrences of MyAddin
with Demo in the XML code.

And finally, you may want to rename your myproject.xlam file in the Windows explorer, but I assume
you have already run the quickstart command with the correct name, so this won’t be necessary.

98 Chapter 21. Custom Add-ins

xlwings - Make Excel Fly!, Release dev

21.7 Deployment

By far the easiest way to deploy your add-in to your end-users is to build an installer via the xlwings PRO
offering. This will take care of everything and your end users literally just need to double-click the installer
and they are all set (no existing Python installation required and no manual installation of the add-in or
adjusting of settings required).

If you want it the free (but hard) way, you either need to build an installer yourself or you need your users to
install Python and the add-in and take care of placing the Python code in the correct directory. This normally
involves tweaking the following settings, for example in the myaddin.conf sheet:

• Interpreter_Win/_Mac: if your end-users have a working version of Python, you can use en-
vironment variables to dynamically resolve to the correct path. For example, if they have Anaconda
installed in the default location, you could use the following configuration:

Conda Path: %USERPROFILE%\anaconda3
Conda Env: base
Interpreter_Mac: $HOME/opt/anaconda3/bin/python

• PYTHONPATH: since you can’t have your Python source code in the XLSTART folder next to the
add-in, you’ll need to adjust the PYTHONPATH setting and add the folder to where the Python code
will be. You could point this to a shared drive or again make use of environment variables so the
users can place the file into a folder called MyAddin in their home directory, for example. However,
you can also place your Python code where Python looks for it, for example by placing them in the
site-packages directory of the Python distribution—an easy way to achieve this is to build a
Python package that you can install via pip.

21.7. Deployment 99

xlwings - Make Excel Fly!, Release dev

100 Chapter 21. Custom Add-ins

CHAPTER 22

Threading and Multiprocessing

New in version 0.13.0.

22.1 Threading

While xlwings is not technically thread safe, it’s still easy to use it in threads as long as you have at least
v0.13.0 and stick to a simple rule: Do not pass xlwings objects to threads. This rule isn’t a requirement on
macOS, but it’s still recommended if you want your programs to be cross-platform.

Consider the following example that will NOT work:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

rng = q.get()
rng.value = rng.address
print(rng.address)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)

(continues on next page)

101

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
THIS DOESN'T WORK - passing xlwings objects to threads will fail!
rng = xw.Book('Book1.xlsx').sheets[0].range(cell)
q.put(rng)

q.join()

To make it work, you simply have to fully qualify the cell reference in the thread instead of passing a Book
object:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

cell_ = q.get()
xw.Book('Book1.xlsx').sheets[0].range(cell_).value = cell_
print(cell_)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)
t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
q.put(cell)

q.join()

22.2 Multiprocessing

Note: Multiprocessing is only supported on Windows!

The same rules apply to multiprocessing as for threading, here’s a working example:

102 Chapter 22. Threading and Multiprocessing

xlwings - Make Excel Fly!, Release dev

from multiprocessing import Pool
import xlwings as xw

def write_to_workbook(cell):
xw.Book('Book1.xlsx').sheets[0].range(cell).value = cell
print(cell)

if __name__ == '__main__':
with Pool(4) as p:

p.map(write_to_workbook,
['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

22.2. Multiprocessing 103

xlwings - Make Excel Fly!, Release dev

104 Chapter 22. Threading and Multiprocessing

CHAPTER 23

Missing Features

If you’re missing a feature in xlwings, do the following:

1) Most importantly, open an issue on GitHub. Adding functionality should be user driven, so only if
you tell us about what you’re missing, it’s eventually going to find its way into the library. By the
way, we also appreciate pull requests!

2) Workaround: in essence, xlwings is just a smart wrapper around pywin32 on Windows and appscript
on Mac. You can access the underlying objects by calling the api property:

>>> sheet = xw.Book().sheets[0]
>>> sheet.api
<COMObject <unknown>> # Windows/pywin32
app(pid=2319).workbooks['Workbook1'].worksheets[1] # Mac/appscript

This works accordingly for the other objects like sheet.range('A1').api etc.

The underlying objects will offer you pretty much everything you can do with VBA, using the syntax
of pywin32 (which pretty much feels like VBA) and appscript (which doesn’t feel like VBA). But
apart from looking ugly, keep in mind that it makes your code platform specific (!), i.e. even if you
go for option 2), you should still follow option 1) and open an issue so the feature finds it’s way into
the library (cross-platform and with a Pythonic syntax).

23.1 Example: Workaround to use VBA’s Range.WrapText

Windows
sheet.range('A1').api.WrapText = True

Mac
sheet.range('A1').api.wrap_text.set(True)

105

https://github.com/xlwings/xlwings/issues
https://github.com/mhammond/pywin32/
http://appscript.sourceforge.net/

xlwings - Make Excel Fly!, Release dev

106 Chapter 23. Missing Features

CHAPTER 24

xlwings with other Office Apps

xlwings can also be used to call Python functions from VBA within Office apps other than Excel (like
Outlook, Access etc.).

Note: New in v0.12.0 and still in a somewhat early stage that involves a bit of manual work. Currently,
this functionality is only available on Windows for UDFs. The RunPython functionality is currently not
supported.

24.1 How To

1) As usual, write your Python function and import it into Excel (see User Defined Functions (UDFs)).

2) Press Alt-F11 to get into the VBA editor, then right-click on the xlwings_udfs VBA module
and select Export File.... Save the xlwings_udfs.bas file somewhere.

3) Switch into the other Office app, e.g. Microsoft Access and click again Alt-F11 to get into the
VBA editor. Right-click on the VBA Project and Import File..., then select the file that you
exported in the previous step. Once imported, replace the app name in the first line to the one that
you are using, i.e. Microsoft Access or Microsoft Outlook etc. so that the first line then
reads: #Const App = "Microsoft Access"

4) Now import the standalone xlwings VBA module (xlwings.bas). You can find it in your xlwings
installation folder. To know where that is, do:

>>> import xlwings as xw
>>> xlwings.__path__

107

xlwings - Make Excel Fly!, Release dev

And finally do the same as in the previous step and replace the App name in the first line with the
name of the corresponding app that you are using. You are now able to call the Python function from
VBA.

24.2 Config

The other Office apps will use the same global config file as you are editing via the Excel ribbon add-
in. When it makes sense, you’ll be able to use the directory config file (e.g. you can put it next to your
Access or Word file) or you can hardcode the path to the config file in the VBA standalone module, e.g. in
the function GetDirectoryConfigFilePath (e.g. suggested when using Outlook that doesn’t really
have the same concept of files like the other Office apps). NOTE: For Office apps without file concept, you
need to make sure that the PYTHONPATH points to the directory with the Python source file. For details on
the different config options, see Config.

108 Chapter 24. xlwings with other Office Apps

CHAPTER 25

xlwings with R and Julia

While xlwings is a pure Python package, there are cross-language packages that allow for a relatively
straightforward use from/with other languages. This means, however, that you’ll always need to have
Python with xlwings installed in addition to R or Julia. We recommend the Anaconda distribution, see
also Installation.

25.1 R

The R instructions are for Windows, but things work accordingly on Mac except that calling the R functions
as User Defined Functions is not supported at the moment (but RunPython works, see Call Python with
“RunPython”).

Setup:

• Install R and Python

• Add R_HOME environment variable to base directory of installation, .e.g C:\Program
Files\R\R-x.x.x

• Add R_USER environment variable to user folder, e.g. C:\Users\<user>

• Add C:\Program Files\R\R-x.x.x\bin to PATH

• Restart Windows because of the environment variables (!)

25.1.1 Simple functions with R

Original R function that we want to access from Excel (saved in r_file.R):

109

https://store.continuum.io/cshop/anaconda/

xlwings - Make Excel Fly!, Release dev

myfunction <- function(x, y){
return(x * y)

}

Python wrapper code:

import xlwings as xw
import rpy2.robjects as robjects
you might want to use some relative path or place the file in R's current
→˓working dir
robjects.r.source(r"C:\path\to\r_file.R")

@xw.func
def myfunction(x, y):

myfunc = robjects.r['myfunction']
return tuple(myfunc(x, y))

After importing this function (see: User Defined Functions (UDFs)), it will be available as UDF from Excel.

25.1.2 Array functions with R

Original R function that we want to access from Excel (saved in r_file.R):

array_function <- function(m1, m2){
Matrix multiplication
return(m1 %*% m2)

}

Python wrapper code:

import xlwings as xw
import numpy as np
import rpy2.robjects as robjects
from rpy2.robjects import numpy2ri

robjects.r.source(r"C:\path\to\r_file.R")
numpy2ri.activate()

@xw.func
@xw.arg("x", np.array, ndim=2)
@xw.arg("y", np.array, ndim=2)
def array_function(x, y):

array_func = robjects.r['array_function']
return np.array(array_func(x, y))

After importing this function (see: User Defined Functions (UDFs)), it will be available as UDF from Excel.

25.2 Julia

Setup:

110 Chapter 25. xlwings with R and Julia

xlwings - Make Excel Fly!, Release dev

• Install Julia and Python

• Run Pkg.add("PyCall") from an interactive Julia interpreter

xlwings can then be called from Julia with the following syntax (the colons take care of automatic type
conversion):

julia> using PyCall
julia> @pyimport xlwings as xw

julia> xw.Book()
PyObject <Book [Workbook1]>

julia> xw.Range("A1")[:value] = "Hello World"
julia> xw.Range("A1")[:value]
"Hello World"

25.2. Julia 111

xlwings - Make Excel Fly!, Release dev

112 Chapter 25. xlwings with R and Julia

CHAPTER 26

Python API

26.1 Top-level functions

xlwings.view(obj, sheet=None, table=True)
Opens a new workbook and displays an object on its first sheet by default. If you provide a sheet
object, it will clear the sheet before displaying the object on the existing sheet.

Note: Only use this in an interactive context like e.g. a Jupyter notebook! Don’t use this in a script
as it depends on the active book.

Parameters

• obj (any type with built-in converter) – the object to display,
e.g. numbers, strings, lists, numpy arrays, pandas dataframes

• sheet (Sheet, default None) – Sheet object. If none provided, the first
sheet of a new workbook is used.

• table (bool, default True) – If your object is a pandas DataFrame, by
default it is formatted as an Excel Table

Examples

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np

(continues on next page)

113

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd
→˓'])
>>> xw.view(df)

See also: load

Changed in version 0.22.0.

xlwings.load(index=1, header=1)
Loads the selected cell(s) of the active workbook into a pandas DataFrame. If you select a single
cell that has adjacent cells, the range is auto-expanded (via current region) and turned into a pandas
DataFrame. If you don’t have pandas installed, it returns the values as nested lists.

Note: Only use this in an interactive context like e.g. a Jupyter notebook! Don’t use this in a script
as it depends on the active book.

Parameters

• index (bool or int, default 1) – Defines the number of columns on
the left that will be turned into the DataFrame’s index

• header (bool or int, default 1) – Defines the number of rows at the
top that will be turned into the DataFrame’s columns

Examples

>>> import xlwings as xw
>>> xw.load()

See also: view

Changed in version 0.23.1.

26.2 Object model

26.2.1 Apps

class xlwings.main.Apps(impl)
A collection of all app objects:

>>> import xlwings as xw
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

active
Returns the active app.

114 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

add()
Creates a new App. The new App becomes the active one. Returns an App object.

count
Returns the number of apps.

New in version 0.9.0.

keys()
Provides the PIDs of the Excel instances that act as keys in the Apps collection.

New in version 0.13.0.

26.2.2 App

class xlwings.App(visible=None, spec=None, add_book=True, impl=None)
An app corresponds to an Excel instance. New Excel instances can be fired up like so:

>>> import xlwings as xw
>>> app1 = xw.App()
>>> app2 = xw.App()

An app object is a member of the apps collection:

>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])
>>> xw.apps[1668] # get the available PIDs via xw.apps.keys()
<Excel App 1668>
>>> xw.apps.active
<Excel App 1668>

Parameters

• visible (bool, default None) – Returns or sets a boolean value that
determines whether the app is visible. The default leaves the state unchanged or
sets visible=True if the object doesn’t exist yet.

• spec (str, default None) – Mac-only, use the full path to the Excel appli-
cation, e.g. /Applications/Microsoft Office 2011/Microsoft
Excel or /Applications/Microsoft Excel

On Windows, if you want to change the version of Excel that xlwings talks to, go
to Control Panel > Programs and Features and Repair the Of-
fice version that you want as default.

Note: On Mac, while xlwings allows you to run multiple instances of Excel, it’s a feature that is
not officially supported by Excel for Mac: Unlike on Windows, Excel will not ask you to open a

26.2. Object model 115

xlwings - Make Excel Fly!, Release dev

read-only version of a file if it is already open in another instance. This means that you need to watch
out yourself so that the same file is not being overwritten from different instances.

activate(steal_focus=False)
Activates the Excel app.

Parameters steal_focus (bool, default False) – If True, make front-
most application and hand over focus from Python to Excel.

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

books
A collection of all Book objects that are currently open.

New in version 0.9.0.

calculate()
Calculates all open books.

New in version 0.3.6.

calculation
Returns or sets a calculation value that represents the calculation mode. Modes: 'manual',
'automatic', 'semiautomatic'

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.app.calculation = 'manual'

Changed in version 0.9.0.

display_alerts
The default value is True. Set this property to False to suppress prompts and alert messages
while code is running; when a message requires a response, Excel chooses the default response.

New in version 0.9.0.

hwnd
Returns the Window handle (Windows-only).

New in version 0.9.0.

kill()
Forces the Excel app to quit by killing its process.

New in version 0.9.0.

116 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

macro(name)
Runs a Sub or Function in Excel VBA that are not part of a specific workbook but e.g. are part
of an add-in.

Parameters name (Name of Sub or Function with or without module name, e.g.
'Module1.MyMacro' or 'MyMacro') –

Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

See also: Book.macro()

New in version 0.9.0.

pid
Returns the PID of the app.

New in version 0.9.0.

quit()
Quits the application without saving any workbooks.

New in version 0.3.3.

range(cell1, cell2=None)
Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

screen_updating
Turn screen updating off to speed up your script. You won’t be able to see what the script is
doing, but it will run faster. Remember to set the screen_updating property back to True when
your script ends.

New in version 0.3.3.

selection
Returns the selected cells as Range.

New in version 0.9.0.

26.2. Object model 117

xlwings - Make Excel Fly!, Release dev

startup_path
Returns the path to XLSTART which is where the xlwings add-in gets copied to by doing
xlwings addin install.

New in version 0.19.4.

status_bar
Gets or sets the value of the status bar. Returns False if Excel has control of it.

New in version 0.20.0.

version
Returns the Excel version number object.

Examples

>>> import xlwings as xw
>>> xw.App().version
VersionNumber('15.24')
>>> xw.apps[10559].version.major
15

Changed in version 0.9.0.

visible
Gets or sets the visibility of Excel to True or False.

New in version 0.3.3.

26.2.3 Books

class xlwings.main.Books(impl)
A collection of all book objects:

>>> import xlwings as xw
>>> xw.books # active app
Books([<Book [Book1]>, <Book [Book2]>])
>>> xw.apps[10559].books # specific app, get the PIDs via xw.apps.keys()
Books([<Book [Book1]>, <Book [Book2]>])

New in version 0.9.0.

active
Returns the active Book.

add()
Creates a new Book. The new Book becomes the active Book. Returns a Book object.

open(fullname, update_links=None, read_only=None, format=None, password=None,
write_res_password=None, ignore_read_only_recommended=None, origin=None, de-
limiter=None, editable=None, notify=None, converter=None, add_to_mru=None, lo-
cal=None, corrupt_load=None)

118 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

Opens a Book if it is not open yet and returns it. If it is already open, it doesn’t raise an exception
but simply returns the Book object.

Parameters

• fullname (str or path-like object) – filename or fully qualified
filename, e.g. r'C:\path\to\file.xlsx' or 'file.xlsm'. Without
a full path, it looks for the file in the current working directory.

• Parameters (Other) – see: xlwings.Book()

Returns Book

Return type Book that has been opened.

26.2.4 Book

class xlwings.Book(fullname=None, update_links=None, read_only=None, for-
mat=None, password=None, write_res_password=None, ig-
nore_read_only_recommended=None, origin=None, delimiter=None,
editable=None, notify=None, converter=None, add_to_mru=None,
local=None, corrupt_load=None, impl=None)

A book object is a member of the books collection:

>>> import xlwings as xw
>>> xw.books[0]
<Book [Book1]>

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances
and returns an error, should the same book be open in multiple instances. To connect to a book in the
active app instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or something like xw.apps[10559] for existing apps,
→˓ get the PIDs via xw.apps.keys()
>>> app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()
Unsaved book xw.Book('Book1') xw.books['Book1']
Book by
(full)name

xw.Book(r'C:/path/to/
file.xlsx')

xw.books.open(r'C:/path/to/
file.xlsx')

Parameters

• fullname (str or path-like object, default None) – Full path
or name (incl. xlsx, xlsm etc.) of existing workbook or name of an unsaved work-
book. Without a full path, it looks for the file in the current working directory.

• update_links (bool, default None) – If this argument is omitted, the
user is prompted to specify how links will be updated

26.2. Object model 119

xlwings - Make Excel Fly!, Release dev

• read_only (bool, default False) – True to open workbook in read-
only mode

• format (str) – If opening a text file, this specifies the delimiter character

• password (str) – Password to open a protected workbook

• write_res_password (str) – Password to write to a write-reserved work-
book

• ignore_read_only_recommended (bool, default False) – Set to
True to mute the read-only recommended message

• origin (int) – For text files only. Specifies where it originated. Use XlPlat-
form constants.

• delimiter (str) – If format argument is 6, this specifies the delimiter.

• editable (bool, default False) – This option is only for legacy Mi-
crosoft Excel 4.0 addins.

• notify (bool, default False) – Notify the user when a file becomes
available If the file cannot be opened in read/write mode.

• converter (int) – The index of the first file converter to try when opening the
file.

• add_to_mru (bool, default False) – Add this workbook to the list of
recently added workbooks.

• local (bool, default False) – If True, saves files against the language
of Excel, otherwise against the language of VBA. Not supported on macOS.

• corrupt_load (int, default xlNormalLoad) – Can be one of xlNor-
malLoad, xlRepairFile or xlExtractData. Not supported on macOS.

activate(steal_focus=False)
Activates the book.

Parameters steal_focus (bool, default False) – If True, make front-
most window and hand over focus from Python to Excel.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

app
Returns an app object that represents the creator of the book.

New in version 0.9.0.

classmethod caller()
References the calling book when the Python function is called from Excel via RunPython.
Pack it into the function being called from Excel, e.g.:

120 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

import xlwings as xw

def my_macro():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 1

To be able to easily invoke such code from Python for debugging, use xw.Book.
set_mock_caller().

New in version 0.3.0.

close()
Closes the book without saving it.

New in version 0.1.1.

fullname
Returns the name of the object, including its path on disk, as a string. Read-only String.

macro(name)
Runs a Sub or Function in Excel VBA.

Parameters name (Name of Sub or Function with or without module name, e.g.
'Module1.MyMacro' or 'MyMacro') –

Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> wb = xw.books.active
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3

See also: App.macro()

New in version 0.7.1.

name
Returns the name of the book as str.

names
Returns a names collection that represents all the names in the specified book (including all
sheet-specific names).

Changed in version 0.9.0.

26.2. Object model 121

xlwings - Make Excel Fly!, Release dev

save(path=None)
Saves the Workbook. If a path is being provided, this works like SaveAs() in Excel. If no path
is specified and if the file hasn’t been saved previously, it’s being saved in the current working
directory with the current filename. Existing files are overwritten without prompting.

Parameters path (str or path-like object, default None) – Full
path to the workbook

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.save()
>>> wb.save(r'C:\path\to\new_file_name.xlsx')

New in version 0.3.1.

selection
Returns the selected cells as Range.

New in version 0.9.0.

set_mock_caller()
Sets the Excel file which is used to mock xw.Book.caller() when the code is called from
Python and not from Excel via RunPython.

Examples

This code runs unchanged from Excel via RunPython and from Python
→˓directly
import os
import xlwings as xw

def my_macro():
sht = xw.Book.caller().sheets[0]
sht.range('A1').value = 'Hello xlwings!'

if __name__ == '__main__':
xw.Book('file.xlsm').set_mock_caller()
my_macro()

New in version 0.3.1.

sheets
Returns a sheets collection that represents all the sheets in the book.

New in version 0.9.0.

to_pdf(path=None, include=None, exclude=None)
Exports the whole Excel workbook or a subset of the sheets to a PDF file. If you want to print
hidden sheets, you will need to list them explicitely under include.

122 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

Parameters

• path (str or path-like object, default None) – Path to the
PDF file, defaults to the same name as the workbook, in the same directory.
For unsaved workbooks, it defaults to the current working directory instead.

• include (int or str or list, default None) – Which sheets to
include: provide a selection of sheets in the form of sheet indices (1-based like
in Excel) or sheet names. Can be an int/str for a single sheet or a list of int/str
for multiple sheets.

• exclude (int or str or list, default None) – Which sheets to
exclude: provide a selection of sheets in the form of sheet indices (1-based like
in Excel) or sheet names. Can be an int/str for a single sheet or a list of int/str
for multiple sheets.

Examples

>>> wb = xw.Book()
>>> wb.sheets[0]['A1'].value = 'PDF'
>>> wb.to_pdf()

See also xlwings.Sheet.to_pdf()

New in version 0.21.1.

26.2.5 Sheets

class xlwings.main.Sheets(impl)
A collection of all sheet objects:

>>> import xlwings as xw
>>> xw.sheets # active book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])
>>> xw.Book('Book1').sheets # specific book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])

New in version 0.9.0.

active
Returns the active Sheet.

add(name=None, before=None, after=None)
Creates a new Sheet and makes it the active sheet.

Parameters

• name (str, default None) – Name of the new sheet. If None, will de-
fault to Excel’s default name.

• before (Sheet, default None) – An object that specifies the sheet be-
fore which the new sheet is added.

26.2. Object model 123

xlwings - Make Excel Fly!, Release dev

• after (Sheet, default None) – An object that specifies the sheet after
which the new sheet is added.

26.2.6 Sheet

class xlwings.Sheet(sheet=None, impl=None)
A sheet object is a member of the sheets collection:

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets[0]
<Sheet [Book1]Sheet1>
>>> wb.sheets['Sheet1']
<Sheet [Book1]Sheet1>
>>> wb.sheets.add()
<Sheet [Book1]Sheet2>

Changed in version 0.9.0.

activate()
Activates the Sheet and returns it.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofit(axis=None)
Autofits the width of either columns, rows or both on a whole Sheet.

Parameters axis (string, default None) –

• To autofit rows, use one of the following: rows or r

• To autofit columns, use one of the following: columns or c

• To autofit rows and columns, provide no arguments

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets['Sheet1'].autofit('c')
>>> wb.sheets['Sheet1'].autofit('r')
>>> wb.sheets['Sheet1'].autofit()

New in version 0.2.3.

book
Returns the Book of the specified Sheet. Read-only.

124 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

cells
Returns a Range object that represents all the cells on the Sheet (not just the cells that are
currently in use).

New in version 0.9.0.

charts
See Charts

New in version 0.9.0.

clear()
Clears the content and formatting of the whole sheet.

clear_contents()
Clears the content of the whole sheet but leaves the formatting.

copy(before=None, after=None, name=None)
Copy a sheet to the current or a new Book. By default, it places the copied sheet after all existing
sheets in the current Book. Returns the copied sheet.

New in version 0.22.0.

Parameters

• before (sheet object, default None) – The sheet object before
which you want to place the sheet

• after (sheet object, default None) – The sheet object after which
you want to place the sheet, by default it is placed after all existing sheets

• name (str, default None) – The sheet name of the copy

Returns Sheet object – The copied sheet

Return type Sheet

Examples

Create two books and add a value to the first sheet of the first
→˓book
first_book = xw.Book()
second_book = xw.Book()
first_book.sheets[0]['A1'].value = 'some value'

Copy to same Book with the default location and name
first_book.sheets[0].copy()

Copy to same Book with custom sheet name
first_book.sheets[0].copy(name='copied')

Copy to second Book requires to use before or after
first_book.sheets[0].copy(after=second_book.sheets[0])

26.2. Object model 125

xlwings - Make Excel Fly!, Release dev

delete()
Deletes the Sheet.

index
Returns the index of the Sheet (1-based as in Excel).

name
Gets or sets the name of the Sheet.

names
Returns a names collection that represents all the sheet-specific names (names defined with the
“SheetName!” prefix).

New in version 0.9.0.

pictures
See Pictures

New in version 0.9.0.

range(cell1, cell2=None)
Returns a Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

render_template(**data)
This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the sheet with the keyword argument that
has the same name. Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, PIL Image objects that
have a filename and Matplotlib figures.

New in version 0.22.0.

Parameters data (kwargs) – All key/value pairs that are used in the template.

Returns sheet

Return type xlwings Sheet

Examples

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.sheets[0].render_template(myvar='test')

See also xlwings.pro.reports.create_report()

select()
Selects the Sheet. Select only works on the active book.

New in version 0.9.0.

126 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

shapes
See Shapes

New in version 0.9.0.

tables
See Tables

New in version 0.21.0.

to_pdf(path=None)
Exports the sheet to a PDF file.

Parameters path (str or path-like object, default None) – Path
to the PDF file, defaults to the name of the sheet in the same directory of the
workbook. For unsaved workbooks, it defaults to the current working directory
instead.

Examples

>>> wb = xw.Book()
>>> sheet = wb.sheets[0]
>>> sheet['A1'].value = 'PDF'
>>> sheet.to_pdf()

See also xlwings.Book.to_pdf()

New in version 0.22.3.

used_range
Used Range of Sheet.

Returns

Return type xw.Range

New in version 0.13.0.

visible
Gets or sets the visibility of the Sheet (bool).

New in version 0.21.1.

26.2.7 Range

class xlwings.Range(cell1=None, cell2=None, **options)
Returns a Range object that represents a cell or a range of cells.

Parameters

• cell1 (str or tuple or Range) – Name of the range in the upper-left
corner in A1 notation or as index-tuple or as name or as xw.Range object. It can
also specify a range using the range operator (a colon), .e.g. ‘A1:B2’

26.2. Object model 127

xlwings - Make Excel Fly!, Release dev

• cell2 (str or tuple or Range, default None) – Name of the
range in the lower-right corner in A1 notation or as index-tuple or as name or
as xw.Range object.

Examples

Active Sheet:

import xlwings as xw
xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))
xw.Range((1,1), (3,3))
xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

Specific Sheet:

xw.books['MyBook.xlsx'].sheets[0].range('A1')

add_hyperlink(address, text_to_display=None, screen_tip=None)
Adds a hyperlink to the specified Range (single Cell)

Parameters

• address (str) – The address of the hyperlink.

• text_to_display (str, default None) – The text to be displayed for
the hyperlink. Defaults to the hyperlink address.

• screen_tip (str, default None) – The screen tip to be displayed
when the mouse pointer is paused over the hyperlink. Default is set to ‘<ad-
dress> - Click once to follow. Click and hold to select this cell.’

New in version 0.3.0.

address
Returns a string value that represents the range reference. Use get_address() to be able to
provide paramaters.

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofit()
Autofits the width and height of all cells in the range.

• To autofit only the width of the columns use xw.Range('A1:B2').columns.
autofit()

• To autofit only the height of the rows use xw.Range('A1:B2').rows.autofit()

128 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

Changed in version 0.9.0.

clear()
Clears the content and the formatting of a Range.

clear_contents()
Clears the content of a Range but leaves the formatting.

color
Gets and sets the background color of the specified Range.

To set the color, either use an RGB tuple (0, 0, 0) or a color constant. To remove the
background, set the color to None, see Examples.

Returns RGB

Return type tuple

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').color = (255,255,255)
>>> xw.Range('A2').color
(255, 255, 255)
>>> xw.Range('A2').color = None
>>> xw.Range('A2').color is None
True

New in version 0.3.0.

column
Returns the number of the first column in the in the specified range. Read-only.

Returns

Return type Integer

New in version 0.3.5.

column_width
Gets or sets the width, in characters, of a Range. One unit of column width is equal to the width
of one character in the Normal style. For proportional fonts, the width of the character 0 (zero)
is used.

If all columns in the Range have the same width, returns the width. If columns in the Range
have different widths, returns None.

column_width must be in the range: 0 <= column_width <= 255

Note: If the Range is outside the used range of the Worksheet, and columns in the Range have
different widths, returns the width of the first column.

Returns

Return type float

26.2. Object model 129

xlwings - Make Excel Fly!, Release dev

New in version 0.4.0.

columns
Returns a RangeColumns object that represents the columns in the specified range.

New in version 0.9.0.

copy(destination=None)
Copy a range to a destination range or clipboard.

Parameters destination (xlwings.Range) – xlwings Range to which the
specified range will be copied. If omitted, the range is copied to the Clipboard.

Returns

Return type None

count
Returns the number of cells.

current_region
This property returns a Range object representing a range bounded by (but not including) any
combination of blank rows and blank columns or the edges of the worksheet. It corresponds to
Ctrl-* on Windows and Shift-Ctrl-Space on Mac.

Returns

Return type Range object

delete(shift=None)
Deletes a cell or range of cells.

Parameters shift (str, default None) – Use left or up. If omitted, Excel
decides based on the shape of the range.

Returns

Return type None

end(direction)
Returns a Range object that represents the cell at the end of the region that contains the source
range. Equivalent to pressing Ctrl+Up, Ctrl+down, Ctrl+left, or Ctrl+right.

Parameters direction (One of 'up', 'down', 'right', 'left') –

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1:B2').value = 1
>>> xw.Range('A1').end('down')
<Range [Book1]Sheet1!A2>
>>> xw.Range('B2').end('right')
<Range [Book1]Sheet1!B2>

130 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

expand(mode=’table’)
Expands the range according to the mode provided. Ignores empty top-left cells (unlike Range.
end()).

Parameters mode (str, default 'table') – One of 'table' (=down and
right), 'down', 'right'.

Returns

Return type Range

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value = [[None, 1], [2, 3]]
>>> xw.Range('A1').expand().address
A1:B2
>>> xw.Range('A1').expand('right').address
A1:B1

New in version 0.9.0.

formula
Gets or sets the formula for the given Range.

formula2
Gets or sets the formula2 for the given Range.

formula_array
Gets or sets an array formula for the given Range.

New in version 0.7.1.

get_address(row_absolute=True, column_absolute=True, include_sheetname=False, ex-
ternal=False)

Returns the address of the range in the specified format. address can be used instead if none
of the defaults need to be changed.

Parameters

• row_absolute (bool, default True) – Set to True to return the row
part of the reference as an absolute reference.

• column_absolute (bool, default True) – Set to True to return the
column part of the reference as an absolute reference.

• include_sheetname (bool, default False) – Set to True to include
the Sheet name in the address. Ignored if external=True.

• external (bool, default False) – Set to True to return an external
reference with workbook and worksheet name.

26.2. Object model 131

xlwings - Make Excel Fly!, Release dev

Returns

Return type str

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range((1,1)).get_address()
'A1'
>>> xw.Range((1,1)).get_address(False, False)
'A1'
>>> xw.Range((1,1), (3,3)).get_address(True, False, True)
'Sheet1!A$1:C$3'
>>> xw.Range((1,1), (3,3)).get_address(True, False, external=True)
'[Book1]Sheet1!A$1:C$3'

New in version 0.2.3.

has_array
Are we part of an Array formula?

height
Returns the height, in points, of a Range. Read-only.

Returns

Return type float

New in version 0.4.0.

hyperlink
Returns the hyperlink address of the specified Range (single Cell only)

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value
'www.xlwings.org'
>>> xw.Range('A1').hyperlink
'http://www.xlwings.org'

New in version 0.3.0.

insert(shift=None, copy_origin=’format_from_left_or_above’)
Insert a cell or range of cells into the sheet.

Parameters

• shift (str, default None) – Use right or down. If omitted, Excel
decides based on the shape of the range.

132 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

• copy_origin (str, default format_from_left_or_above)
– Use format_from_left_or_above or
format_from_right_or_below. Note that this is not supported on
macOS.

Returns

Return type None

last_cell
Returns the bottom right cell of the specified range. Read-only.

Returns

Return type Range

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> rng = xw.Range('A1:E4')
>>> rng.last_cell.row, rng.last_cell.column
(4, 5)

New in version 0.3.5.

left
Returns the distance, in points, from the left edge of column A to the left edge of the range.
Read-only.

Returns

Return type float

New in version 0.6.0.

merge(across=False)
Creates a merged cell from the specified Range object.

Parameters across (bool, default False) – True to merge cells in each row
of the specified Range as separate merged cells.

merge_area
Returns a Range object that represents the merged Range containing the specified cell. If the
specified cell isn’t in a merged range, this property returns the specified cell.

merge_cells
Returns True if the Range contains merged cells, otherwise False

name
Sets or gets the name of a Range.

New in version 0.4.0.

26.2. Object model 133

xlwings - Make Excel Fly!, Release dev

number_format
Gets and sets the number_format of a Range.

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').number_format
'General'
>>> xw.Range('A1:C3').number_format = '0.00%'
>>> xw.Range('A1:C3').number_format
'0.00%'

New in version 0.2.3.

offset(row_offset=0, column_offset=0)
Returns a Range object that represents a Range that’s offset from the specified range.

Returns Range object

Return type Range

New in version 0.3.0.

options(convert=None, **options)
Allows you to set a converter and their options. Converters define how Excel Ranges and their
values are being converted both during reading and writing operations. If no explicit converter
is specified, the base converter is being applied, see Converters and Options.

Parameters convert (object, default None) – A converter, e.g. dict,
np.array, pd.DataFrame, pd.Series, defaults to default converter

Keyword Arguments

• ndim (int, default None) – number of dimensions

• numbers (type, default None) – type of numbers, e.g. int

• dates (type, default None) – e.g. datetime.date defaults to
datetime.datetime

• empty (object, default None) – transformation of empty cells

• transpose (Boolean, default False) – transpose values

• expand (str, default None) – One of 'table', 'down', 'right'

• chunksize (int) –

Use a chunksize, e.g. 10000 to prevent timeout or memory issues when reading or writing large amounts
of data. Works with all formats, including DataFrames, NumPy arrays, and
list of lists.

=> For converter-specific options, see Converters and Options.

Returns

134 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

Return type Range object

New in version 0.7.0.

paste(paste=None, operation=None, skip_blanks=False, transpose=False)
Pastes a range from the clipboard into the specified range.

Parameters

• paste (str, default None) – One of
all_merging_conditional_formats, all,
all_except_borders, all_using_source_theme,
column_widths, comments, formats, formulas,
formulas_and_number_formats, validation, values,
values_and_number_formats.

• operation (str, default None) – One of “add”, “divide”, “multiply”,
“subtract”.

• skip_blanks (bool, default False) – Set to True to skip over blank
cells

• transpose (bool, default False) – Set to True to transpose rows
and columns.

Returns

Return type None

raw_value
Gets and sets the values directly as delivered from/accepted by the engine that is being used
(pywin32 or appscript) without going through any of xlwings’ data cleaning/converting.
This can be helpful if speed is an issue but naturally will be engine specific, i.e. might remove
the cross-platform compatibility.

resize(row_size=None, column_size=None)
Resizes the specified Range

Parameters

• row_size (int > 0) – The number of rows in the new range (if None, the
number of rows in the range is unchanged).

• column_size (int > 0) – The number of columns in the new range (if
None, the number of columns in the range is unchanged).

Returns Range object

Return type Range

New in version 0.3.0.

row
Returns the number of the first row in the specified range. Read-only.

Returns

Return type Integer

26.2. Object model 135

xlwings - Make Excel Fly!, Release dev

New in version 0.3.5.

row_height
Gets or sets the height, in points, of a Range. If all rows in the Range have the same height,
returns the height. If rows in the Range have different heights, returns None.

row_height must be in the range: 0 <= row_height <= 409.5

Note: If the Range is outside the used range of the Worksheet, and rows in the Range have
different heights, returns the height of the first row.

Returns

Return type float

New in version 0.4.0.

rows
Returns a RangeRows object that represents the rows in the specified range.

New in version 0.9.0.

select()
Selects the range. Select only works on the active book.

New in version 0.9.0.

shape
Tuple of Range dimensions.

New in version 0.3.0.

sheet
Returns the Sheet object to which the Range belongs.

New in version 0.9.0.

size
Number of elements in the Range.

New in version 0.3.0.

table
Returns a Table object if the range is part of one, otherwise None.

New in version 0.21.0.

top
Returns the distance, in points, from the top edge of row 1 to the top edge of the range. Read-
only.

Returns

Return type float

New in version 0.6.0.

unmerge()
Separates a merged area into individual cells.

136 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

value
Gets and sets the values for the given Range. See see xlwings.Range.options() about
how to set options, e.g. to transform it into a DataFrame or how to set a chunksize.

Returns object

Return type returned object depends on the converter being used, see xlwings.
Range.options()

width
Returns the width, in points, of a Range. Read-only.

Returns

Return type float

New in version 0.4.0.

26.2.8 RangeRows

class xlwings.RangeRows(rng)
Represents the rows of a range. Do not construct this class directly, use Range.rows instead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.rows) == 4 # or rng.rows.count

rng.rows[0].value = 'a'

assert rng.rows[2] == xw.Range('A3:C3')
assert rng.rows(2) == xw.Range('A2:C2')

for r in rng.rows:
print(r.address)

autofit()
Autofits the height of the rows.

count
Returns the number of rows.

New in version 0.9.0.

26.2.9 RangeColumns

class xlwings.RangeColumns(rng)
Represents the columns of a range. Do not construct this class directly, use Range.columns in-

26.2. Object model 137

xlwings - Make Excel Fly!, Release dev

stead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.columns) == 3 # or rng.columns.count

rng.columns[0].value = 'a'

assert rng.columns[2] == xw.Range('C1:C4')
assert rng.columns(2) == xw.Range('B1:B4')

for c in rng.columns:
print(c.address)

autofit()
Autofits the width of the columns.

count
Returns the number of columns.

New in version 0.9.0.

26.2.10 Shapes

class xlwings.main.Shapes(impl)
A collection of all shape objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].shapes
Shapes([<Shape 'Oval 1' in <Sheet [Book1]Sheet1>>, <Shape 'Rectangle 1'
→˓in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

count
Returns the number of objects in the collection.

26.2.11 Shape

class xlwings.Shape(*args, **options)
The shape object is a member of the shapes collection:

138 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.shapes[0] # or sht.shapes['ShapeName']
<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

activate()
Activates the shape.

New in version 0.5.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.19.2.

delete()
Deletes the shape.

New in version 0.5.0.

height
Returns or sets the number of points that represent the height of the shape.

New in version 0.5.0.

left
Returns or sets the number of points that represent the horizontal position of the shape.

New in version 0.5.0.

name
Returns or sets the name of the shape.

New in version 0.5.0.

parent
Returns the parent of the shape.

New in version 0.9.0.

scale_height(factor, relative_to_original_size=False, scale=’scale_from_top_left’)

factor [float] For example 1.5 to scale it up to 150%

relative_to_original_size [bool, optional] If False, it scales relative to current height (de-
fault). For True must be a picture or OLE object.

scale [str, optional] One of scale_from_top_left (default),
scale_from_bottom_right, scale_from_middle

New in version 0.19.2.

scale_width(factor, relative_to_original_size=False, scale=’scale_from_top_left’)

factor [float] For example 1.5 to scale it up to 150%

26.2. Object model 139

xlwings - Make Excel Fly!, Release dev

relative_to_original_size [bool, optional] If False, it scales relative to current width (default).
For True must be a picture or OLE object.

scale [str, optional] One of scale_from_top_left (default),
scale_from_bottom_right, scale_from_middle

New in version 0.19.2.

text
Returns or sets the text of a shape.

New in version 0.21.4.

top
Returns or sets the number of points that represent the vertical position of the shape.

New in version 0.5.0.

type
Returns the type of the shape.

New in version 0.9.0.

width
Returns or sets the number of points that represent the width of the shape.

New in version 0.5.0.

26.2.12 Charts

class xlwings.main.Charts(impl)
A collection of all chart objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].charts
Charts([<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>, <Chart 'Chart 1' in
→˓<Sheet [Book1]Sheet1>>])

New in version 0.9.0.

add(left=0, top=0, width=355, height=211)
Creates a new chart on the specified sheet.

Parameters

• left (float, default 0) – left position in points

• top (float, default 0) – top position in points

• width (float, default 355) – width in points

• height (float, default 211) – height in points

Returns

Return type Chart

140 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

Examples

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [['Foo1', 'Foo2'], [1, 2]]
>>> chart = sht.charts.add()
>>> chart.set_source_data(sht.range('A1').expand())
>>> chart.chart_type = 'line'
>>> chart.name
'Chart1'

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

count
Returns the number of objects in the collection.

26.2.13 Chart

class xlwings.Chart(name_or_index=None, impl=None)
The chart object is a member of the charts collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.charts[0] # or sht.charts['ChartName']
<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

chart_type
Returns and sets the chart type of the chart. The following chart types are available:

3d_area, 3d_area_stacked, 3d_area_stacked_100, 3d_bar_clustered,
3d_bar_stacked, 3d_bar_stacked_100, 3d_column, 3d_column_clustered,
3d_column_stacked, 3d_column_stacked_100, 3d_line, 3d_pie,
3d_pie_exploded, area, area_stacked, area_stacked_100, bar_clustered,
bar_of_pie, bar_stacked, bar_stacked_100, bubble, bubble_3d_effect,
column_clustered, column_stacked, column_stacked_100,
combination, cone_bar_clustered, cone_bar_stacked,
cone_bar_stacked_100, cone_col, cone_col_clustered,
cone_col_stacked, cone_col_stacked_100, cylinder_bar_clustered,
cylinder_bar_stacked, cylinder_bar_stacked_100,
cylinder_col, cylinder_col_clustered, cylinder_col_stacked,
cylinder_col_stacked_100, doughnut, doughnut_exploded, line,
line_markers, line_markers_stacked, line_markers_stacked_100,
line_stacked, line_stacked_100, pie, pie_exploded,
pie_of_pie, pyramid_bar_clustered, pyramid_bar_stacked,

26.2. Object model 141

xlwings - Make Excel Fly!, Release dev

pyramid_bar_stacked_100, pyramid_col, pyramid_col_clustered,
pyramid_col_stacked, pyramid_col_stacked_100, radar,
radar_filled, radar_markers, stock_hlc, stock_ohlc,
stock_vhlc, stock_vohlc, surface, surface_top_view,
surface_top_view_wireframe, surface_wireframe, xy_scatter,
xy_scatter_lines, xy_scatter_lines_no_markers, xy_scatter_smooth,
xy_scatter_smooth_no_markers

New in version 0.1.1.

delete()
Deletes the chart.

height
Returns or sets the number of points that represent the height of the chart.

left
Returns or sets the number of points that represent the horizontal position of the chart.

name
Returns or sets the name of the chart.

parent
Returns the parent of the chart.

New in version 0.9.0.

set_source_data(source)
Sets the source data range for the chart.

Parameters source (Range) – Range object, e.g. xw.books['Book1'].
sheets[0].range('A1')

top
Returns or sets the number of points that represent the vertical position of the chart.

width
Returns or sets the number of points that represent the width of the chart.

26.2.14 Pictures

class xlwings.main.Pictures(impl)
A collection of all picture objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].pictures
Pictures([<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>, <Picture
→˓'Picture 2' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

add(image, link_to_file=False, save_with_document=True, left=0, top=0, width=None,
height=None, name=None, update=False, scale=1)
Adds a picture to the specified sheet.

142 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

Parameters

• image (str or path-like object or matplotlib.figure.
Figure) – Either a filepath or a Matplotlib figure object.

• left (float, default 0) – Left position in points.

• top (float, default 0) – Top position in points.

• width (float, default None) – Width in points. If PIL/Pillow is in-
stalled, it defaults to the width of the picture. Otherwise it defaults to 100 points.

• height (float, default None) – Height in points. If PIL/Pillow is in-
stalled, it defaults to the height of the picture. Otherwise it defaults to 100
points.

• name (str, default None) – Excel picture name. Defaults to Excel stan-
dard name if not provided, e.g. ‘Picture 1’.

• update (bool, default False) – Replace an existing picture with the
same name. Requires name to be set.

Returns

Return type Picture

Examples

1. Picture

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(r'C:\path\to\file.jpg')
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

2. Matplotlib

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Book1]Sheet1>>

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

count
Returns the number of objects in the collection.

26.2. Object model 143

xlwings - Make Excel Fly!, Release dev

26.2.15 Picture

class xlwings.Picture(impl=None)
The picture object is a member of the pictures collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.pictures[0] # or sht.charts['PictureName']
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

delete()
Deletes the picture.

New in version 0.5.0.

height
Returns or sets the number of points that represent the height of the picture.

New in version 0.5.0.

left
Returns or sets the number of points that represent the horizontal position of the picture.

New in version 0.5.0.

name
Returns or sets the name of the picture.

New in version 0.5.0.

parent
Returns the parent of the picture.

New in version 0.9.0.

top
Returns or sets the number of points that represent the vertical position of the picture.

New in version 0.5.0.

update(image)
Replaces an existing picture with a new one, taking over the attributes of the existing picture.

Parameters image (str or path-like object or matplotlib.
figure.Figure) – Either a filepath or a Matplotlib figure object.

New in version 0.5.0.

width
Returns or sets the number of points that represent the width of the picture.

144 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

New in version 0.5.0.

26.2.16 Names

class xlwings.main.Names(impl)
A collection of all name objects in the workbook:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names
[<Name 'MyName': =Sheet1!A3>]

New in version 0.9.0.

add(name, refers_to)
Defines a new name for a range of cells.

Parameters

• name (str) – Specifies the text to use as the name. Names cannot include
spaces and cannot be formatted as cell references.

• refers_to (str) – Describes what the name refers to, in English, using A1-
style notation.

Returns

Return type Name

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

count
Returns the number of objects in the collection.

26.2.17 Name

class xlwings.Name(impl)
The name object is a member of the names collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names[0] # or sht.names['MyName']
<Name 'MyName': =Sheet1!A3>

New in version 0.9.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

26.2. Object model 145

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

delete()
Deletes the name.

New in version 0.9.0.

name
Returns or sets the name of the name object.

New in version 0.9.0.

refers_to
Returns or sets the formula that the name is defined to refer to, in A1-style notation, beginning
with an equal sign.

New in version 0.9.0.

refers_to_range
Returns the Range object referred to by a Name object.

New in version 0.9.0.

26.2.18 Tables

class xlwings.main.Tables(impl)
A collection of all table objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].tables
Tables([<Table 'Table1' in <Sheet [Book11]Sheet1>>, <Table 'Table2' in
→˓<Sheet [Book11]Sheet1>>])

New in version 0.21.0.

add(source=None, name=None, source_type=None, link_source=None, has_headers=True,
destination=None, table_style_name=’TableStyleMedium2’)
Creates a Table to the specified sheet.

Parameters

• source (xlwings range, default None) – An xlwings range object,
representing the data source.

• name (str, default None) – The name of the Table. By default, it uses
the autogenerated name that is assigned by Excel.

• source_type (str, default None) – This currently defaults to
xlSrcRange, i.e. expects an xlwings range object. No other options are al-
lowed at the moment.

• link_source (bool, default None) – Currently not implemented as
this is only in case source_type is xlSrcExternal.

146 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

• has_headers (bool or str, default True) – Indicates whether
the data being imported has column labels. Defaults to True. Possible val-
ues: True, FAlse, 'guess'

• destination (xlwings range, default None) – Currently not im-
plemented as this is used in case source_type is xlSrcExternal.

• table_style_name (str, default 'TableStyleMedium2')
– Possible strings: 'TableStyleLightN'' (where N is 1-21),
'TableStyleMediumN' (where N is 1-28), 'TableStyleDarkN'
(where N is 1-11)

Returns

Return type Table

Examples

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [['a', 'b'], [1, 2]]
>>> table = sheet.tables.add(source=sheet['A1'].expand(), name=
→˓'MyTable')
>>> table
<Table 'MyTable' in <Sheet [Book1]Sheet1>>

26.2.19 Table

class xlwings.main.Table(*args, **options)
The table object is a member of the tables collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.tables[0] # or sht.tables['TableName']
<Table 'Table 1' in <Sheet [Book1]Sheet1>>

New in version 0.21.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

data_body_range
Returns an xlwings range object that represents the range of values, excluding the header row

display_name
Returns or sets the display name for the specified Table object

header_row_range
Returns an xlwings range object that represents the range of the header row

26.2. Object model 147

xlwings - Make Excel Fly!, Release dev

insert_row_range
Returns an xlwings range object representing the row where data is going to be inserted. This is
only available for empty tables, otherwise it’ll return None

name
Returns or sets the name of the Table.

parent
Returns the parent of the table.

range
Returns an xlwings range object of the table.

show_autofilter
Turn the autofilter on or off by setting it to True or False (read/write boolean)

show_headers
Show or hide the header (read/write)

show_table_style_column_stripes
Returns or sets if the Column Stripes table style is used for (read/write boolean)

show_table_style_first_column
Returns or sets if the first column is formatted (read/write boolean)

show_table_style_last_column
Returns or sets if the last column is displayed (read/write boolean)

show_table_style_row_stripes
Returns or sets if the Row Stripes table style is used (read/write boolean)

show_totals
Gets or sets a boolean to show/hide the Total row.

table_style
Gets or sets the table style. See Tables.add for possible values.

totals_row_range
Returns an xlwings range object representing the Total row

update(data)
This method requires xlwings PRO

Updates the Excel table with the provided data. Currently restricted to DataFrames.

Changed in version 0.21.3.

Parameters data (pandas DataFrame) – Currently restricted to pandas
DataFrames. If you want to hide the index, set the first column as the index, e.g.
df.set_index('column_name').

Returns

Return type Table

148 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

Examples

import pandas as pd
import xlwings as xw

sheet = xw.Book('Book1.xlsx').sheets[0]
table_name = 'mytable'

Sample DataFrame
nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],

columns=['col ' + str(i) for i in range(ncols)])

Hide the index, then insert a new table if it doesn't exist yet,
otherwise update the existing one
df = df.set_index('col 0')
if table_name in [table.name for table in sheet.tables]:

sheet.tables[table_name].update(df)
else:

mytable = sheet.tables.add(source=sheet['A1'], name=table_name).
→˓update(df)

26.2.20 Font

class xlwings.main.Font(impl)
The font object can be accessed as an attribute of the range or shape object.

• mysheet['A1'].font

• mysheet.shapes[0].font

New in version 0.23.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.23.0.

bold
Returns or sets the bold property (boolean).

>>> sheet['A1'].font.bold = True
>>> sheet['A1'].font.bold
True

New in version 0.23.0.

color
Returns or sets the color property (tuple).

>>> sheet['A1'].font.color = (255, 0, 0) # RGB tuple
>>> sheet['A1'].font.color
(255, 0, 0)

26.2. Object model 149

xlwings - Make Excel Fly!, Release dev

New in version 0.23.0.

italic
Returns or sets the italic property (boolean).

>>> sheet['A1'].font.italic = True
>>> sheet['A1'].font.italic
True

New in version 0.23.0.

name
Returns or sets the name of the font (str).

>>> sheet['A1'].font.name = 'Calibri'
>>> sheet['A1'].font.name
Calibri

New in version 0.23.0.

size
Returns or sets the size (float).

>>> sheet['A1'].font.size = 13
>>> sheet['A1'].font.size
13

New in version 0.23.0.

26.2.21 Characters

class xlwings.main.Characters(impl)
The characters object can be accessed as an attribute of the range or shape object.

• mysheet['A1'].characters

• mysheet.shapes[0].characters

Note: On macOS, characters are currently not supported due to bugs/lack of support in Apple-
Script.

New in version 0.23.0.

api
Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.23.0.

font
Returns or sets the text property of a characters object.

150 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

>>> sheet['A1'].characters[1:3].font.bold = True
>>> sheet['A1'].characters[1:3].font.bold
True

New in version 0.23.0.

text
Returns or sets the text property of a characters object.

>>> sheet['A1'].value = 'Python'
>>> sheet['A1'].characters[:3].text
Pyt

New in version 0.23.0.

26.2.22 Markdown

class xlwings.pro.Markdown(text, style=<MarkdownStyle> h1.font: .bold: True
h1.blank_lines_after: 1 paragraph.blank_lines_after:
1 unordered_list.bullet_character: • un-
ordered_list.blank_lines_after: 1 strong.bold: True
emphasis.italic: True)

Markdown objects can be assigned to a single cell or shape via myrange.value or myshape.
text. They accept a string in Markdown format which will cause the text in the cell to be formatted
accordingly. They can also be used in mysheet.render_template().

Note: On macOS, formatting is currently not supported, but things like bullet points will still work.

Parameters

• text (str) – The text in Markdown syntax

• style (MarkdownStyle object, optional) – The MarkdownStyle ob-
ject defines how the text will be formatted.

Examples

>>> mysheet['A1'].value = Markdown("A text with *emphasis* and
→˓**strong** style.")
>>> myshape.text = Markdown("A text with *emphasis* and **strong** style.
→˓")

New in version 0.23.0.

26.2. Object model 151

xlwings - Make Excel Fly!, Release dev

26.2.23 MarkdownStyle

class xlwings.pro.MarkdownStyle
MarkdownStyle defines how Markdown objects are being rendered in Excel cells or shapes. Start
by instantiating a MarkdownStyle object. Printing it will show you the current (default) style:

>>> style = MarkdownStyle()
>>> style
<MarkdownStyle>
h1.font: .bold: True
h1.blank_lines_after: 1
paragraph.blank_lines_after: 1
unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1
strong.bold: True
emphasis.italic: True

You can override the defaults, e.g., to make **strong** text red instead of bold, do this:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

New in version 0.23.0.

26.3 UDF decorators

xlwings.func(category="xlwings", volatile=False, call_in_wizard=True)
Functions decorated with xlwings.func will be imported as Function to Excel when running
“Import Python UDFs”.

category [int or str, default “xlwings”] 1-14 represent built-in categories, for user-defined categories
use strings

New in version 0.10.3.

volatile [bool, default False] Marks a user-defined function as volatile. A volatile function must be
recalculated whenever calculation occurs in any cells on the worksheet. A nonvolatile function
is recalculated only when the input variables change. This method has no effect if it’s not inside
a user-defined function used to calculate a worksheet cell.

New in version 0.10.3.

call_in_wizard [bool, default True] Set to False to suppress the function call in the function wizard.

New in version 0.10.3.

xlwings.sub()
Functions decorated with xlwings.sub will be imported as Sub (i.e. macro) to Excel when run-
ning “Import Python UDFs”.

152 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

xlwings.arg(arg, convert=None, **options)
Apply converters and options to arguments, see also Range.options().

Examples:

Convert x into a 2-dimensional numpy array:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
def add_one(x):

return x + 1

xlwings.ret(convert=None, **options)
Apply converters and options to return values, see also Range.options().

Examples

1) Suppress the index and header of a returned DataFrame:

import pandas as pd

@xw.func
@xw.ret(index=False, header=False)
def get_dataframe(n, m):

return pd.DataFrame(np.arange(n * m).reshape((n, m)))

2) Dynamic array:

Note: If your version of Excel supports the new native dynamic arrays, then you don’t have to
do anything special, and you shouldn’t use the expand decorator! To check if your version of
Excel supports it, see if you have the =UNIQUE() formula available. Native dynamic arrays were
introduced in Office 365 Insider Fast at the end of September 2018.

expand='table' turns the UDF into a dynamic array. Currently you must not use volatile func-
tions as arguments of a dynamic array, e.g. you cannot use =TODAY() as part of a dynamic array.
Also note that a dynamic array needs an empty row and column at the bottom and to the right and will
overwrite existing data without warning.

Unlike standard Excel arrays, dynamic arrays are being used from a single cell like a standard function
and auto-expand depending on the dimensions of the returned array:

import xlwings as xw
import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(n, m):

return np.arange(n * m).reshape((n, m))

26.3. UDF decorators 153

xlwings - Make Excel Fly!, Release dev

New in version 0.10.0.

26.4 Reports

xlwings.pro.reports.create_report(template, output, book_settings=None,
app=None, **data)

This function requires xlwings PRO.

This is a convenience wrapper around mysheet.render_template

Writes the values of all key word arguments to the output file according to the template and the
variables contained in there (Jinja variable syntax). Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, PIL Image objects that have
a filename and Matplotlib figures.

Parameters

• template (str) – Path to your Excel template, e.g.
r'C:\Path\to\my_template.xlsx'

• output (str) – Path to your Report, e.g. r'C:\Path\to\my_report.
xlsx'

• book_settings (dict, default None) – A dictionary of xlwings.
Book parameters, for details see: xlwings.Book. For example:
book_settings={'update_links': False}.

• app (xlwings App, default None) – By passing in an xlwings App
instance, you can control where your report runs and configure things like
visible=False. For details see xlwings.App. By default, it creates the
report in the currently active instance of Excel.

• data (kwargs) – All key/value pairs that are used in the template.

Returns wb

Return type xlwings Book

Examples

In my_template.xlsx, put the following Jinja variables in two cells: {{ title }} and {{
df }}

>>> from xlwings.pro.reports import create_report
>>> import pandas as pd
>>> df = pd.DataFrame(data=[[1,2],[3,4]])
>>> wb = create_report('my_template.xlsx', 'my_report.xlsx', title=
→˓'MyTitle', df=df)

With many template variables it may be useful to collect the data first:

154 Chapter 26. Python API

xlwings - Make Excel Fly!, Release dev

>>> data = dict(title='MyTitle', df=df)
>>> wb = create_report('my_template.xlsx', 'my_report.xlsx', **data)

If you need to handle external links or a password, use it like so:

>>> wb = create_report('my_template.xlsx', 'my_report.xlsx',
book_settings={'update_links': True, 'password':

→˓'mypassword'},

**data)

You can control the Excel instance by passing in an xlwings App instance. For example, to run the
report in a separate and hidden instance of Excel, do the following:

>>> import xlwings as xw
>>> from xlwings.pro.reports import create_report
>>> app = xw.App(visible=False) # Separate and hidden Excel instance
>>> wb = create_report('my_template.xlsx', 'my_report.xlsx', app=app,
→˓**data)
>>> app.quit() # Close the wb and quit the Excel instance

26.4. Reports 155

xlwings - Make Excel Fly!, Release dev

156 Chapter 26. Python API

CHAPTER 27

REST API

New in version 0.13.0.

27.1 Quickstart

xlwings offers an easy way to expose an Excel workbook via REST API both on Windows and macOS. This
can be useful when you have a workbook running on a single computer and want to access it from another
computer. Or you can build a Linux based web app that can interact with a legacy Excel application while
you are in the progress of migrating the Excel functionality into your web app (if you need help with that,
give us a shout).

You can run the REST API server from a command prompt or terminal as follows (this requires Flask>=1.0,
so make sure to pip install Flask):

xlwings restapi run

Then perform a GET request e.g. via PowerShell on Windows or Terminal on Mac (while having an unsaved
“Book1” open). Note that you need to run the server and the GET request from two separate terminals (or
you can use something more convenient like Postman or Insomnia for testing the API):

$ curl "http://127.0.0.1:5000/book/book1/sheets/0/range/A1:B2"
{

"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 10.0,
"count": 4,
"current_region": "A1:B2",
"formula": [

(continues on next page)

157

https://www.xlwings.org/contact
https://www.getpostman.com/
https://insomnia.rest/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

[
"1",
"2"

],
[

"3",
"4"

]
],
"formula_array": null,
"height": 32.0,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": "General",
"row": 1,
"row_height": 16.0,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
1.0,
2.0

],
[

3.0,
4.0

]
],
"width": 130.0

}

In the command prompt where your server is running, press Ctrl-C to shut it down again.

The xlwings REST API is a thin wrapper around the Python API which makes it very easy if you have
worked previously with xlwings. It also means that the REST API does require the Excel application to be
up and running which makes it a great choice if the data in your Excel workbook is constantly changing as
the REST API will always deliver the current state of the workbook without the need of saving it first.

Note: Currently, we only provide the GET methods to read the workbook. If you are also interested in
the POST methods to edit the workbook, let us know via GitHub issues. Some other things will also need
improvement, most notably exception handling.

158 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

27.2 Run the server

xlwings restapi run will run a Flask development server on http://127.0.0.1:5000. You can pro-
vide --host and --port as command line args and it also respects the Flask environment variables like
FLASK_ENV=development.

If you want to have more control, you can run the server directly with Flask, see the Flask docs for more
details:

set FLASK_APP=xlwings.rest.api
flask run

If you are on Mac, use export FLASK_APP=xlwings.rest.api instead of set
FLASK_APP=xlwings.rest.api.

For production, you can use any WSGI HTTP Server like gunicorn (on Mac) or waitress (on Mac/Windows)
to serve the API. For example, with gunicorn you would do: gunicorn xlwings.rest.api:api. Or
with waitress (adjust the host accordingly if you want to make the api accessible from outside of localhost):

from xlwings.rest.api import api
from waitress import serve
serve(wsgiapp, host='127.0.0.1', port=5000)

27.3 Indexing

While the Python API offers Python’s 0-based indexing (e.g. xw.books[0]) as well as Excel’s 1-based
indexing (e.g. xw.books(1)), the REST API only offers 0-based indexing, e.g. /books/0.

27.4 Range Options

The REST API accepts Range options as query parameters, see xlwings.Range.options() e.g.

/book/book1/sheets/0/range/A1?expand=table&transpose=true

Remember that options only affect the value property.

27.5 Endpoint overview

End-
point

Corresponds
to

Short Description

/book Book Finds your workbook across all open instances of Excel and will open it if
it can’t find it

/books Books Books collection of the active Excel instance
/apps Apps This allows you to specify the Excel instance you want to work with

27.2. Run the server 159

http://127.0.0.1:5000
http://flask.pocoo.org/docs/1.0/quickstart/
https://gunicorn.org/
https://docs.pylonsproject.org/projects/waitress/en/latest/

xlwings - Make Excel Fly!, Release dev

27.6 Endpoint details

27.6.1 /book

GET /book/<fullname_or_name>

Example response:

{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
}

GET /book/<fullname_or_name>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},
{

"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /book/<fullname_or_name>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /book/<fullname_or_name>/names/<name>/range

Example response:

160 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",
"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [

1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /book/<fullname_or_name>/sheets

Example response:

{
"sheets": [

{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{

"charts": [],
"name": "Sheet2",
"names": [],

(continues on next page)

27.6. Endpoint details 161

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts

Example response:

{
"charts": [

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",

(continues on next page)

162 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

Example response:

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,

(continues on next page)

27.6. Endpoint details 163

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 14.25,
"value": [

[
null,
null

],
[

null,
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

164 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",

(continues on next page)

27.6. Endpoint details 165

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",

(continues on next page)

166 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"top": 0.0,
"type": "chart",
"width": 355.0

},
{

"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"type": "picture",
"width": 100.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

27.6.2 /books

GET /books

Example response:

{
"books": [

{
"app": 1104,
"fullname": "Book1",
"name": "Book1",
"names": [],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1"
]

},
{

"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",

(continues on next page)

27.6. Endpoint details 167

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"names": [
"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1",
"Sheet2"

]
},
{

"app": 1104,
"fullname": "Book4",
"name": "Book4",
"names": [],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1"

]
}

]
}

GET /books/<book_name_or_ix>

Example response:

{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
}

GET /books/<book_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},

(continues on next page)

168 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /books/<book_name_or_ix>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /books/<book_name_or_ix>/names/<name>/range

Example response:

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",
"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [

1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /books/<book_name_or_ix>/sheets

Example response:

{
"sheets": [

(continues on next page)

27.6. Endpoint details 169

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{

"charts": [],
"name": "Sheet2",
"names": [],
"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

Example response:

170 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

{
"charts": [

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

Example response:

27.6. Endpoint details 171

xlwings - Make Excel Fly!, Release dev

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,
"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 14.25,
"value": [

[
null,
null

],
[

null,
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [

{
"height": 100.0,
"left": 0.0,

(continues on next page)

172 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],

(continues on next page)

27.6. Endpoint details 173

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[

(continues on next page)

174 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

},
{

"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"type": "picture",
"width": 100.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

27.6. Endpoint details 175

xlwings - Make Excel Fly!, Release dev

27.6.3 /apps

GET /apps

Example response:

{
"apps": [

{
"books": [
"Book1",
"C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"Book4"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 1104,
"screen_updating": true,
"selection": "[Book1.xlsx]Sheet2!A1",
"version": "16.0",
"visible": true

},
{

"books": [
"Book2",
"Book5"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 7920,
"screen_updating": true,
"selection": "[Book5]Sheet2!A1",
"version": "16.0",
"visible": true

}
]

}

GET /apps/<pid>

Example response:

{
"books": [

"Book1",
"C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"Book4"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 1104,
"screen_updating": true,
"selection": "[Book1.xlsx]Sheet2!A1",

(continues on next page)

176 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"version": "16.0",
"visible": true

}

GET /apps/<pid>/books

Example response:

{
"books": [

{
"app": 1104,
"fullname": "Book1",
"name": "Book1",
"names": [],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1"
]

},
{

"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
},
{

"app": 1104,
"fullname": "Book4",
"name": "Book4",
"names": [],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1"
]

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>

Example response:

{

(continues on next page)

27.6. Endpoint details 177

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [

"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
}

GET /apps/<pid>/books/<book_name_or_ix>/names

Example response:

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},
{

"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /apps/<pid>/books/<book_name_or_ix>/names/<name>/range

Example response:

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",

(continues on next page)

178 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [

1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets

Example response:

{
"sheets": [

{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{

"charts": [],
"name": "Sheet2",
"names": [],
"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

27.6. Endpoint details 179

xlwings - Make Excel Fly!, Release dev

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [

"Chart 1"
],
"name": "Sheet1",
"names": [

"Sheet1!myname1"
],
"pictures": [

"Picture 3"
],
"shapes": [

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

Example response:

{
"charts": [

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

Example response:

180 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

{
"names": [

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

Example response:

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,
"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 14.25,

(continues on next page)

27.6. Endpoint details 181

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"value": [
[

null,
null

],
[

null,
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",

(continues on next page)

182 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

(continues on next page)

27.6. Endpoint details 183

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

},
{

"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,

(continues on next page)

184 Chapter 27. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"type": "picture",
"width": 100.0

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

27.6. Endpoint details 185

xlwings - Make Excel Fly!, Release dev

186 Chapter 27. REST API

Index

A
activate() (xlwings.App method), 116
activate() (xlwings.Book method), 120
activate() (xlwings.Shape method), 139
activate() (xlwings.Sheet method), 124
active (xlwings.main.Apps attribute), 114
active (xlwings.main.Books attribute), 118
active (xlwings.main.Sheets attribute), 123
add() (xlwings.main.Apps method), 115
add() (xlwings.main.Books method), 118
add() (xlwings.main.Charts method), 140
add() (xlwings.main.Names method), 145
add() (xlwings.main.Pictures method), 142
add() (xlwings.main.Sheets method), 123
add() (xlwings.main.Tables method), 146
add_hyperlink() (xlwings.Range method), 128
address (xlwings.Range attribute), 128
api (xlwings.App attribute), 116
api (xlwings.Book attribute), 120
api (xlwings.Chart attribute), 141
api (xlwings.main.Characters attribute), 150
api (xlwings.main.Charts attribute), 141
api (xlwings.main.Font attribute), 149
api (xlwings.main.Names attribute), 145
api (xlwings.main.Pictures attribute), 143
api (xlwings.main.Shapes attribute), 138
api (xlwings.main.Table attribute), 147
api (xlwings.Name attribute), 145
api (xlwings.Picture attribute), 144
api (xlwings.Range attribute), 128
api (xlwings.Shape attribute), 139
api (xlwings.Sheet attribute), 124
App (class in xlwings), 115
app (xlwings.Book attribute), 120
Apps (class in xlwings.main), 114

autofit() (xlwings.Range method), 128
autofit() (xlwings.RangeColumns method), 138
autofit() (xlwings.RangeRows method), 137
autofit() (xlwings.Sheet method), 124

B
bold (xlwings.main.Font attribute), 149
Book (class in xlwings), 119
book (xlwings.Sheet attribute), 124
Books (class in xlwings.main), 118
books (xlwings.App attribute), 116

C
calculate() (xlwings.App method), 116
calculation (xlwings.App attribute), 116
caller() (xlwings.Book class method), 120
cells (xlwings.Sheet attribute), 124
Characters (class in xlwings.main), 150
Chart (class in xlwings), 141
chart_type (xlwings.Chart attribute), 141
Charts (class in xlwings.main), 140
charts (xlwings.Sheet attribute), 125
clear() (xlwings.Range method), 129
clear() (xlwings.Sheet method), 125
clear_contents() (xlwings.Range method),

129
clear_contents() (xlwings.Sheet method),

125
close() (xlwings.Book method), 121
color (xlwings.main.Font attribute), 149
color (xlwings.Range attribute), 129
column (xlwings.Range attribute), 129
column_width (xlwings.Range attribute), 129
columns (xlwings.Range attribute), 130
copy() (xlwings.Range method), 130

187

xlwings - Make Excel Fly!, Release dev

copy() (xlwings.Sheet method), 125
count (xlwings.main.Apps attribute), 115
count (xlwings.main.Charts attribute), 141
count (xlwings.main.Names attribute), 145
count (xlwings.main.Pictures attribute), 143
count (xlwings.main.Shapes attribute), 138
count (xlwings.Range attribute), 130
count (xlwings.RangeColumns attribute), 138
count (xlwings.RangeRows attribute), 137
create_report() (in module xl-

wings.pro.reports), 154
current_region (xlwings.Range attribute), 130

D
data_body_range (xlwings.main.Table at-

tribute), 147
delete() (xlwings.Chart method), 142
delete() (xlwings.Name method), 146
delete() (xlwings.Picture method), 144
delete() (xlwings.Range method), 130
delete() (xlwings.Shape method), 139
delete() (xlwings.Sheet method), 125
display_alerts (xlwings.App attribute), 116
display_name (xlwings.main.Table attribute),

147

E
end() (xlwings.Range method), 130
expand() (xlwings.Range method), 131

F
Font (class in xlwings.main), 149
font (xlwings.main.Characters attribute), 150
formula (xlwings.Range attribute), 131
formula2 (xlwings.Range attribute), 131
formula_array (xlwings.Range attribute), 131
fullname (xlwings.Book attribute), 121

G
get_address() (xlwings.Range method), 131

H
has_array (xlwings.Range attribute), 132
header_row_range (xlwings.main.Table at-

tribute), 147
height (xlwings.Chart attribute), 142
height (xlwings.Picture attribute), 144
height (xlwings.Range attribute), 132

height (xlwings.Shape attribute), 139
hwnd (xlwings.App attribute), 116
hyperlink (xlwings.Range attribute), 132

I
index (xlwings.Sheet attribute), 126
insert() (xlwings.Range method), 132
insert_row_range (xlwings.main.Table at-

tribute), 147
italic (xlwings.main.Font attribute), 150

K
keys() (xlwings.main.Apps method), 115
kill() (xlwings.App method), 116

L
last_cell (xlwings.Range attribute), 133
left (xlwings.Chart attribute), 142
left (xlwings.Picture attribute), 144
left (xlwings.Range attribute), 133
left (xlwings.Shape attribute), 139
load() (in module xlwings), 114

M
macro() (xlwings.App method), 116
macro() (xlwings.Book method), 121
Markdown (class in xlwings.pro), 151
MarkdownStyle (class in xlwings.pro), 152
merge() (xlwings.Range method), 133
merge_area (xlwings.Range attribute), 133
merge_cells (xlwings.Range attribute), 133

N
Name (class in xlwings), 145
name (xlwings.Book attribute), 121
name (xlwings.Chart attribute), 142
name (xlwings.main.Font attribute), 150
name (xlwings.main.Table attribute), 148
name (xlwings.Name attribute), 146
name (xlwings.Picture attribute), 144
name (xlwings.Range attribute), 133
name (xlwings.Shape attribute), 139
name (xlwings.Sheet attribute), 126
Names (class in xlwings.main), 145
names (xlwings.Book attribute), 121
names (xlwings.Sheet attribute), 126
number_format (xlwings.Range attribute), 133

188 Index

xlwings - Make Excel Fly!, Release dev

O
offset() (xlwings.Range method), 134
open() (xlwings.main.Books method), 118
options() (xlwings.Range method), 134

P
parent (xlwings.Chart attribute), 142
parent (xlwings.main.Table attribute), 148
parent (xlwings.Picture attribute), 144
parent (xlwings.Shape attribute), 139
paste() (xlwings.Range method), 135
Picture (class in xlwings), 144
Pictures (class in xlwings.main), 142
pictures (xlwings.Sheet attribute), 126
pid (xlwings.App attribute), 117

Q
quit() (xlwings.App method), 117

R
Range (class in xlwings), 127
range (xlwings.main.Table attribute), 148
range() (xlwings.App method), 117
range() (xlwings.Sheet method), 126
RangeColumns (class in xlwings), 137
RangeRows (class in xlwings), 137
raw_value (xlwings.Range attribute), 135
refers_to (xlwings.Name attribute), 146
refers_to_range (xlwings.Name attribute),

146
render_template() (xlwings.Sheet method),

126
resize() (xlwings.Range method), 135
row (xlwings.Range attribute), 135
row_height (xlwings.Range attribute), 136
rows (xlwings.Range attribute), 136

S
save() (xlwings.Book method), 121
scale_height() (xlwings.Shape method), 139
scale_width() (xlwings.Shape method), 139
screen_updating (xlwings.App attribute), 117
select() (xlwings.Range method), 136
select() (xlwings.Sheet method), 126
selection (xlwings.App attribute), 117
selection (xlwings.Book attribute), 122
set_mock_caller() (xlwings.Book method),

122

set_source_data() (xlwings.Chart method),
142

Shape (class in xlwings), 138
shape (xlwings.Range attribute), 136
Shapes (class in xlwings.main), 138
shapes (xlwings.Sheet attribute), 126
Sheet (class in xlwings), 124
sheet (xlwings.Range attribute), 136
Sheets (class in xlwings.main), 123
sheets (xlwings.Book attribute), 122
show_autofilter (xlwings.main.Table at-

tribute), 148
show_headers (xlwings.main.Table attribute),

148
show_table_style_column_stripes

(xlwings.main.Table attribute), 148
show_table_style_first_column (xl-

wings.main.Table attribute), 148
show_table_style_last_column (xl-

wings.main.Table attribute), 148
show_table_style_row_stripes (xl-

wings.main.Table attribute), 148
show_totals (xlwings.main.Table attribute), 148
size (xlwings.main.Font attribute), 150
size (xlwings.Range attribute), 136
startup_path (xlwings.App attribute), 117
status_bar (xlwings.App attribute), 118

T
Table (class in xlwings.main), 147
table (xlwings.Range attribute), 136
table_style (xlwings.main.Table attribute), 148
Tables (class in xlwings.main), 146
tables (xlwings.Sheet attribute), 127
text (xlwings.main.Characters attribute), 151
text (xlwings.Shape attribute), 140
to_pdf() (xlwings.Book method), 122
to_pdf() (xlwings.Sheet method), 127
top (xlwings.Chart attribute), 142
top (xlwings.Picture attribute), 144
top (xlwings.Range attribute), 136
top (xlwings.Shape attribute), 140
totals_row_range (xlwings.main.Table at-

tribute), 148
type (xlwings.Shape attribute), 140

U
unmerge() (xlwings.Range method), 136

Index 189

xlwings - Make Excel Fly!, Release dev

update() (xlwings.main.Table method), 148
update() (xlwings.Picture method), 144
used_range (xlwings.Sheet attribute), 127

V
value (xlwings.Range attribute), 136
version (xlwings.App attribute), 118
view() (in module xlwings), 113
visible (xlwings.App attribute), 118
visible (xlwings.Sheet attribute), 127

W
width (xlwings.Chart attribute), 142
width (xlwings.Picture attribute), 144
width (xlwings.Range attribute), 137
width (xlwings.Shape attribute), 140

X
xlwings (module), 113
xlwings.arg() (in module xlwings), 152
xlwings.func() (in module xlwings), 152
xlwings.pro.reports (module), 154
xlwings.ret() (in module xlwings), 153
xlwings.sub() (in module xlwings), 152

190 Index

	Video course
	Installation
	Prerequisites
	Installation
	Add-in
	Dependencies
	How to activate xlwings PRO
	Optional Dependencies
	Update
	Uninstall

	Quickstart
	1. Interacting with Excel from a Jupyter notebook
	2. Scripting: Automate/interact with Excel from Python
	3. Macros: Call Python from Excel
	4. UDFs: User Defined Functions (Windows only)

	Connect to a Book
	Python to Excel
	Excel to Python (RunPython)
	User Defined Functions (UDFs)

	Syntax Overview
	Active Objects
	Full qualification
	Range indexing/slicing
	Range Shortcuts
	Object Hierarchy

	Data Structures Tutorial
	Single Cells
	Lists
	Range expanding
	NumPy arrays
	Pandas DataFrames
	Pandas Series
	Chunking: Read/Write big DataFrames etc.

	Add-in & Settings
	Run main
	Installation
	User Settings
	Environment Variables
	User Config: Ribbon/Config File
	Workbook Directory Config: Config file
	Workbook Config: xlwings.conf Sheet
	Alternative: Standalone VBA module

	RunPython
	xlwings add-in
	Call Python with “RunPython”
	Function Arguments and Return Values

	User Defined Functions (UDFs)
	One-time Excel preparations
	Workbook preparation
	A simple UDF
	Array formulas: Get efficient
	Array formulas with NumPy and Pandas
	@xw.arg and @xw.ret decorators
	Dynamic Array Formulas
	Docstrings
	The “caller” argument
	The “vba” keyword
	Macros
	Call UDFs from VBA
	Asynchronous UDFs

	Matplotlib & Plotly Charts
	Matplotlib
	Plotly static charts

	Jupyter Notebooks: Interact with Excel
	The view function
	The load function

	Command Line Client (CLI)
	xlwings Reports
	Quickstart
	Frames
	Excel Tables
	Excel Charts
	Shape Text
	Markdown

	Markdown Formatting
	Deployment
	Zip files
	RunFrozenPython
	Embedded Code
	One-Click Zero-Config Installer
	Deployment Key

	Troubleshooting
	Issue: dll not found
	Issue: Couldn’t find the local location of your OneDrive

	xlwings PRO
	PRO Features
	More Infos

	Converters and Options
	Default Converter
	Built-in Converters
	Custom Converter

	Debugging
	RunPython
	UDF debug server

	Extensions
	In-Excel SQL

	Custom Add-ins
	Quickstart
	Changing the Ribbon menu
	Importing UDFs
	Configuration
	Installation
	Renaming your add-in
	Deployment

	Threading and Multiprocessing
	Threading
	Multiprocessing

	Missing Features
	Example: Workaround to use VBA’s Range.WrapText

	xlwings with other Office Apps
	How To
	Config

	xlwings with R and Julia
	R
	Julia

	Python API
	Top-level functions
	Object model
	UDF decorators
	Reports

	REST API
	Quickstart
	Run the server
	Indexing
	Range Options
	Endpoint overview
	Endpoint details

	Index

