

xlwings - Make Excel Fly!

xlwings (Open Source) is a BSD-licensed [http://opensource.org/licenses/BSD-3-Clause] Python library that makes it easy to call Python from Excel and vice versa:

	Scripting: Automate/interact with Excel from Python using a syntax close to VBA.

	Macros: Replace VBA macros with clean and powerful Python code.

	UDFs: Write User Defined Functions (UDFs) in Python (Windows only).

Numpy arrays and Pandas Series/DataFrames are fully supported. xlwings-powered workbooks are easy to distribute and work
on Windows and Mac.

 Getting Started

Start here if you are new to xlwings. Learn about the syntax, the RunPython call, the add-in and UDFs.

 Advanced Features

More in-depths explanations about converters, debugging or how to write your own add-in.

 xlwings PRO

Work with Google Sheets & Excel on the web, use xlwings Reports (template-based reporting), embed your Python code for easy deployment and more. Free for noncommercial use only.

 API Reference

This is a description of all the classes, methods, properties and functions that xlwings offers to work with the Excel object model.

Video course

Those who prefer a didactically structured video course over this documentation should have a look
at our video course:

https://training.xlwings.org/p/xlwings

It’s also a great way to support the ongoing development of xlwings :)

Installation

Prerequisites

	Traditionally, xlwings requires an installation of Excel and therefore only works on Windows and macOS. Note that macOS currently does not support UDFs.

	Since v0.26.0, xlwings can be installed on Linux servers in connection with Google Sheets or Excel on the web, see Remote Interpreter.

	xlwings requires at least Python 3.7.

Here are previous versions of xlwings that support older versions of Python:

	Python 3.6: 0.25.3

	Python 3.5: 0.19.5

	Python 2.7: 0.16.6

Installation

xlwings comes pre-installed with

	Anaconda [https://www.anaconda.com/products/individual] (Windows and macOS)

	WinPython [https://winpython.github.io] (Windows only) Make sure not to take the dot version as this only contains Python.

If you are new to Python or have trouble installing xlwings, one of these distributions is highly recommended. Otherwise, you can also install it with pip:

pip install xlwings

or conda:

conda install xlwings

Note that the official conda package might be a few releases behind. You can, however,
use the conda-forge channel (replace install with upgrade if xlwings is already installed):

conda install -c conda-forge xlwings

Add-in

To install the add-in, run the following command:

xlwings addin install

To call Excel from Python, you don’t need an add-in. Also, you can use a single file VBA module (standalone workbook) instead of the add-in. For more details, see Add-in & Settings.

Note

The add-in needs to be the same version as the Python package. Make sure to re-install the add-in after upgrading the xlwings package. Make sure to close Ecxel before installing/upgrading the add-in.

Note

When you are on macOS and are using the VBA standalone module instead of the add-in, you need to run $ xlwings runpython install once.

Dependencies

	Windows: pywin32

	Mac: psutil, appscript

The dependencies are automatically installed via conda or pip.
If you would like to install xlwings without dependencies, you can run pip install xlwings --no-deps or set the environment variable XLWINGS_NO_DEPS=1 before running pip install xlwings.

How to activate xlwings PRO

See xlwings PRO.

Optional Dependencies

	NumPy

	pandas

	Matplotlib

	Pillow

	cryptography (for xlwings.pro)

	Jinja2 (for xlwings.pro.reports)

	requests (for permissioning)

These packages are not required but highly recommended as they play very nicely with xlwings. They are all pre-installed with Anaconda. With pip, you can install xlwings with all optional dependencies as follows:

pip install "xlwings[all]"

Update

To update to the latest xlwings version, run the following in a command prompt:

pip install --upgrade xlwings

or:

conda update -c conda-forge xlwings

Make sure to keep your version of the Excel add-in in sync with your Python package by running the following (make sure to close Excel first):

xlwings addin install

Uninstall

To uninstall xlwings completely, first uninstall the add-in, then uninstall the xlwings package using the same method (pip or conda) that you used for installing it:

xlwings addin remove

Then

pip uninstall xlwings

or:

conda remove xlwings

Finally, manually remove the .xlwings directory in your home folder if it exists.

Quickstart

This guide assumes you have xlwings already installed. If that’s not the case, head over to Installation.

1. Interacting with Excel from a Jupyter notebook

If you’re just interested in getting a pandas DataFrame in and out of your Jupyter notebook, you can use the view and load functions, see Jupyter Notebooks: Interact with Excel.

2. Scripting: Automate/interact with Excel from Python

Establish a connection to a workbook:

>>> import xlwings as xw
>>> wb = xw.Book() # this will create a new workbook
>>> wb = xw.Book('FileName.xlsx') # connect to a file that is open or in the current working directory
>>> wb = xw.Book(r'C:\path\to\file.xlsx') # on Windows: use raw strings to escape backslashes

If you have the same file open in two instances of Excel, you need to fully qualify it and include the app instance.
You will find your app instance key (the PID) via xw.apps.keys():

>>> xw.apps[10559].books['FileName.xlsx']

Instantiate a sheet object:

>>> sheet = wb.sheets['Sheet1']

Reading/writing values to/from ranges is as easy as:

>>> sheet.range('A1').value = 'Foo 1'
>>> sheet.range('A1').value
'Foo 1'

There are many convenience features available, e.g. Range expanding:

>>> sheet.range('A1').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]
>>> sheet.range('A1').expand().value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Powerful converters handle most data types of interest, including Numpy arrays and Pandas DataFrames in both directions:

>>> import pandas as pd
>>> df = pd.DataFrame([[1,2], [3,4]], columns=['a', 'b'])
>>> sheet.range('A1').value = df
>>> sheet.range('A1').options(pd.DataFrame, expand='table').value
 a b
0.0 1.0 2.0
1.0 3.0 4.0

Matplotlib figures can be shown as pictures in Excel:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
[<matplotlib.lines.Line2D at 0x1071706a0>]
>>> sheet.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Workbook4]Sheet1>>

3. Macros: Call Python from Excel

You can call Python functions either by clicking the Run button (new in v0.16) in the add-in or from VBA using the RunPython function:

The Run button expects a function called main in a Python module with the same name as your workbook. The
great thing about that approach is that you don’t need your workbooks to be macro-enabled, you can save it as xlsx.

If you want to call any Python function no matter in what module it lives or what name it has, use RunPython:

Sub HelloWorld()
 RunPython "import hello; hello.world()"
End Sub

Note

Per default, RunPython expects hello.py in the same directory as the Excel file with the same name, but you can change both of these things: if your Python file is an a different folder, add that folder to the PYTHONPATH in the config. If the file has a different name, change the RunPython command accordingly.

Refer to the calling Excel book by using xw.Book.caller():

hello.py
import numpy as np
import xlwings as xw

def world():
 wb = xw.Book.caller()
 wb.sheets[0].range('A1').value = 'Hello World!'

To make this run, you’ll need to have the xlwings add-in installed or have the workbooks setup in the standalone mode. The easiest way to get everything set up is to use the xlwings command line client from either a command prompt on Windows or a terminal on Mac: xlwings quickstart myproject.

For details about the addin, see Add-in & Settings.

4. UDFs: User Defined Functions (Windows only)

Writing a UDF in Python is as easy as:

import xlwings as xw

@xw.func
def hello(name):
 return f'Hello {name}'

Converters can be used with UDFs, too. Again a Pandas DataFrame example:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame)
def correl2(x):
 # x arrives as DataFrame
 return x.corr()

Import this function into Excel by clicking the import button of the xlwings add-in: for a step-by-step tutorial, see User Defined Functions (UDFs).

Connect to a Book

When reading/writing data to the active sheet, you don’t need a book object:

>>> import xlwings as xw
>>> xw.Range('A1').value = 'something'

Python to Excel

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances and
returns an error, should the same book be open in multiple instances.
To connect to a book in the active app instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or something like xw.apps[10559] for existing apps, get the available PIDs via xw.apps.keys()
>>> app.books['Book1']

Note that you usually should use App as a context manager as this will make sure that the Excel instance is closed and cleaned up again properly:

with xw.App() as app:
 book = app.books['Book1']

	
	xw.Book

	xw.books

	New book

	xw.Book()

	xw.books.add()

	Unsaved book

	xw.Book('Book1')

	xw.books['Book1']

	Book by (full)name

	xw.Book(r'C:/path/to/file.xlsx')

	xw.books.open(r'C:/path/to/file.xlsx')

Note

When specifying file paths on Windows, you should either use raw strings by putting
an r in front of the string or use double back-slashes like so: C:\\path\\to\\file.xlsx.

Excel to Python (RunPython)

To reference the calling book when using RunPython in VBA, use xw.Book.caller(), see
Call Python with “RunPython”.
Check out the section about Debugging to see how you can call a script from both sides, Python and Excel, without
the need to constantly change between xw.Book.caller() and one of the methods explained above.

User Defined Functions (UDFs)

Unlike RunPython, UDFs don’t need a call to xw.Book.caller(), see User Defined Functions (UDFs).
You’ll usually use the caller argument which returns the xlwings range object from where you call the function.

Syntax Overview

The xlwings object model is very similar to the one used by VBA.

All code samples below depend on the following import:

>>> import xlwings as xw

Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sheet = xw.sheets.active # in active book
>>> sheet = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

A Range can be instantiated with A1 notation, a tuple of Excel’s 1-based indices, a named range or two Range objects:

xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))
xw.Range((1,1), (3,3))
xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

Full qualification

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based indexing/slicing.
As an example, the following expressions all reference the same range:

xw.apps[763].books[0].sheets[0].range('A1')
xw.apps(10559).books(1).sheets(1).range('A1')
xw.apps[763].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(10559).books('Book1').sheets('Sheet1').range('A1')

Note that the apps keys are different for you as they are the process IDs (PID). You can get the list of your PIDs via
xw.apps.keys().

App context manager

If you want to open a new Excel instance via App(), you usually should use App as a context manager as this will make sure that the Excel instance is closed and cleaned up again properly:

with xw.App() as app:
 book = app.books['Book1']

Range indexing/slicing

Range objects support indexing and slicing, a few examples:

>>> rng = xw.Book().sheets[0].range('A1:D5')
>>> rng[0, 0]
 <Range [Workbook1]Sheet1!A1>
>>> rng[1]
 <Range [Workbook1]Sheet1!B1>
>>> rng[:, 3:]
<Range [Workbook1]Sheet1!D1:D5>
>>> rng[1:3, 1:3]
<Range [Workbook1]Sheet1!B2:C3>

Range Shortcuts

Sheet objects offer a shortcut for range objects by using index/slice notation on the sheet object. This evaluates to either
sheet.range or sheet.cells depending on whether you pass a string or indices/slices:

>>> sheet = xw.Book().sheets['Sheet1']
>>> sheet['A1']
<Range [Book1]Sheet1!A1>
>>> sheet['A1:B5']
<Range [Book1]Sheet1!A1:B5>
>>> sheet[0, 1]
<Range [Book1]Sheet1!B1>
>>> sheet[:10, :10]
<Range [Book1]Sheet1!A1:J10>

Object Hierarchy

The following shows an example of the object hierarchy, i.e. how to get from an app to a range object
and all the way back:

>>> rng = xw.apps[10559].books[0].sheets[0].range('A1')
>>> rng.sheet.book.app
<Excel App 10559>

Data Structures Tutorial

This tutorial gives you a quick introduction to the most common use cases and default behaviour of xlwings when reading
and writing values. For an in-depth documentation of how to control the behavior using the options method, have a
look at Converters and Options.

All code samples below depend on the following import:

>>> import xlwings as xw

Single Cells

Single cells are by default returned either as float, unicode, None or datetime objects, depending on
whether the cell contains a number, a string, is empty or represents a date:

>>> import datetime as dt
>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = 1
>>> sheet.range('A1').value
1.0
>>> sheet.range('A2').value = 'Hello'
>>> sheet.range('A2').value
'Hello'
>>> sheet.range('A3').value is None
True
>>> sheet.range('A4').value = dt.datetime(2000, 1, 1)
>>> sheet.range('A4').value
datetime.datetime(2000, 1, 1, 0, 0)

Lists

	1d lists: Ranges that represent rows or columns in Excel are returned as simple lists, which means that once
they are in Python, you’ve lost the information about the orientation. If that is an issue, the next point shows
you how to preserve this info:

>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = [[1],[2],[3],[4],[5]] # Column orientation (nested list)
>>> sheet.range('A1:A5').value
[1.0, 2.0, 3.0, 4.0, 5.0]
>>> sheet.range('A1').value = [1, 2, 3, 4, 5]
>>> sheet.range('A1:E1').value
[1.0, 2.0, 3.0, 4.0, 5.0]

To force a single cell to arrive as list, use:

>>> sheet.range('A1').options(ndim=1).value
[1.0]

Note

To write a list in column orientation to Excel, use transpose: sheet.range('A1').options(transpose=True).value = [1,2,3,4]

	2d lists: If the row or column orientation has to be preserved, set ndim in the Range options. This will return the
Ranges as nested lists (“2d lists”):

>>> sheet.range('A1:A5').options(ndim=2).value
[[1.0], [2.0], [3.0], [4.0], [5.0]]
>>> sheet.range('A1:E1').options(ndim=2).value
[[1.0, 2.0, 3.0, 4.0, 5.0]]

	2 dimensional Ranges are automatically returned as nested lists. When assigning (nested) lists to a Range in Excel,
it’s enough to just specify the top left cell as target address. This sample also makes use of index notation to read the
values back into Python:

>>> sheet.range('A10').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10, 20, 30]]
>>> sheet.range((10,1),(11,3)).value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Note

Try to minimize the number of interactions with Excel. It is always more efficient to do
sheet.range('A1').value = [[1,2],[3,4]] than sheet.range('A1').value = [1, 2] and sheet.range('A2').value = [3, 4].

Range expanding

You can get the dimensions of Excel Ranges dynamically through either the method expand or through the expand
keyword in the options method. While expand gives back an expanded Range object, options are only evaluated when
accessing the values of a Range. The difference is best explained with an example:

>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sheet.range('A1').expand('table') # or just .expand()
>>> rng2 = sheet.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sheet.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

'table' expands to 'down' and 'right', the other available options which can be used for column or row only
expansion, respectively.

Note

Using expand() together with a named Range as top left cell gives you a flexible setup in
Excel: You can move around the table and change its size without having to adjust your code, e.g. by using
something like sheet.range('NamedRange').expand().value.

NumPy arrays

NumPy arrays work similar to nested lists. However, empty cells are represented by nan instead of
None. If you want to read in a Range as array, set convert=np.array in the options method:

>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = np.eye(3)
>>> sheet.range('A1').options(np.array, expand='table').value
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

Pandas DataFrames

>>> sheet = xw.Book().sheets[0]
>>> df = pd.DataFrame([[1.1, 2.2], [3.3, None]], columns=['one', 'two'])
>>> df
 one two
0 1.1 2.2
1 3.3 NaN
>>> sheet.range('A1').value = df
>>> sheet.range('A1:C3').options(pd.DataFrame).value
 one two
0 1.1 2.2
1 3.3 NaN
options: work for reading and writing
>>> sheet.range('A5').options(index=False).value = df
>>> sheet.range('A9').options(index=False, header=False).value = df

Pandas Series

>>> import pandas as pd
>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.], name='myseries')
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64
>>> sheet.range('A1').value = s
>>> sheet.range('A1:B7').options(pd.Series).value
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64

Note

You only need to specify the top left cell when writing a list, a NumPy array or a Pandas
DataFrame to Excel, e.g.: sheet.range('A1').value = np.eye(10)

Chunking: Read/Write big DataFrames etc.

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will depend on your system and size of the array, so you will have to try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

Add-in & Settings

[image: _images/ribbon.png]

The xlwings add-in is the preferred way to be able to use the Run main button, RunPython or UDFs.
Note that you don’t need an add-in if you just want to manipulate Excel by running a Python script.

Note

The ribbon of the add-in is compatible with Excel >= 2007 on Windows and >= 2016 on Mac.
On Mac, all UDF related functionality is not available.

Note

The add-in is password protected with the password xlwings. For debugging or to add new extensions, you need
to unprotect it. Alternatively, you can also install the add-in via xlwings addin install --unprotected.

Run main

New in version 0.16.0.

The Run main button is the easiest way to run your Python code: It runs a function called main in a Python
module that has the same name as your workbook. This allows you to save your workbook as xlsx without enabling macros.
The xlwings quickstart command will create a workbook that will automatically work with the Run button.

Installation

To install the add-in, use the command line client:

xlwings addin install

Technically, this copies the add-in from Python’s installation directory to Excel’s XLSTART folder. Then, to use RunPython or UDFs in a workbook, you need to set a reference to xlwings in the VBA editor, see screenshot (Windows: Tools > References..., Mac: it’s on the lower left corner of the VBA editor). Note that when you create a workbook via xlwings quickstart, the reference should already be set.

[image: _images/vba_reference.png]

User Settings

When you install the add-in for the first time, it will get auto-configured and therefore, a quickstart project should work out of the box. For fine-tuning, here are the available settings:

	Interpreter: This is the path to the Python interpreter. This works also with virtual or conda envs on Mac.
If you use conda envs on Windows, then leave this empty and use Conda Path and Conda Env below instead. Examples:
"C:\Python39\pythonw.exe" or "/usr/local/bin/python3.9". Note that in the settings,
this is stored as Interpreter_Win or Interpreter_Mac, respectively, see below!

	PYTHONPATH: If the source file of your code is not found, add the path to its directory here.

	Conda Path: If you are on Windows and use Anaconda or Miniconda, then type here the path to your
installation, e.g. C:\Users\Username\Miniconda3 or %USERPROFILE%\Anaconda. NOTE that you need at least conda 4.6!
You also need to set Conda Env, see next point.

	Conda Env: If you are on Windows and use Anaconda or Miniconda, type here the name of your conda env, e.g. base
for the base installation or myenv for a conda env with the name myenv.

	UDF Modules: Names of Python modules (without .py extension) from which the UDFs are being imported.
Separate multiple modules by “;”.
Example: UDF_MODULES = "common_udfs;myproject"
The default imports a file in the same directory as the Excel spreadsheet with the same name but ending in .py.

	Debug UDFs: Check this box if you want to run the xlwings COM server manually for debugging, see Debugging.

	RunPython: Use UDF Server: Uses the same COM Server for RunPython as for UDFs. This will be faster, as the
interpreter doesn’t shut down after each call.

	Restart UDF Server: This restarts the UDF Server/Python interpreter.

	Show Console: Check the box in the ribbon or set the config to TRUE if you want the command prompt to pop up. This currently only works on Windows.

Anaconda/Miniconda

If you use Anaconda or Miniconda on Windows, you will need to set your Conda Path and Conda Env settings, as you will
otherwise get errors when using NumPy etc. In return, leave Interpreter empty.

Environment Variables

With environment variables, you can set dynamic paths e.g. to your interpreter or PYTHONPATH:

	On Windows, you can use all environment variables like so: %USERPROFILE%\Anaconda.

	On macOS, the following special variables are supported: $HOME, $APPLICATIONS, $DOCUMENTS, $DESKTOP.

User Config: Ribbon/Config File

The settings in the xlwings Ribbon are stored in a config file that can also be manipulated externally. The location is

	Windows: .xlwings\xlwings.conf in your home folder, that is usually C:\Users\<username>

	macOS: ~/Library/Containers/com.microsoft.Excel/Data/xlwings.conf

The format is as follows (currently the keys are required to be all caps) - note the OS specific Interpreter settings!

"INTERPRETER_WIN","C:\path\to\python.exe"
"INTERPRETER_MAC","/path/to/python"
"PYTHONPATH",""
"CONDA PATH",""
"CONDA ENV",""
"UDF MODULES",""
"DEBUG UDFS",""
"USE UDF SERVER",""
"SHOW CONSOLE",""
"ONEDRIVE_WIN",""
"ONEDRIVE_MAC",""

Note

The ONEDRIVE_WIN/_MAC setting has to be edited directly in the file, there is currently no possibility to edit it via the ribbon. Usually, it is only required if you are either on macOS or if your environment variables on Windows are not correctly set or if you have a private and corporate location and don’t want to go with the default one. ONEDRIVE_WIN/_MAC has to point to the root folder of your local OneDrive folder.

Workbook Directory Config: Config file

The global settings of the Ribbon/Config file can be overridden for one or more workbooks by creating a xlwings.conf file
in the workbook’s directory.

Note

Workbook directory config files are not supported if your workbook is stored on SharePoint or OneDrive.

Workbook Config: xlwings.conf Sheet

Workbook specific settings will override global (Ribbon) and workbook directory config files:
Workbook specific settings are set by listing the config key/value pairs in a sheet with the name xlwings.conf.
When you create a new project with xlwings quickstart, it’ll already have such a sheet but you need to rename
it to xlwings.conf to make it active.

[image: _images/workbook_config.png]

Alternative: Standalone VBA module

Sometimes, it might be useful to run xlwings code without having to install an add-in first. To do so, you
need to use the standalone option when creating a new project: xlwings quickstart myproject --standalone.

This will add the content of the add-in as a single VBA module so you don’t need to set a reference to the add-in anymore.
It will also include Dictionary.cls as this is required on macOS.
It will still read in the settings from your xlwings.conf if you don’t override them by using a sheet with the name xlwings.conf.

RunPython

xlwings add-in

To get access to Run main (new in v0.16) button or the RunPython VBA function, you’ll need the xlwings addin (or VBA module), see Add-in & Settings.

For new projects, the easiest way to get started is by using the command line client with the quickstart command,
see Command Line Client (CLI) for details:

$ xlwings quickstart myproject

Call Python with “RunPython”

In the VBA Editor (Alt-F11), write the code below into a VBA module. xlwings quickstart automatically
adds a new module with a sample call. If you rather want to start from scratch, you can add a new module via Insert > Module.

Sub HelloWorld()
 RunPython "import hello; hello.world()"
End Sub

This calls the following code in hello.py:

hello.py
import numpy as np
import xlwings as xw

def world():
 wb = xw.Book.caller()
 wb.sheets[0].range('A1').value = 'Hello World!'

You can then attach HelloWorld to a button or run it directly in the VBA Editor by hitting F5.

Note

Place xw.Book.caller() within the function that is being called from Excel and not outside as
global variable. Otherwise it prevents Excel from shutting down properly upon exiting and
leaves you with a zombie process when you use Use UDF Server = True.

Function Arguments and Return Values

While it’s technically possible to include arguments in the function call within RunPython, it’s not very convenient.
Also, RunPython does not allow you to return values. To overcome these issues, use UDFs, see User Defined Functions (UDFs) - however,
this is currently limited to Windows only.

User Defined Functions (UDFs)

This tutorial gets you quickly started on how to write User Defined Functions.

Note

	UDFs are currently only available on Windows.

	For details of how to control the behaviour of the arguments and return values, have a look at Converters and Options.

	For a comprehensive overview of the available decorators and their options, check out the corresponding API docs: UDF decorators.

One-time Excel preparations

	Enable Trust access to the VBA project object model under File > Options > Trust Center > Trust Center Settings > Macro Settings. You only need to do this once. Also, this is only required for importing the functions, i.e. end users won’t need to bother about this.

	Install the add-in via command prompt: xlwings addin install (see Add-in & Settings).

Workbook preparation

The easiest way to start a new project is to run xlwings quickstart myproject on a command prompt (see Command Line Client (CLI)).
This automatically adds the xlwings reference to the generated workbook.

A simple UDF

The default addin settings expect a Python source file in the way it is created by quickstart:

	in the same directory as the Excel file

	with the same name as the Excel file, but with a .py ending instead of .xlsm.

Alternatively, you can point to a specific module via UDF Modules in the xlwings ribbon.

Let’s assume you have a Workbook myproject.xlsm, then you would write the following code in myproject.py:

import xlwings as xw

@xw.func
def double_sum(x, y):
 """Returns twice the sum of the two arguments"""
 return 2 * (x + y)

	Now click on Import Python UDFs in the xlwings tab to pick up the changes made to myproject.py.

	Enter the formula =double_sum(1, 2) into a cell and you will see the correct result:

[image: _images/double_sum.png]

	The docstring (in triple-quotes) will be shown as function description in Excel.

Note

	You only need to re-import your functions if you change the function arguments or the function name.

	Code changes in the actual functions are picked up automatically (i.e. at the next calculation of the formula,
e.g. triggered by Ctrl-Alt-F9), but changes in imported modules are not. This is the very behaviour of how Python
imports work. If you want to make sure everything is in a fresh state, click Restart UDF Server.

	The @xw.func decorator is only used by xlwings when the function is being imported into Excel. It tells xlwings
for which functions it should create a VBA wrapper function, otherwise it has no effect on how the functions behave
in Python.

Array formulas: Get efficient

Calling one big array formula in Excel is much more efficient than calling many single-cell formulas, so it’s generally
a good idea to use them, especially if you hit performance problems.

You can pass an Excel Range as a function argument, as opposed to a single cell and it will show up in Python as
list of lists.

For example, you can write the following function to add 1 to every cell in a Range:

@xw.func
def add_one(data):
 return [[cell + 1 for cell in row] for row in data]

To use this formula in Excel,

	Click on Import Python UDFs again

	Fill in the values in the range A1:B2

	Select the range D1:E2

	Type in the formula =add_one(A1:B2)

	Press Ctrl+Shift+Enter to create an array formula. If you did everything correctly, you’ll see the formula
surrounded by curly braces as in this screenshot:

[image: _images/array_formula.png]

Number of array dimensions: ndim

The above formula has the issue that it expects a “two dimensional” input, e.g. a nested list of the form
[[1, 2], [3, 4]].
Therefore, if you would apply the formula to a single cell, you would get the following error:
TypeError: 'float' object is not iterable.

To force Excel to always give you a two-dimensional array, no matter whether the argument is a single cell, a
column/row or a two-dimensional Range, you can extend the above formula like this:

@xw.func
@xw.arg('data', ndim=2)
def add_one(data):
 return [[cell + 1 for cell in row] for row in data]

Array formulas with NumPy and Pandas

Often, you’ll want to use NumPy arrays or Pandas DataFrames in your UDF, as this unlocks the full power of Python’s
ecosystem for scientific computing.

To define a formula for matrix multiplication using numpy arrays, you would define the following function:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
@xw.arg('y', np.array, ndim=2)
def matrix_mult(x, y):
 return x @ y

Note

If you are not on Python >= 3.5 with NumPy >= 1.10, use x.dot(y) instead of x @ y.

A great example of how you can put Pandas at work is the creation of an array-based CORREL formula. Excel’s
version of CORREL only works on 2 datasets and is cumbersome to use if you want to quickly get the correlation
matrix of a few time-series, for example. Pandas makes the creation of an array-based CORREL2 formula basically
a one-liner:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame, index=False, header=False)
@xw.ret(index=False, header=False)
def CORREL2(x):
 """Like CORREL, but as array formula for more than 2 data sets"""
 return x.corr()

@xw.arg and @xw.ret decorators

These decorators are to UDFs what the options method is to Range objects: they allow you to apply converters and their
options to function arguments (@xw.arg) and to the return value (@xw.ret). For example, to convert the argument x into
a pandas DataFrame and suppress the index when returning it, you would do the following:

@xw.func
@xw.arg('x', pd.DataFrame)
@xw.ret(index=False)
def myfunction(x):
 # x is a DataFrame, do something with it
 return x

For further details see the Converters and Options documentation.

Dynamic Array Formulas

Note

If your version of Excel supports the new native dynamic arrays, then you don’t have to do anything special,
and you shouldn’t use the expand decorator! To check if your version of Excel supports it, see if you
have the =UNIQUE() formula available. Native dynamic arrays were introduced in Office 365 Insider Fast
at the end of September 2018.

As seen above, to use Excel’s array formulas, you need to specify their dimensions up front by selecting the
result array first, then entering the formula and finally hitting Ctrl-Shift-Enter. In practice, it often turns
out to be a cumbersome process, especially when working with dynamic arrays such as time series data.
Since v0.10, xlwings offers dynamic UDF expansion:

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):
 return np.random.randn(int(r), int(c))

[image: _images/dynamic_array1.png]

[image: _images/dynamic_array2.png]

Note

	Expanding array formulas will overwrite cells without prompting

	Pre v0.15.0 doesn’t allow to have volatile functions as arguments, e.g. you cannot use functions like =TODAY() as arguments.
Starting with v0.15.0, you can use volatile functions as input, but the UDF will be called more than 1x.

	Dynamic Arrays have been refactored with v0.15.0 to be proper legacy arrays: To edit a dynamic array
with xlwings >= v0.15.0, you need to hit Ctrl-Shift-Enter while in the top left cell. Note that you don’t
have to do that when you enter the formula for the first time.

Docstrings

The following sample shows how to include docstrings both for the function and for the arguments x and y that then
show up in the function wizard in Excel:

import xlwings as xw

@xw.func
@xw.arg('x', doc='This is x.')
@xw.arg('y', doc='This is y.')
def double_sum(x, y):
 """Returns twice the sum of the two arguments"""
 return 2 * (x + y)

The “caller” argument

You often need to know which cell called the UDF. For this, xlwings offers the reserved argument caller which returns the calling cell as xlwings range object:

@xw.func
def get_caller_address(caller):
 # caller will not be exposed in Excel, so use it like so:
 # =get_caller_address()
 return caller.address

Note that caller will not be exposed in Excel but will be provided by xlwings behind the scenes.

The “vba” keyword

By using the vba keyword, you can get access to any Excel VBA object in the form of a pywin32 object. For example, if you wanted to pass the sheet object in the form of its CodeName, you can do it as follows:

@xw.func
@xw.arg('sheet1', vba='Sheet1')
def get_name(sheet1):
 # call this function in Excel with:
 # =get_name()
 return sheet1.Name

Note that vba arguments are not exposed in the UDF but automatically provided by xlwings.

Macros

On Windows, as an alternative to calling macros via RunPython, you can also use the @xw.sub
decorator:

import xlwings as xw

@xw.sub
def my_macro():
 """Writes the name of the Workbook into Range("A1") of Sheet 1"""
 wb = xw.Book.caller()
 wb.sheets[0].range('A1').value = wb.name

After clicking on Import Python UDFs, you can then use this macro by executing it via Alt + F8 or by
binding it e.g. to a button. To do the latter, make sure you have the Developer tab selected under File >
Options > Customize Ribbon. Then, under the Developer tab, you can insert a button via Insert > Form Controls.
After drawing the button, you will be prompted to assign a macro to it and you can select my_macro.

Call UDFs from VBA

Imported functions can also be used from VBA. For example, for a function returning a 2d array:

Sub MySub()

Dim arr() As Variant
Dim i As Long, j As Long

 arr = my_imported_function(...)

 For j = LBound(arr, 2) To UBound(arr, 2)
 For i = LBound(arr, 1) To UBound(arr, 1)
 Debug.Print "(" & i & "," & j & ")", arr(i, j)
 Next i
 Next j

End Sub

Asynchronous UDFs

Note

This is an experimental feature

New in version v0.14.0.

xlwings offers an easy way to write asynchronous functions in Excel. Asynchronous functions return immediately with
#N/A waiting.... While the function is waiting for its return value, you can use Excel to do other stuff and whenever
the return value is available, the cell value will be updated.

The only available mode is currently async_mode='threading', meaning that it’s useful for I/O-bound tasks, for example when
you fetch data from an API over the web.

You make a function asynchronous simply by giving it the respective argument in the function decorator. In this example,
the time consuming I/O-bound task is simulated by using time.sleep:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):
 time.sleep(5) # long running tasks
 return a

You can use this function like any other xlwings function, simply by putting =myfunction("abcd") into a cell
(after you have imported the function, of course).

Note that xlwings doesn’t use the native asynchronous functions that were introduced with Excel 2010, so xlwings
asynchronous functions are supported with any version of Excel.

Matplotlib & Plotly Charts

Matplotlib

Using pictures.add(), it is easy to paste a Matplotlib plot as picture in Excel.

Getting started

The easiest sample boils down to:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

sheet = xw.Book().sheets[0]
sheet.pictures.add(fig, name='MyPlot', update=True)

[image: _images/mpl_basic.png]

Note

If you set update=True, you can resize and position the plot on Excel: subsequent calls to pictures.add()
with the same name ('MyPlot') will update the picture without changing its position or size.

Full integration with Excel

Calling the above code with RunPython and binding it e.g. to a button is
straightforward and works cross-platform.

However, on Windows you can make things feel even more integrated by setting up a
UDF along the following lines:

@xw.func
def myplot(n, caller):
 fig = plt.figure()
 plt.plot(range(int(n)))
 caller.sheet.pictures.add(fig, name='MyPlot', update=True)
 return 'Plotted with n={}'.format(n)

If you import this function and call it from cell B2, then the plot gets automatically
updated when cell B1 changes:

[image: _images/mpl_udf.png]

Properties

Size, position and other properties can either be set as arguments within pictures.add(), or
by manipulating the picture object that is returned, see xlwings.Picture().

For example:

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True,
 left=sht.range('B5').left, top=sht.range('B5').top)

or:

>>> plot = sht.pictures.add(fig, name='MyPlot', update=True)
>>> plot.height /= 2
>>> plot.width /= 2

Getting a Matplotlib figure

Here are a few examples of how you get a matplotlib figure object:

	via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

or:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4, 5])
fig = plt.gcf()

	via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

	via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

Plotly static charts

Prerequisites

In addition to plotly, you will need kaleido, psutil, and requests. The easiest way to get it is via pip:

$ pip install kaleido psutil requests

or conda:

$ conda install -c conda-forge python-kaleido psutil requests

See also: https://plotly.com/python/static-image-export/

How to use

It works the same as with Matplotlib, however, rendering a Plotly chart takes slightly longer. Here is a sample:

import xlwings as xw
import plotly.express as px

Plotly chart
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")

Add it to Excel
wb = xw.Book()
wb.sheets[0].pictures.add(fig, name='IrisScatterPlot', update=True)

[image: _images/plotly.png]

Jupyter Notebooks: Interact with Excel

When you work with Jupyter notebooks, you may use Excel as an interactive data viewer or scratchpad from where you can load DataFrames. The two convenience functions view and load make this really easy.

Note

The view and load functions should exclusively be used for interactive work. If you write scripts, use the xlwings API as introduced under Quickstart and Syntax Overview.

The view function

The view function accepts pretty much any object of interest, whether that’s a number, a string, a nested list or a NumPy array or a pandas DataFrame. By default, it writes the data into an Excel table in a new workbook. If you wanted to reuse the same workbook, provide a sheet object, e.g. view(df, sheet=xw.sheets.active), for further options see view.

[image: _images/xw_view.png]

Changed in version 0.22.0: Earlier versions were not formatting the output as Excel table

The load function

To load in a range in an Excel sheet as pandas DataFrame, use the load function. If you only select one cell, it will auto-expand to cover the whole range. If, however, you select a specific range that is bigger than one cell, it will load in only the selected cells. If the data in Excel does not have an index or header, set them to False like this: xw.load(index=False), see also load.

[image: _images/xw_load.png]

New in version 0.22.0.

Command Line Client (CLI)

xlwings comes with a command line client. On Windows, type the commands into a Command Prompt or Anaconda Prompt, on Mac, type them into a Terminal. To get an overview of all commands, simply type xlwings and hit Enter:

addin Run "xlwings addin install" to install the Excel add-
 in (will be copied to the XLSTART folder). Instead of
 "install" you can also use "update", "remove" or
 "status". Note that this command may take a while. You
 can install your custom add-in by providing the name
 or path via the --file/-f flag, e.g. "xlwings add-in
 install -f custom.xlam or copy all Excel files in a
 directory to the XLSTART folder by providing the path
 via the --dir flag."
 (New in 0.6.0, the --dir flag was added in 0.24.8)
quickstart Run "xlwings quickstart myproject" to create a folder
 called "myproject" in the current directory with an
 Excel file and a Python file, ready to be used. Use
 the "--standalone" flag to embed all VBA code in the
 Excel file and make it work without the xlwings add-
 in. Use "--fastapi" for creating a project that uses a
 remote Python interpreter. Use "--addin --ribbon" to
 create a template for a custom ribbon addin. Leave
 away the "--ribbon" if you don't want a ribbon tab.
runpython macOS only: run "xlwings runpython install" if you
 want to enable the RunPython calls without installing
 the add-in. This will create the following file:
 ~/Library/Application
 Scripts/com.microsoft.Excel/xlwings.applescript
 (new in 0.7.0)
restapi Use "xlwings restapi run" to run the xlwings REST API
 via Flask dev server. Accepts "--host" and "--port" as
 optional arguments.
license xlwings PRO: Use "xlwings license update -k KEY" where
 "KEY" is your personal (trial) license key. This will
 update ~/.xlwings/xlwings.conf with the LICENSE_KEY
 entry. If you have a paid license, you can run
 "xlwings license deploy" to create a deploy key. This
 is not available for trial keys.
config Run "xlwings config create" to create the user config
 file (~/.xlwings/xlwings.conf) which is where the
 settings from the Ribbon add-in are stored. It will
 configure the Python interpreter that you are running
 this command with. To reset your configuration, run
 this with the "--force" flag which will overwrite your
 current configuration.
 (New in 0.19.5)
code Run "xlwings code embed" to embed all Python modules
 of the workbook's dir in your active Excel file. Use
 the "--file" flag to only import a single file by
 providing its path. Requires xlwings PRO.
 (Changed in 0.23.4)
permission "xlwings permission cwd" prints a JSON string that can
 be used to permission the execution of all modules in
 the current working directory via GET request.
 "xlwings permission book" does the same for code that
 is embedded in the active workbook.
 (New in 0.23.4)
release Run "xlwings release" to configure your active
 workbook to work with a one-click installer for easy
 deployment. Requires xlwings PRO.
 (New in 0.23.4)
copy Run "xlwings copy os" to copy the xlwings Office
 Scripts module. Run "xlwings copy gs" to copy the
 xlwings Google Apps Script module.
 (New in 0.26.0)
vba This functionality allows you to easily write VBA code
 in an external editor: run "xlwings vba edit" to
 update the VBA modules of the active workbook from
 their local exports everytime you hit save. If you run
 this the first time, the modules will be exported from
 Excel into your current working directory. To
 overwrite the local version of the modules with those
 from Excel, run "xlwings vba export". To overwrite the
 VBA modules in Excel with their local versions, run
 "xlwings vba import". The "--file/-f" flag allows you
 to specify a file path instead of using the active
 Workbook. Requires "Trust access to the VBA project
 object model" enabled. NOTE: Whenever you change
 something in the VBA editor (such as the layout of a
 form or the properties of a module), you have to run
 "xlwings vba export".
 (New in 0.26.3, changed in 0.27.0)

Deployment

Zip files

New in version 0.15.2.

To make it easier to distribute, you can zip up your Python code into a zip file. If you use UDFs, this will disable the
automatic code reload, so this is a feature meant for distribution, not development. In practice, this means that when
your code is inside a zip file, you’ll have to click on re-import to get any changes.

If you name your zip file like your Excel file (but with .zip extension) and place it in the same folder as your
Excel workbook, xlwings will automatically find it (similar to how it works with a single python file).

If you want to use a different directory, make sure to add it to the PYTHONPATH in your config (Ribbon or config file):

PYTHONPATH, "C:\path\to\myproject.zip"

RunFrozenPython

Changed in version 0.15.2.

You can use a freezer like PyInstaller, cx_Freeze, py2exe etc. to freeze your Python module into an executable so that
the recipient doesn’t have to install a full Python distribution.

Note

	This does not work with UDFs.

	Currently only available on Windows, but support for Mac should be easy to add.

	You need at least 0.15.2 to support arguments whereas the syntax changed in 0.15.6

Use it as follows:

Sub MySample()
 RunFrozenPython "C:\path\to\dist\myproject\myproject.exe", "arg1 arg2"
End Sub

OneDrive and SharePoint

Since v0.25.0, xlwings works with files that are stored on OneDrive, OneDrive for Business, and SharePoint—as long as they are synced locally. Some constellations will work out-of-the-box, while others require you to edit the configuration via the xlwings.conf file (see User Config) or the workbook’s xlwings.conf sheet (see Workbook Config).

Warning

xlwings only works with OneDrive and SharePoint files that are synced to a local folder! This means that both, the Excel and Python file, need to show the green check mark in the File Explorer/Finder as status—a cloud icon will not work.

OneDrive (Personal)

Default setups work out-of-the-box on Windows and macOS. If you get an error message, add the following setting with the correct path to the local root directory of your OneDrive. If possible, make use of environment variables (as shown in the examples) so the configuration will work across different users with the same setup:

	Windows (Example):

	ONEDRIVE_CONSUMER_WIN

	%USERPROFILE%\OneDrive

	macOS (Example):

	ONEDRIVE_CONSUMER_MAC

	$HOME/OneDrive

OneDrive for Business

	Windows: Default setups work out-of-the-box. If you get an error message, add the following setting with the correct path to the local root directory of your OneDrive for Business. If possible, make use of environment variables (as shown in the examples) so the configuration will work across different users with the same setup:

	ONEDRIVE_COMMERCIAL_WIN

	%USERPROFILE%\OneDrive - My Company LLC

	macOS: macOS always requires the following setting with the correct path to the local root directory of your OneDrive for Business. If possible, make use of environment variables (as shown in the examples) so the configuration will work across different users with the same setup:

	ONEDRIVE_COMMERCIAL_MAC

	$HOME/OneDrive - My Company LLC

SharePoint (Online and On-Premises)

On Windows, the location of the local root folder of SharePoint can sometimes be derived from the OneDrive environment variables. Most of the time though, you’ll have to provide the following setting (on macOS this is a must):

	Windows:

	SHAREPOINT_WIN

	%USERPROFILE%\My Company LLC

	macOS:

	SHAREPOINT_MAC

	$HOME/My Company LLC

Implementation Details & Limitations

A lot of the xlwings functionality depends on the workbook’s FullName property (via VBA/COM) that returns the local path of the file unless it is saved on OneDrive, OneDrive for Business or SharePoint with AutoSave enabled. In this case, it returns a URL instead.

URLs for OneDrive and OneDrive for Business can be translated fairly straight forward to the local equivalent. You will need to know the root directory of the local drive though: on Windows, these are usually provided via environment variables for OneDrive. On macOS they don’t exist, which is the reason why you need to provide the root directory for OneDrive. On Windows, the root directory for SharePoint can sometimes be derived from the env vars, too, but this is not guaranteed. On macOS, you’ll need to provide it always anyway.

SharePoint, unfortunately, allows you to map the drives locally in any way you want and there’s no way to reliably get the local path for these files. xlwings therefore first checks if the local path is mapped by using the defaults and if the file can’t be found, it checks all existing local files on SharePoint. If it finds one with the same name, it’ll use this. If, however, it finds more than one with the same name, you will get an error message. In this case, you can either rename the file to something unique across all the locally synced SharePoint files or you can change the SHAREPOINT_WIN/MAC setting to not stop at the root folder but include additional folders. As an example, assume you have the following file structure on your local SharePoint:

My Company LLC/
└── sitename1/
 └── myfile.xlsx
└── sitename2 - Documents/
 └── myfile.xlsx

In this case, you could either rename one of the files, or you could add a path that goes beyond the root folder (preferably under the xlwings.conf sheet):

	SHAREPOINT_WIN

	%USERPROFILE%/My Company LLC/sitename2 - Documents

Troubleshooting

Issue: dll not found

Solution:

	xlwings32-<version>.dll and xlwings64-<version>.dll are both in the same directory as your python.exe. If not, something went wrong
with your installation. Reinstall it with pip or conda, see Installation.

	Check your Interpreter in the add-in or config sheet. If it is empty, then you need to be able to open a windows command prompt and type
python to start an interactive Python session. If you get the error 'python' is not recognized as an internal or external command,
operable program or batch file., then you have two options: Either add the path of where your python.exe lives to your Windows path
(see https://www.computerhope.com/issues/ch000549.htm) or set the full path to your interpreter in the add-in or your config sheet, e.g.
C:\Users\MyUser\anaconda\pythonw.exe

Issue: Files that are saved on OneDrive or SharePoint cause an error to pop up

Solution:

See the dedicated page about how to configure OneDrive and Sharepoint: OneDrive and SharePoint.

Converters and Options

Introduced with v0.7.0, converters define how Excel ranges and their values are converted both during
reading and writing operations. They also provide a consistent experience across xlwings.Range objects and
User Defined Functions (UDFs).

Converters are explicitly set in the options method when manipulating Range objects
or in the @xw.arg and @xw.ret decorators when using UDFs. If no converter is specified, the default converter
is applied when reading. When writing, xlwings will automatically apply the correct converter (if available) according to the
object’s type that is being written to Excel. If no converter is found for that type, it falls back to the default converter.

All code samples below depend on the following import:

>>> import xlwings as xw

Syntax:

	
	xw.Range

	UDFs

	reading

	xw.Range.options(convert=None, **kwargs).value

	@arg('x', convert=None, **kwargs)

	writing

	xw.Range.options(convert=None, **kwargs).value = myvalue

	@ret(convert=None, **kwargs)

Note

Keyword arguments (kwargs) may refer to the specific converter or the default converter.
For example, to set the numbers option in the default converter and the index option in the DataFrame converter,
you would write:

xw.Range('A1:C3').options(pd.DataFrame, index=False, numbers=int).value

Default Converter

If no options are set, the following conversions are performed:

	single cells are read in as floats in case the Excel cell holds a number, as unicode in case it holds text,
as datetime if it contains a date and as None in case it is empty.

	columns/rows are read in as lists, e.g. [None, 1.0, 'a string']

	2d cell ranges are read in as list of lists, e.g. [[None, 1.0, 'a string'], [None, 2.0, 'another string']]

The following options can be set:

	ndim

Force the value to have either 1 or 2 dimensions regardless of the shape of the range:

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1, 2], [3, 4]]
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(ndim=1).value
[1.0]
>>> sht.range('A1').options(ndim=2).value
[[1.0]]
>>> sht.range('A1:A2').value
[1.0 3.0]
>>> sht.range('A1:A2').options(ndim=2).value
[[1.0], [3.0]]

	numbers

By default cells with numbers are read as float, but you can change it to int:

>>> sht.range('A1').value = 1
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(numbers=int).value
1

Alternatively, you can specify any other function or type which takes a single float argument.

Using this on UDFs looks like this:

@xw.func
@xw.arg('x', numbers=int)
def myfunction(x):
 # all numbers in x arrive as int
 return x

Note: Excel always stores numbers internally as floats, which is the reason why the int converter
rounds numbers first before turning them into integers. Otherwise it could happen that e.g. 5 might be
returned as 4 in case it is represented as a floating point number that is slightly smaller than 5.
Should you require Python’s original int in your converter, use raw int instead.

	dates

By default cells with dates are read as datetime.datetime, but you can change it to datetime.date:

	Range:

>>> import datetime as dt
>>> sht.range('A1').options(dates=dt.date).value

	UDFs: @xw.arg('x', dates=dt.date)

Alternatively, you can specify any other function or type which takes the same keyword arguments
as datetime.datetime, for example:

>>> my_date_handler = lambda year, month, day, **kwargs: "%04i-%02i-%02i" % (year, month, day)
>>> sht.range('A1').options(dates=my_date_handler).value
'2017-02-20'

	empty

Empty cells are converted per default into None, you can change this as follows:

	Range: >>> sht.range('A1').options(empty='NA').value

	UDFs: @xw.arg('x', empty='NA')

	transpose

This works for reading and writing and allows us to e.g. write a list in column orientation to Excel:

	Range: sht.range('A1').options(transpose=True).value = [1, 2, 3]

	UDFs:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):
 # x will be returned unchanged as transposed both when reading and writing
 return x

	expand

This works the same as the Range properties table, vertical and horizontal but is
only evaluated when getting the values of a Range:

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sht.range('A1').expand()
>>> rng2 = sht.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sht.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

Note

The expand method is only available on Range objects as UDFs only allow to manipulate the calling cells.

	chunksize

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will depend on your system and size of the array, so you will have to try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

Built-in Converters

xlwings offers several built-in converters that perform type conversion to dictionaries, NumPy arrays,
Pandas Series and DataFrames. These build on top of the default converter, so in most cases the options
described above can be used in this context, too (unless they are meaningless, for example the ndim in the case
of a dictionary).

It is also possible to write and register a custom converter for additional types, see below.

The samples below can be used with both xlwings.Range objects and UDFs even though only one version may be shown.

Dictionary converter

The dictionary converter turns two Excel columns into a dictionary. If the data is in row orientation, use transpose:

[image: _images/dict_converter.png]

>>> sht = xw.sheets.active
>>> sht.range('A1:B2').options(dict).value
{'a': 1.0, 'b': 2.0}
>>> sht.range('A4:B5').options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

Note: instead of dict, you can also use OrderedDict from collections.

Numpy array converter

options: dtype=None, copy=True, order=None, ndim=None

The first 3 options behave the same as when using np.array() directly. Also, ndim works the same as shown above
for lists (under default converter) and hence returns either numpy scalars, 1d arrays or 2d arrays.

Example:

>>> import numpy as np
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').options(transpose=True).value = np.array([1, 2, 3])
>>> sht.range('A1:A3').options(np.array, ndim=2).value
array([[1.],
 [2.],
 [3.]])

Pandas Series converter

options: dtype=None, copy=False, index=1, header=True

The first 2 options behave the same as when using pd.Series() directly. ndim doesn’t have an effect on
Pandas series as they are always expected and returned in column orientation.

	index: int or Boolean
	
When reading, it expects the number of index columns shown in Excel.

When writing, include or exclude the index by setting it to True or False.

	header: Boolean
	
When reading, set it to False if Excel doesn’t show either index or series names.

When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

[image: _images/series_conv.png]

>>> sht = xw.Book().sheets[0]
>>> s = sht.range('A1').options(pd.Series, expand='table').value
>>> s
date
2001-01-01 1
2001-01-02 2
2001-01-03 3
2001-01-04 4
2001-01-05 5
2001-01-06 6
Name: series name, dtype: float64
>>> sht.range('D1', header=False).value = s

Pandas DataFrame converter

options: dtype=None, copy=False, index=1, header=1

The first 2 options behave the same as when using pd.DataFrame() directly. ndim doesn’t have an effect on
Pandas DataFrames as they are automatically read in with ndim=2.

	index: int or Boolean
	
When reading, it expects the number of index columns shown in Excel.

When writing, include or exclude the index by setting it to True or False.

	header: int or Boolean
	
When reading, it expects the number of column headers shown in Excel.

When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

[image: _images/df_converter.png]

>>> sht = xw.Book().sheets[0]
>>> df = sht.range('A1:D5').options(pd.DataFrame, header=2).value
>>> df
 a b
 c d e
ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> sht.range('A1').value = df

Writing back and changing some of the options, e.g. getting rid of the index:
>>> sht.range('B7').options(index=False).value = df

The same sample for UDF (starting in Range('A13') on screenshot) looks like this:

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):
 # x is a DataFrame, do something with it
 return x

xw.Range and ‘raw’ converters

Technically speaking, these are “no-converters”.

	If you need access to the xlwings.Range object directly, you can do:

@xw.func
@xw.arg('x', 'range')
def myfunction(x):
 return x.formula

This returns x as xlwings.Range object, i.e. without applying any converters or options.

	The raw converter delivers the values unchanged from the underlying libraries (pywin32 on Windows and
appscript on Mac), i.e. no sanitizing/cross-platform harmonizing of values are being made. This might be useful
in a few cases for efficiency reasons. E.g:

>>> sht.range('A1:B2').value
[[1.0, 'text'], [datetime.datetime(2016, 2, 1, 0, 0), None]]

>>> sht.range('A1:B2').options('raw').value # or sht.range('A1:B2').raw_value
((1.0, 'text'), (pywintypes.datetime(2016, 2, 1, 0, 0, tzinfo=TimeZoneInfo('GMT Standard Time', True)), None))

Custom Converter

Here are the steps to implement your own converter:

	Inherit from xlwings.conversion.Converter

	Implement both a read_value and write_value method as static- or classmethod:

	In read_value, value is what the base converter returns: hence, if no
base has been specified it arrives in the format of the default converter.

	In write_value, value is the original object being written to Excel. It must be returned
in the format that the base converter expects. Again, if no base has been specified, this is the default
converter.

The options dictionary will contain all keyword arguments specified in
the xw.Range.options method, e.g. when calling xw.Range('A1').options(myoption='some value') or as specified in
the @arg and @ret decorator when using UDFs. Here is the basic structure:

from xlwings.conversion import Converter

class MyConverter(Converter):

 @staticmethod
 def read_value(value, options):
 myoption = options.get('myoption', default_value)
 return_value = value # Implement your conversion here
 return return_value

 @staticmethod
 def write_value(value, options):
 myoption = options.get('myoption', default_value)
 return_value = value # Implement your conversion here
 return return_value

	Optional: set a base converter (base expects a class name) to build on top of an existing converter, e.g.
for the built-in ones: DictCoverter, NumpyArrayConverter, PandasDataFrameConverter, PandasSeriesConverter

	Optional: register the converter: you can (a) register a type so that your converter becomes the default for
this type during write operations and/or (b) you can register an alias that will allow you to explicitly call
your converter by name instead of just by class name

The following examples should make it much easier to follow - it defines a DataFrame converter that extends the
built-in DataFrame converter to add support for dropping nan’s:

from xlwings.conversion import Converter, PandasDataFrameConverter

class DataFrameDropna(Converter):

 base = PandasDataFrameConverter

 @staticmethod
 def read_value(builtin_df, options):
 dropna = options.get('dropna', False) # set default to False
 if dropna:
 converted_df = builtin_df.dropna()
 else:
 converted_df = builtin_df
 # This will arrive in Python when using the DataFrameDropna converter for reading
 return converted_df

 @staticmethod
 def write_value(df, options):
 dropna = options.get('dropna', False)
 if dropna:
 converted_df = df.dropna()
 else:
 converted_df = df
 # This will be passed to the built-in PandasDataFrameConverter when writing
 return converted_df

Now let’s see how the different converters can be applied:

Fire up a Workbook and create a sample DataFrame
sht = xw.Book().sheets[0]
df = pd.DataFrame([[1.,10.],[2.,np.nan], [3., 30.]])

	Default converter for DataFrames:

Write
sht.range('A1').value = df

Read
sht.range('A1:C4').options(pd.DataFrame).value

	DataFrameDropna converter:

Write
sht.range('A7').options(DataFrameDropna, dropna=True).value = df

Read
sht.range('A1:C4').options(DataFrameDropna, dropna=True).value

	Register an alias (optional):

DataFrameDropna.register('df_dropna')

Write
sht.range('A12').options('df_dropna', dropna=True).value = df

Read
sht.range('A1:C4').options('df_dropna', dropna=True).value

	Register DataFrameDropna as default converter for DataFrames (optional):

DataFrameDropna.register(pd.DataFrame)

Write
sht.range('A13').options(dropna=True).value = df

Read
sht.range('A1:C4').options(pd.DataFrame, dropna=True).value

These samples all work the same with UDFs, e.g.:

@xw.func
@arg('x', DataFrameDropna, dropna=True)
@ret(DataFrameDropna, dropna=True)
def myfunction(x):
 # ...
 return x

Note

Python objects run through multiple stages of a transformation pipeline when they are being written to Excel. The
same holds true in the other direction, when Excel/COM objects are being read into Python.

Pipelines are internally defined by Accessor classes. A Converter is just a special Accessor which
converts to/from a particular type by adding an extra stage to the pipeline of the default Accessor. For example, the
PandasDataFrameConverter defines how a list of lists (as delivered by the default Accessor) should be turned
into a Pandas DataFrame.

The Converter class provides basic scaffolding to make the task of writing a new Converter easier. If
you need more control you can subclass Accessor directly, but this part requires more work and is currently
undocumented.

Debugging

Since xlwings runs in every Python environment, you can use your preferred way of debugging.

	RunPython: When calling Python through RunPython, you can set a mock_caller to make it easy to switch
back and forth between calling the function from Excel and Python.

	UDFs: For debugging User Defined Functions, xlwings offers a convenient debugging server

To begin with, Excel will show Python errors in a Message Box:

[image: _images/debugging_error.png]

Note

On Mac, if the import of a module/package fails before xlwings is imported, the popup will not be shown and the StatusBar
will not be reset. However, the error will still be logged in the log file (/Users/<User>/Library/Containers/com.microsoft.Excel/Data/xlwings.log).

RunPython

Consider the following sample code of your Python source code my_module.py:

my_module.py
import os
import xlwings as xw

def my_macro():
 wb = xw.Book.caller()
 wb.sheets[0].range('A1').value = 1

if __name__ == '__main__':
 # Expects the Excel file next to this source file, adjust accordingly.
 xw.Book('myfile.xlsm').set_mock_caller()
 my_macro()

my_macro() can now easily be run from Python for debugging and from Excel via RunPython without having to change the
source code:

Sub my_macro()
 RunPython "import my_module; my_module.my_macro()"
End Sub

UDF debug server

Windows only: To debug UDFs, just check the Debug UDFs in the Add-in & Settings, at the top of the xlwings VBA module.
Then add the following lines at the end of your Python source file and run it. Depending on which IDE you use, you
might need to run the code in “debug” mode (e.g. in case you’re using PyCharm or PyDev):

if __name__ == '__main__':
 xw.serve()

When you recalculate the Sheet (Ctrl-Alt-F9), the code will stop at breakpoints or output any print calls that you
may have.

The following screenshot shows the code stopped at a breakpoint in the community version of PyCharm:

[image: _images/udf_debugging.png]

Note

When running the debug server from a command prompt, there is currently no gracious way to terminate it, but closing
the command prompt will kill it.

Extensions

It’s easy to extend the xlwings add-in with own code like UDFs or RunPython macros, so that they can be deployed
without end users having to import or write the functions themselves. Just add another VBA module to the xlwings addin
with the respective code.

UDF extensions can be used from every workbook without having to set a reference.

In-Excel SQL

The xlwings addin comes with a built-in extension that adds in-Excel SQL syntax (sqlite dialect):

=sql(SQL Statement, table a, table b, ...)

[image: _images/sql.png]

As this extension uses UDFs, it’s only available on Windows right now.

Custom Add-ins

New in version 0.22.0.

Custom add-ins work on Windows and macOS and are white-labeled xlwings add-ins that include all your RunPython functions and UDFs (as usual, UDFs work on Windows only). You can build add-ins with and without an Excel ribbon.

The useful thing about add-in is that UDFs and RunPython calls will be available in all workbooks right out of the box without having to add any references via the VBA editor’s Tools > References.... You can also work with standard xlsx files rather than xlsm files. This tutorial assumes you’re familiar with how xlwings and its configuration works.

Quickstart

Start by running the following command on a command line (to create an add-in without a ribbon, you would leave away the --ribbon flag):

$ xlwings quickstart myproject --addin --ribbon

This will create the familiar quickstart folder with a Python file and an Excel file, but this time, the Excel file is in the xlam format.

	Double-click the Excel add-in to open it in Excel

	Add a new empty workbook (Ctrl+N on Windows or Command+N on macOS)

You should see a new ribbon tab called MyAddin like this:

[image: _images/custom_ribbon_addin.png]

The add-in and VBA project are currently always called myaddin, no matter what name you chose in the quickstart command. We’ll see towards the end of this tutorial how we can change that, but for now we’ll stick to it.

Compared to the xlwings add-in, the custom add-in offers an additional level of configuration: the configuration sheet of the add-in itself which is the easiest way to configure simple add-ins with a static configuration.

Let’s open the VBA editor by clicking on Alt+F11 (Windows) or Option+F11 (macOS). In our project, select ThisWorkbook, then change the Property IsAddin from True to False, see the following screenshot:

[image: _images/custom_addin_vba_properties.png]

This will make the sheet _myaddin.conf visible (again, we’ll see how to change the name of myaddin at the end of this tutorial):

	Activate the sheet config by renaming it from _myaddin.conf to myaddin.conf

	Set your Interpreter_Win/_Mac or Conda settings (you may want to take them over from the xlwings settings for now)

Once done, switch back to the VBA editor, select ThisWorkbook again, and change IsAddin back to True before you save your add-in from the VBA editor. Switch back to Excel and click the Run button under the My Addin ribbon tab and if you’ve configured the Python interpreter correctly, it will print Hello xlwings! into cell A1 of the active workbook.

Changing the Ribbon menu

To change the buttons and items in the ribbon menu or the Backstage View, download and install the Office RibbonX Editor [https://github.com/fernandreu/office-ribbonx-editor/releases]. While it is only available for Windows, the created ribbons will also work on macOS. Open your add-in with it so you can change the XML code that defines your buttons etc. You will find a good tutorial here [https://www.rondebruin.nl/win/s2/win001.htm]. The callback function for the demo Run button is in the RibbonMyAddin VBA module that you’ll find in the VBA editor.

Importing UDFs

To import your UDFs into the custom add-in, run the ImportPythonUDFsToAddin Sub towards the end of the xlwings module (click into the Sub and hit F5). Remember, you only have to do this whenever you change the function name, argument or decorator, so your end users won’t have to deal with this.

If you are only deploying UDFs via your add-in, you probably don’t need a Ribbon menu and can leave away the --ribbon flag in the quickstart command.

Configuration

As mentioned before, configuration works the same as with xlwings, so you could have your users override the default configuration we did above by adding a myaddin.conf sheet on their workbook or you could use the myaddin.conf file in the user’s home directory. For details see Add-in & Settings.

Installation

If you want to permanently install your add-in, you can do so by using the xlwings CLI:

$ xlwings addin install --file C:\path\to\your\myproject.xlam

This, however, means that you will need to adjust the PYTHONPATH for it to find your Python code (or move your Python code to somewhere where Python looks for it—more about that below under deployment). The command will copy your add-in to the XLSTART folder, a special folder from where Excel will open all files everytime you start it.

Renaming your add-in

Admittedly, this part is a bit cumbersome for now. Let’s assume, we would like to rename the addin from MyAddin to Demo:

	In the xlwings VBA module, change Public Const PROJECT_NAME As String = "myaddin" to Public Const PROJECT_NAME As String = "demo". You’ll find this line at the top, right after the Declare statements.

	If you rely on the myaddin.conf sheet for your configuration, rename it to demo.conf

	Right-click the VBA project, select MyAddin Properties... and rename the Project Name from MyAddin to Demo.

	If you use the ribbon, you want to rename the RibbonMyAddin VBA module to RibbonDemo. To do this, select the module in the VBA editor, then rename it in the Properties window. If you don’t see the Properties window, hit F4.

	Open the add-in in the Office RibbonX Editor (see above) and replace all occurrences of MyAddin with Demo in the XML code.

And finally, you may want to rename your myproject.xlam file in the Windows explorer, but I assume you have already run the quickstart command with the correct name, so this won’t be necessary.

Deployment

By far the easiest way to deploy your add-in to your end-users is to build an installer via the xlwings PRO offering. This will take care of everything and your end users literally just need to double-click the installer and they are all set (no existing Python installation required and no manual installation of the add-in or adjusting of settings required).

If you want it the free (but hard) way, you either need to build an installer yourself or you need your users to install Python and the add-in and take care of placing the Python code in the correct directory. This normally involves tweaking the following settings, for example in the myaddin.conf sheet:

	Interpreter_Win/_Mac: if your end-users have a working version of Python, you can use environment variables to dynamically resolve to the correct path. For example, if they have Anaconda installed in the default location, you could use the following configuration:

Conda Path: %USERPROFILE%\anaconda3
Conda Env: base
Interpreter_Mac: $HOME/opt/anaconda3/bin/python

	PYTHONPATH: since you can’t have your Python source code in the XLSTART folder next to the add-in, you’ll need to adjust the PYTHONPATH setting and add the folder to where the Python code will be. You could point this to a shared drive or again make use of environment variables so the users can place the file into a folder called MyAddin in their home directory, for example. However, you can also place your Python code where Python looks for it, for example by placing them in the site-packages directory of the Python distribution—an easy way to achieve this is to build a Python package that you can install via pip.

Threading and Multiprocessing

New in version 0.13.0.

Threading

While xlwings is not technically thread safe, it’s still easy to use it in threads as long as you have at least v0.13.0
and stick to a simple rule: Do not pass xlwings objects to threads. This rule isn’t a requirement on macOS, but it’s
still recommended if you want your programs to be cross-platform.

Consider the following example that will NOT work:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
 while True:
 rng = q.get()
 rng.value = rng.address
 print(rng.address)
 q.task_done()

q = Queue()

for i in range(num_threads):
 t = threading.Thread(target=write_to_workbook)
 t.daemon = True
 t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
 # THIS DOESN'T WORK - passing xlwings objects to threads will fail!
 rng = xw.Book('Book1.xlsx').sheets[0].range(cell)
 q.put(rng)

q.join()

To make it work, you simply have to fully qualify the cell reference in the thread instead of passing a Book object:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
 while True:
 cell_ = q.get()
 xw.Book('Book1.xlsx').sheets[0].range(cell_).value = cell_
 print(cell_)
 q.task_done()

q = Queue()

for i in range(num_threads):
 t = threading.Thread(target=write_to_workbook)
 t.daemon = True
 t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
 q.put(cell)

q.join()

Multiprocessing

Note

Multiprocessing is only supported on Windows!

The same rules apply to multiprocessing as for threading, here’s a working example:

from multiprocessing import Pool
import xlwings as xw

def write_to_workbook(cell):
 xw.Book('Book1.xlsx').sheets[0].range(cell).value = cell
 print(cell)

if __name__ == '__main__':
 with Pool(4) as p:
 p.map(write_to_workbook,
 ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

Missing Features

If you’re missing a feature in xlwings, do the following:

	Most importantly, open an issue on GitHub [https://github.com/xlwings/xlwings/issues].
Adding functionality should be user driven, so only if you tell us about what you’re missing,
it’s eventually going to find its way into the library. By the way, we also appreciate pull requests!

	Workaround: in essence, xlwings is just a smart wrapper around pywin32 [https://github.com/mhammond/pywin32/] on
Windows and appscript [http://appscript.sourceforge.net/] on Mac. You can access the underlying objects by calling
the api property:

>>> sheet = xw.Book().sheets[0]
>>> sheet.api
<COMObject <unknown>> # Windows/pywin32
app(pid=2319).workbooks['Workbook1'].worksheets[1] # Mac/appscript

This works accordingly for the other objects like sheet.range('A1').api etc.

The underlying objects will offer you pretty much everything you can do with VBA, using the syntax of pywin32 (which
pretty much feels like VBA) and appscript (which doesn’t feel like VBA).
But apart from looking ugly, keep in mind that it makes your code platform specific (!), i.e. even if you go for
option 2), you should still follow option 1) and open an issue so the feature finds it’s way into the library
(cross-platform and with a Pythonic syntax).

Example: Workaround to use VBA’s Range.WrapText

Windows
sheet.range('A1').api.WrapText = True

Mac
sheet.range('A1').api.wrap_text.set(True)

xlwings with other Office Apps

xlwings can also be used to call Python functions from VBA within Office apps other than Excel (like Outlook, Access etc.).

Note

This is an experimental feature and may be removed in the future.
Currently, this functionality is only available on Windows for UDFs. The RunPython functionality
is currently not supported.

How To

	As usual, write your Python function and import it into Excel (see User Defined Functions (UDFs)).

	Press Alt-F11 to get into the VBA editor, then right-click on the xlwings_udfs VBA module and select Export File....
Save the xlwings_udfs.bas file somewhere.

	Switch into the other Office app, e.g. Microsoft Access and click again Alt-F11 to get into the VBA editor. Right-click on the
VBA Project and Import File..., then select the file that you exported in the previous step. Once imported, replace the app
name in the first line to the one that you are using, i.e. Microsoft Access or Microsoft Outlook etc. so that the first
line then reads: #Const App = "Microsoft Access"

	Now import the standalone xlwings VBA module (xlwings.bas). You can find it in your xlwings installation folder. To know where that is, do:

>>> import xlwings as xw
>>> xlwings.__path__

And finally do the same as in the previous step and replace the App name in the first line with the name of the
corresponding app that you are using. You are now able to call the Python function from VBA.

Config

The other Office apps will use the same global config file as you are editing via the Excel ribbon add-in. When it makes sense,
you’ll be able to use the directory config file (e.g. you can put it next to your Access or Word file) or you can hardcode
the path to the config file in the VBA standalone module, e.g. in the function GetDirectoryConfigFilePath
(e.g. suggested when using Outlook that doesn’t really have the same concept of files like the other Office apps).
NOTE: For Office apps without file concept, you need to make sure that the PYTHONPATH points to the directory with the
Python source file.
For details on the different config options, see Config.

xlwings PRO Overview

xlwings PRO is source-available [https://en.wikipedia.org/wiki/Source-available_software] and dual-licensed under one of the following licenses:

	PolyForm Noncommercial License 1.0.0 [https://polyformproject.org/licenses/noncommercial/1.0.0] (noncommercial use is free)

	xlwings PRO License [https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt] (commercial use requires a paid plan [https://www.xlwings.org/pricing])

License Key

To use xlwings PRO, you need to install a license key on a Terminal/Command Prompt like so:

xlwings license update -k YOUR_LICENSE_KEY

Make sure to replace LICENSE_KEY with your personal key (see below). This will store the license key in your xlwings.conf file (see User Config: Ribbon/Config File for where this is on your system). Instead of running this command, you can also store the license key as an environment variable with the name XLWINGS_LICENSE_KEY.

License key for noncommercial purpose:

	To use xlwings PRO for free in a noncommercial context, use the following license key: noncommercial (Note that you need at least xlwings 0.26.0).

License key for commercial purpose:

	To try xlwings PRO for free in a commercial context, request a trial license key: https://www.xlwings.org/trial

	To use xlwings PRO in a commercial context beyond the trial, you need to enroll in a paid plan (they include additional services like support and the ability to create one-click installers): https://www.xlwings.org/pricing

xlwings PRO licenses are developer licenses, are verified offline (i.e., no telemetry/license server involved) and allow royalty-free deployments to unlimited internal and external end-users and servers for a hassle-free management. Deployments use deploy keys that don’t expire but instead are bound to a specific version of xlwings.

xlwings PRO functionality requires additionally the cryptography package, which comes preinstalled with Anaconda and WinPython. Otherwise, install it via pip or Conda. With pip, you can also run pip install "xlwings[pro]": this will take care of the extra dependencies for xlwings PRO.

PRO Features

	Remote Interpreter: Work with Google Sheets and Excel on the web and a remote Python interpreter.

	Embedded code: Store your Python source code directly in Excel for easy deployment.

	xlwings Reports: A template-based reporting mechanism, allowing business users to change the layout of the report without having to touch the Python code.

	Markdown Formatting: Support for Markdown formatting of text in cells and shapes like e.g., text boxes.

	Permissioning of Code Execution: Control which users can run which Python modules via xlwings.

Paid plans come with additional services like:

	One-click Installer: Easily build your own Python installer including all dependencies—your end users don’t need to know anything about Python

	On-demand video course [https://training.xlwings.org/p/xlwings]

	Direct Support

Check out the paid plans [https://www.xlwings.org/pricing] for more details!

Remote Python Interpreter: Google Sheets & Excel (Desktop & Web)

This feature requires xlwings PRO and at least v0.27.0.

Instead of installing Python on each end-user’s machine, you can work with a remote Python interpreter. This works the same as a web application, but uses Excel as the frontend instead of a web page in a browser. A remote interpreter doesn’t just work with the Desktop versions of Excel on Windows and macOS but additionally supports Google Sheets and Excel on the web for a full cloud experience. You can run the Python web server wherever it works best for you, whether that means using a cloud service or running a physical machine on premise.

Important

This feature is currently experimental and only covers parts of the RunPython API (UDFs are not yet supported). See also Limitations and Roadmap.

Why is this useful?

Having to install a local installation of Python with the correct dependencies is the number one friction when using xlwings. Most excitingly though, the remote interpreter adds support for the web-based spreadsheets: Google Sheets and Excel on the web.

To automate Office on the web, you have to use Office Scripts (i.e., TypeScript, a typed superset of JavaScript) and for Google Sheets, you have to use Apps Script (i.e., JavaScript). If you don’t feel like learning JavaScript, xlwings allows you to write Python code instead. But even if you are comfortable with JavaScript, you are very limited in what you can do, as both Office Scripts and Apps Script are primarily designed to automate simple spreadsheet tasks such as inserting a new sheet or formatting cells rather than performing data-intensive tasks. They also make it very hard/impossible to use external JavaScript libraries and run in environments with minimal resources.

Note

From here on, when I refer to the xlwings JavaScript module, I mean either the xlwings Apps Script module if you use Google Sheets or the xlwings Office Scripts module if you use Excel on the web.

On the other hand, xlwings with a remote Python interpreter brings you these advantages:

	Work with the whole Python ecosystem: including pandas, machine learning libraries, database packages, web scraping, boto (for AWS S3), etc. This makes xlwings a great alternative for Power Query, which isn’t currently available for Excel on the web or Google Sheets.

	Leverage your existing development workflow: use your favorite IDE/editor (local or cloud-based) with full Git support, allowing you to easily track changes, collaborate and perform code reviews. You can also write unit tests using pytest.

	Remain in control of your data and code: except for the data you expose in Excel or Google Sheets, everything stays on your server. This can include database passwords and other sensitive info such as customer data. There’s also no need to give the Python code to end-users: the whole business logic with your secret sauce is protected on your own infrastructure.

	Choose the right machine for the job: whether that means using a GPU, a ton of CPU cores, lots of memory, or a gigantic hard disc. As long as Python runs on it, you can go from serverless functions as offered by the big cloud vendors all the way to a self-managed Kubernetes cluster under your desk (see Production Deployment).

	Headache-free deployment and maintenance: there’s only one location (usually a Linux server) where your Python code lives and you can automate the whole deployment process with continuous integration pipelines like GitHub actions etc.

	Cross-platform: xlwings with a remote interpreter works with Google Sheets, Excel on the web and the Desktop apps of Excel on Windows and macOS.

Prerequisites

Excel Desktop

	At least xlwings 0.27.0

	Either the xlwings add-in installed or a workbook that has been set up in standalone mode

Google Sheets

	At least xlwings 0.27.0

	New sheets: no special requirements.

	Older sheets: make sure that Chrome V8 runtime is enabled under Extensions > Apps Script > Project Settings > Enable Chrome V8 runtime.

Excel on the web

	At least xlwings 0.27.0

	You need access to Excel on the web with the Automate tab enabled, i.e., access to Office Scripts. Note that Office Scripts currently requires OneDrive for Business or SharePoint (it’s not available on the free office.com), see also Office Scripts Requirements [https://docs.microsoft.com/en-gb/office/dev/scripts/overview/excel#requirements].

	The fetch command in Office Scripts must not be disabled by your Microsoft 365 administrator.

Introduction

Working with a remote Python interpreter consists of two parts:

	Backend: the Python part

	Frontend: the xlwings JavaScript module (for Google Sheets/Excel on the web) or the VBA code in the form of the add-in or standalone modules (Desktop Excel)

The backend exposes your Python functions by using a Python web framework. In more detail, you need to handle a POST request along these lines (the sample shows an excerpt that uses FastAPI [https://fastapi.tiangolo.com/] as the web framework, but it works accordingly with any other web framework like Django or Flask):

@app.post("/hello")
def hello(data: dict = Body(...)):
 # Instantiate a Book object with the deserialized request body
 book = xw.Book(json=data)

 # Use xlwings as usual
 book.sheets[0].value = 'Hello xlwings!'

 # Pass the following back as the response
 return book.json()

	For Desktop Excel, you can run the web server locally and call the respective function from VBA right away (given that you have the add-in installed).

	For the cloud-based spreadsheets, you have to run this on a web server that can be reached from Google Sheets or Excel on the web, and you have to paste the xlwings JavaScript module into the respective editor. How this all works, will be shown in detail under Cloud-based development with Gitpod.

The next section shows you how you can play around with the remote interpreter on your local desktop before we’ll dive into developing against the cloud-based spreadsheets.

Local Development with Desktop Excel

The easiest way to try things out is to run the web server locally against your Desktop version of Excel. We’re going to use FastAPI [https://fastapi.tiangolo.com/] as our web framework. While you can use any web framework you like, no quickstart command exists for these yet, so you’d have to set up the boilerplate yourself.

Start by running the following command on a Terminal/Command Prompt. Feel free to replace demo with another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with the following files:

app.py
demo.xlsm
main.py
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via pip install -r requirements.txt. In app.py, you’ll find the FastAPI boilerplate code and in main.py, you’ll find the hello function that is exposed under the /hello endpoint.

To run this server locally, run python main.py in your Terminal/Command Prompt or use your code editor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using watchgod
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, so let’s open demo.xlsm, press Alt+F11 to open the VBA editor, and in Module1, place your cursor somewhere inside the following function:

Sub SampleRemoteCall()
 RunRemotePython "http://127.0.0.1:8000/hello", apiKey:="DEVELOPMENT"
End Sub

Then hit F5 to run the function—you should see Hello xlwings! in cell A1 of the first sheet. To move this to production, you need to deploy the backend to a server, set a unique API key and adjust the url/apiKey in the RunRemotePython function accordingly, see Production Deployment.

The next sections, however, show you how you can make this work with the Google Sheets and Excel on the web.

Cloud-based development with Gitpod

Using Gitpod is the easiest solution if you’d like to develop against either Google Sheets or Excel on the web

If you want to have a development environment up and running in less than 5 minutes (even if you’re new to web development), simply click the Open in Gitpod button to open a sample project [https://github.com/xlwings/xlwings-web-fastapi] in Gitpod [https://www.gitpod.io] (Gitpod is a cloud-based development environment with a generous free tier):

[image: Open in Gitpod]
 [https://gitpod.io/#https://github.com/xlwings/xlwings-web-fastapi]Opening the project in Gitpod will require you to sign in with your GitHub account. A few moments later, you should see an online version of VS Code. In the Terminal, it will ask you to paste the xlwings license key (get a free trial key [https://www.xlwings.org/trial] if you want to try this out in a commercial context or use the noncommercial license key if your usage qualifies as noncommercial [https://polyformproject.org/licenses/noncommercial/1.0.0]). Note that your browser will ask you for permission to paste. Once you confirm your license key by hitting Enter, the server will automatically start with everything properly configured. You can then open the app directory and look at the main.py file, where you’ll see the hello function. This is the function we’re going to call from Google Sheets/Excel on the web in just a moment. The other file in this directory, app.py contains all the FastAPI boilerplate code. Let’s leave this alone for a moment and look at the js folder instead. Open the file according to your platform:

Google Sheets
xlwings_google.js

Excel on the web
xlwings_excel.ts

Copy all the code, then switch to Google Sheets or Excel on the web, respectively, and continue as follows:

Google Sheets
Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.gs with a function stub. Replace this function stub with the copied code from xlwings_google.js and click on the Save icon. Then hit the Run button (the hello function should be automatically selected in the dropdown to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions it needs. Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets, click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select Assign Script and write hello in the text box, then hit OK.

Excel on the web
In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a function stub. Replace this function stub with the copied code from xlwings_excel.ts. Make sure to click on Save script before clicking on Run: the script will run the hello function and write Hello xlwings! into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select + Add button.

Any changes you make to the hello function in app/main.py in Gitpod are automatically saved and reloaded by the web server and will be reflected the next time you run the script from Google Sheets or Excel on the web.

To test out yahoo, the other function of the sample project [https://github.com/xlwings/xlwings-web-fastapi], replace hello with yahoo in the runPython function in the xlwings JavaScript module.

Note

While Excel on the web requires you to create a separate script with a function called main for each Python function, Google Sheets allows you to add multiple functions with any name.

Please note that clicking the Gitpod button gets you up and running quickly, but if you want to save your changes (i.e., commit them to Git), you should first fork the project on GitHub to your own account and open it by prepending https://gitpod.io/# to your GitHub URL instead of clicking the button (this works with GitLab and Bitbucket too). Or continue with the next section, which shows you how you can start a project from scratch on your local machine.

An alternative for Gitpod is GitHub Codespaces [https://github.com/features/codespaces], but unlike Gitpod, GitHub Codespaces only works with GitHub, has no free tier, and may not be available yet on your account.

Local Development with Google Sheets or Excel on the web

This section walks you through a local development workflow as an alternative to using Gitpod/GitHub Codespaces. What’s making this a little harder than using a preconfigured online IDE like Gitpod is the fact that we need to expose our local web server to the internet for easy development.

As before, we’re going to use FastAPI [https://fastapi.tiangolo.com/] as our web framework. While you can use any web framework you like, no quickstart command exists for these yet, so you’d have to set up the boilerplate yourself. Let’s start with the server before turning our attention to the client side (i.e, Google Sheets or Excel on the web).

Part I: xlwings Server

Start a new quickstart project by running the following command on a Terminal/Command Prompt. Feel free to replace demo with another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with a few files. Since we’re using an online spreadsheet instead of the Desktop Excel, you can delete demo.xlsm, which should leave you with the following files:

main.py
app.py
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via pip install -r requirements.txt. In app.py, you’ll find the FastAPI boilerplate code and in main.py, you’ll find the hello function that is exposed under the /hello endpoint.

The application expects you to set the environment variable XLWINGS_API_KEY to a unique key in order to protect your application from unauthorized access. You should choose a strong random key, for example by running the following on a Terminal/Command Prompt: python -c "import secrets; print(secrets.token_hex(32))". If you don’t set an environment variable, it will use DEVELOPMENT as the API key (only use this for quick tests and never for production!).

To run this server locally, run python main.py in your Terminal/Command Prompt or use your code editor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using watchgod
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, however, to enable it to communicate with Google Sheets or Excel on the web, you need to expose the port used by your local server (port 8000 in your example) securely to the internet. There are many free and paid services available to help you do this. One of the more popular ones is ngrok [https://ngrok.com/] whose free version will do the trick (for a list of ngrok alternatives, see Awesome Tunneling [https://github.com/anderspitman/awesome-tunneling]):

	ngrok Installation [https://ngrok.com/download]

	ngrok Tutorial [https://ngrok.com/docs]

For the sake of this tutorial, let’s assume you’ve installed ngrok, in which case you would run the following on your Terminal/Command Prompt to expose your local server to the public internet:

$ ngrok http 8000

Note that the number of the port (8000) has to correspond to the port that is configured on your local development server as specified at the bottom of main.py. ngrok will print something along these lines:

ngrok by @inconshreveable (Ctrl+C to quit)

Session Status online
Account name@domain.com (Plan: Free)
Version 2.3.40
Region United States (us)
Web Interface http://127.0.0.1:4040
Forwarding http://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io -> http://localhost:8000
Forwarding https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io -> http://localhost:8000

To configure the xlwings client in the next step, we’ll need the https version of the Forwarding address that ngrok prints, i.e., https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io.

Note

When you’re not actively developing, you should stop your ngrok session by hitting Ctrl-C in the Terminal/Command Prompt.

Part II: xlwings Client

Now it’s time to switch to Google Sheets or Excel on the web! To paste the xlwings JavaScript module, follow these 3 steps:

	Copy the xlwings JavaScript module: On a Terminal/Command Prompt on your local machine, run the following command:

Google Sheets
$ xlwings copy gs

Excel on the web
$ xlwings copy os

This will copy the correct xlwings JavaScript module to the clipboard so we can paste it in the next step.

	Paste the xlwings JavaScript module

Google Sheets
Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.gs with a function stub. Replace this function stub with the copied code from the previous step and click on the Save icon. Then hit the Run button (the hello function should be automatically selected in the dropdown to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions it needs. Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets, click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select Assign Script and write hello in the text box, then hit OK.

Excel on the web
In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a function stub. Replace this function stub with the copied code from the previous step. Make sure to click on Save script before clicking on Run: the script will run the hello function and write Hello xlwings! into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select + Add button.

	Configuration: The final step is to configure the xlwings JavaScript module properly, see the next section Configuration.

Configuration

xlwings can be configured in two ways:

	Via arguments in the runPython (Google Sheets or Excel on the web) or RunRemotePython (Desktop Excel) function, respectively.

	Via xlwings.conf sheet (in this case, the keys are UPPER_CASE with underscore instead of camelCase, see the screenshot below).

If you provide a value via config sheet and via function argument, the function argument wins. Let’s see what the available settings are:

	url (required): This is the full URL of your function. In the above example under Local Development with Google Sheets or Excel on the web, this would be https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello, i.e., the ngrok URL with the /hello endpoint appended.

	apiKey (optional): While this is technically optional, it is usually required by the backend. It has to correspond to whatever you set the XLWINGS_API_KEY environment variable on your server and will protect your functions from unauthorized access. It’s good practice to keep your sensitive keys such as the apiKey out of your source code (the JavaScript/VBA module), but putting it in the xlwings.conf sheet may only be marginally better. Excel on the web, however, doesn’t currently provide you with a better way of handling this. Google Sheets, on the other hand, allows you to work with Properties Service [https://developers.google.com/apps-script/guides/properties] to keep the API key out of both the JavaScript code and the xlwings.conf sheet.

Note

The API key is chosen by you to protect your application and has nothing to do with the xlwings license key!

	headers (optional): A dictionary (VBA) or object literal (JS) with name/value pairs. If you set the Authorization header, apiKey will be ignored.

	exclude (optional): By default, xlwings sends over the complete content of the whole workbook to the server. If you have sheets with big amounts of data, this can make the calls slow or you could even hit a timeout. If your backend doesn’t need the content of certain sheets, you can exclude them from being sent over via this setting. Currently, you can only exclude entire sheets as comma-delimited string like so: "Sheet1, Sheet2".

Configuration Examples: Function Arguments

Excel Desktop
Using only required arguments:

Sub Hello()
 RunRemotePython "http://127.0.0.1:8000/hello", apiKey:="YOUR_UNIQUE_API_KEY"
End Sub

Additionally providing the exclude parameter to exclude the content of the xlwings.conf and Sheet1 sheets:

Sub Hello()
 RunRemotePython "http://127.0.0.1:8000/hello", apiKey:="YOUR_UNIQUE_API_KEY", exclude:="xlwings.conf, Sheet1"
End Sub

Google Sheets
Using only required arguments:

function hello() {
 runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello", {
 apiKey: "YOUR_UNIQUE_API_KEY",
 });
}

Additionally providing the exclude parameter to exclude the content of the xlwings.conf and Sheet1 sheets as well as a custom header:

function hello() {
 runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello", {
 apiKey: "YOUR_UNIQUE_API_KEY",
 exclude: "xlwings.conf, Sheet1",
 headers: { MyHeader: "my value" },
 });
}

Excel on the web
Using only required arguments:

async function main(workbook: ExcelScript.Workbook) {
 await runPython(
 workbook,
 "https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",
 { apiKey: "YOUR_UNIQUE_API_KEY" }
);
}

Additionally providing the exclude parameter to exclude the content of the xlwings.conf and Sheet1 sheets as well as a custom header:

async function main(workbook: ExcelScript.Workbook) {
 await runPython(
 workbook,
 "https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",
 {
 apiKey: "YOUR_UNIQUE_API_KEY",
 exclude: "xlwings.conf, Sheet1",
 headers: { MyHeader: "my value" },
 }
);
}

Configuration Examples: xlwings.conf sheet

Create a sheet called xlwings.conf and fill in key/value pairs like so:

[image: _images/xlwings_conf_sheet.png]

Production Deployment

The xlwings web server can be built with any web framework and can therefore be deployed using any solution capable of running a Python backend or function. Here is a list for inspiration (non-exhaustive):

	Fully-managed services: Heroku [https://www.heroku.com], render [https://www.render.com], Fly.io [https://www.fly.io], etc.

	Interactive environments: PythonAnywhere [https://www.pythonanywhere.com], Anvil [https://www.anvil.works], etc.

	Serverless functions: AWS Lambda [https://aws.amazon.com/lambda/], Azure Functions [https://azure.microsoft.com/en-us/services/functions/], Google Cloud Functions [https://cloud.google.com/functions], Vercel [https://vercel.com], etc.

	Virtual Machines: DigitalOcean [https://m.do.co/c/ed671b0a5a9b] (referral link), vultr [https://www.vultr.com/?ref=7155223] (referral link), Linode [https://www.linode.com/], AWS EC2 [https://aws.amazon.com/ec2/], Microsoft Azure VM [https://azure.microsoft.com/en-us/services/virtual-machines/], Google Cloud Compute Engine [https://cloud.google.com/compute], etc.

	Corporate servers: Anything will work (including Kubernetes) as long as the respective endpoints can be accessed from your spreadsheet app.

Important

For production deployment, always make sure to set a unique and random API key, see Configuration.

If you’d like to deploy the sample project [https://github.com/xlwings/xlwings-web-fastapi] to production in less than 5 minutes, you can do so by clicking the button below, which will deploy it to Heroku’s free tier. Note, however, that on the free plan, the backend will “sleep” after 30 minutes of inactivity, which means that it will take a few moments the next time you call it until it is up and running again. The XLWINGS_API_KEY is auto-generated and you can look it up under your app’s Settings > Config Vars > Reveal Config Vars once the app is deployed. To get the URL, you’ll need to append /hello to the app’s URL that you’ll find in your dashboard.

[image: Deploy]
 [https://heroku.com/deploy?template=https://github.com/xlwings/xlwings-web-fastapi/tree/main]

Triggers

Google Sheets
For Google Sheets, you can take advantage of the integrated Triggers (accessible from the menu on the left-hand side of the Apps Script editor). You can trigger your xlwings functions on a schedule or by an event, such as opening or editing a sheet.

Excel on the web
Normally, you would use Power Automate to achieve similar things as with Google Sheets Triggers, but unfortunately, Power Automate can’t run Office Scripts that contain a fetch command like xlwings does, so for the time being, you can only trigger xlwings calls manually on Excel on the web. Alternatively, you can open your Excel file with Google Sheets and leverage the Triggers that Google Sheets offers. This, however, requires you to store your Excel file on Google Drive.

Limitations

	Currently, only a subset of the xlwings API is covered, mainly the Range and Sheet classes with a focus on reading and writing values. This, however, includes full support for type conversion including pandas DataFrames, NumPy arrays, datetime objects, etc.

	You are moving within the web’s request/response cycle, meaning that values that you write to a range will only be written back to Google Sheets/Excel once the function call returns. Put differently, you’ll get the state of the sheets at the moment the call was initiated, but you can’t read from a cell you’ve just written to until the next call.

	You will need to use the same xlwings version for the Python package and the JavaScript module, otherwise, the server will raise an error.

	Currently, custom functions (a.k.a. user-defined functions or UDFs) are not supported.

	For users with no experience in web development, this documentation may not be quite good enough just yet.

Platform-specific limitations:

Google Sheets

	Quotas for Google Services [https://developers.google.com/apps-script/guides/services/quotas] apply.

Excel on the web

	xlwings relies on the fetch command in Office Scripts that cannot be used via Power Automate and that can be disabled by your Microsoft 365 administrator.

	While Excel on the web feels generally slow, it seems to have an extreme lag depending on where in the world you open the browser with Excel on the web. For example, a hello world call takes ~4.5s if you open a browser in Amsterdam/Netherlands while it takes ~8.5s if you do it Buenos Aires/Argentina.

	Platform limits with Office Scripts [https://docs.microsoft.com/en-us/office/dev/scripts/testing/platform-limits] apply.

Roadmap

	Add support for UDFs/custom functions.

	Complete the RunPython API by adding features that currently aren’t supported yet, e.g., charts, shapes, named ranges, tables, etc.

	Improve efficiency.

xlwings Reports

This feature requires xlwings PRO.

xlwings Reports is a solution for template-based Excel and PDF reporting, making the generation of pixel-perfect factsheets really simple. xlwings Reports allows business users without Python knowledge to create and maintain Excel templates without having to rely on a Python developer after the intial setup has been done: xlwings Reports separates the Python code (pre- and post-processing) from the Excel template (layout/formatting).

xlwings Reports supports all commonly required components:

	Text: Easily format your text via Markdown syntax.

	Tables (dynamic): Write pandas DataFrames to Excel cells and Excel tables and format them dynamically based on the number of rows.

	Charts: Use your favorite charting engine: Excel charts, Matplotlib, or Plotly.

	Images: You can include both raster (e.g., png) or vector (e.g., svg) graphics, including dynamically generated ones, e.g., QR codes or plots.

	Multi-column Layout: Split your content up into e.g. a classic two column layout by using Frames.

	Single Template: Generate reports in various languages, for various funds etc. based on a single template.

	PDF Report: Generate PDF reports automatically and “print” the reports on PDFs in your corporate layout for pixel-perfect results including headers, footers, backgrounds and borderless graphics.

	Easy Pre-processing: Since everything is based on Python, you can connect with literally any data source and clean it with pandas or some other library.

	Easy Post-processing: Again, with Python you’re just a few lines of code away from sending an email with the reports as attachment or uploading the reports to your web server, S3 bucket etc.

Quickstart

You can work on the sheet, book or app level:

	mysheet.render_template(**data): replaces the placeholders in mysheet

	mybook.render_template(**data): replaces the placeholders in all sheets of mybook

	myapp.render_template(template, output, **data): convenience wrapper that copies a template book before replacing the placeholder with the values. Since this approach allows you to work with hidden Excel instances, it is the most commonly used method for production.

Let’s go through a typical example: start by creating the following Python script report.py:

report.py
from pathlib import Path

import pandas as pd
import xlwings as xw

We'll place this file in the same directory as the Excel template
this_dir = Path(__file__).resolve().parent

data = dict(
 title='MyTitle',
 df=pd.DataFrame(data={'one': [1, 2], 'two': [3, 4]})
)

Change visible=False to run this in a hidden Excel instance
with xw.App(visible=True) as app:
 book = app.render_template(this_dir / 'mytemplate.xlsx',
 this_dir / 'myreport.xlsx',
 **data)
 book.to_pdf(this_dir / 'myreport.pdf')

Then create the following Excel file called mytemplate.xlsx:

[image: _images/mytemplate.png]

Run the Python script (or run the code from a Jupyter notebook):

python report.py

This will copy the template and create the following output by replacing the variables in double curly braces with
the value from the Python variable:

[image: _images/myreport.png]

If you like, you could also create a classic xlwings tool to call this script or you could design a GUI app by using a framework like PySimpleGUI and turn it into an executable by using a freezer (e.g., PyInstaller). This, however, is beyond the scope of this tutorial.

Note

By default, xlwings Reports overwrites existing values in templates if there is not enough free space for your variable. If you want your rows to dynamically shift according to the height of your array, use Frames.

Note

Unlike xlwings, xlwings Reports never writes out the index of pandas DataFrames. If you need the index to appear in Excel, use df.reset_index(), see DataFrames.

See also render_templates (API reference).

Render Books and Sheets

Sometimes, it’s useful to render a single book or sheet instead of using the myapp.render_template method. This is a workbook stored as Book1.xlsx:

[image: _images/sheet_rendering1.png]

Running the following code:

import xlwings as xw

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(title='A Demo!', table=[[1, 2], [3, 4]])
book.to_pdf()

Copies the template sheet first and then fills it in:

[image: _images/sheet_rendering2.png]

See also the mysheet.render_template (API reference) and mybook.render_template (API reference).

New in version 0.22.0.

DataFrames

To write DataFrames in a consistent manner to Excel, xlwings Reports ignores the DataFrame indices. If you need to pass the index over to Excel, reset the index before passing in the DataFrame to render_template or render_template: df.reset_index().

When working with pandas DataFrames, the report designer often needs to tweak the data. Thanks to filters, they can do the most common operations directly in the template without the need to write Python code. A filter is added to the placeholder in Excel by using the pipe character: {{ myplaceholder | myfilter }}. You can combine multiple filters by using multiple pipe characters: they are applied from left to right, i.e. the result from the first filter will be the input for the next filter. Let’s start with an example before listing each filter with its details:

import xlwings as xw
import pandas as pd

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
df = pd.DataFrame({'one': [1, 2, 3], 'two': [4, 5, 6], 'three': [7, 8, 9]})
sheet.render_template(df=df)

[image: _images/reports_df_filters.png]

Available filters for DataFrames:

	noheader: Hide the column headers

Example:

{{ df | noheader }}

	header: Only return the header

Example:

{{ df | header }}

	sortasc: Sort in ascending order (indices are zero-based)

Example: sort by second, then by first column:

{{ df | sortasc(1, 0) }}

	sortdesc: Sort in descending order (indices are zero-based)

Example: sort by first, then by second column in descending order:

{{ df | sortdesc(0, 1) }}

	columns: Select/reorder columns and insert empty columns (indices are zero-based)

See also: colslice

Example: introduce an empty column (None) as the second column and switch the order of the second and third column:

{{ df | columns(0, None, 2, 1) }}

Note

Merged cells: you’ll also have to introduce empty columns if you are using merged cells in your Excel template.

	mul, div, sum, sub: Apply an arithmetic operation (multiply, divide, sum, subtract) on a column (indices are zero-based)

Syntax:

{{ df | operation(value, col_ix[, fill_value]) }}

fill_value is optional and determines whether empty cells are included in the operation or not. To include empty values and thus make it behave like in Excel, set it to 0.

Example: multiply the first column by 100:

{{ df | mul(100, 0) }}

Example: multiply the first column by 100 and the second column by 2:

{{ df | mul(100, 0) | mul(2, 1) }}

Example: add 100 to the first column including empty cells:

{{ df | add(100, 0, 0) }}

	maxrows: Maximum number of rows (currently, only sum is supported as aggregation function)

If your DataFrame has 12 rows and you use maxrows(10, "Other") as filter, you’ll get a table that shows the first 9 rows as-is and sums up the remaining 3 rows under the label Other. If your data is unsorted, make sure to call sortasc/sortdesc first to make sure the correct rows are aggregated.

See also: aggsmall, head, tail, rowslice

Syntax:

{{ df | maxrows(number_rows, label[, label_col_ix]) }}

label_col_ix is optional: if left away, it will label the first column of the DataFrame (index is zero-based)

Examples:

{{ df | maxrows(10, "Other") }}
{{ df | sortasc(1)| maxrows(5, "Other") }}
{{ df | maxrows(10, "Other", 1) }}

	aggsmall: Aggregate rows with values below a certain threshold (currently, only sum is supported as aggregation function)

If the values in the specified row are below the threshold values, they will be summed up in a single row.

See also: maxrows, head, tail, rowslice

Syntax:

{{ df | aggsmall(threshold, threshold_col_ix, label[, label_col_ix][, min_rows]) }}

label_col_ix and min_rows are optional: if label_col_ix is left away, it will label the first column of the DataFrame (indices are zero-based). min_rows has the effect that it skips rows from aggregating if it otherwise the number of rows falls below min_rows. This prevents you from ending up with only one row called “Other” if you only have a few rows that are all below the threshold. NOTE that this parameter only makes sense if the data is sorted!

Examples:

{{ df | aggsmall(0.1, 2, "Other") }}
{{ df | sortasc(1) | aggsmall(0.1, 2, "Other") }}
{{ df | aggsmall(0.5, 1, "Other", 1) }}
{{ df | aggsmall(0.5, 1, "Other", 1, 10) }}

	head: Only show the top n rows

See also: maxrows, aggsmall, tail, rowslice

Example:

{{ df | head(3) }}

	tail: Only show the bottom n rows

See also: maxrows, aggsmall, head, rowslice

Example:

{{ df | tail(5) }}

	rowslice: Slice the rows

See also: maxrows, aggsmall, head, tail

Syntax:

{{ df | rowslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show rows 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is including and the end is excluding):

{{ df | rowslice(2, 5) }}

Example: Show rows 2 to the end of the DataFrame:

{{ df | rowslice(2) }}

	colslice: Slice the columns

See also: columns

Syntax:

{{ df | colslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show columns 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is including and the end is excluding):

{{ df | colslice(2, 5) }}

Example: Show columns 2 to the end of the DataFrame:

{{ df | colslice(2) }}

Excel Tables

Using Excel tables is the recommended way to format tables as the styling can be applied dynamically across columns and rows. You can also use themes and apply alternating colors to rows/columns. Go to Insert > Table and make sure that you activate My table has headers before clicking on OK. Add the placeholder as usual on the top-left of your Excel table (note that this example makes use of Frames):

[image: _images/excel_table_template.png]

Running the following script:

from xlwings.pro.reports import render_template
import pandas as pd

nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],
 columns=[f'col {i}' for i in range(ncols)])

render_template('template.xlsx', 'output.xlsx', df=df)

Will produce the following report:

[image: _images/excel_table_report.png]

Headers of Excel tables are relatively strict, e.g. you can’t have multi-line headers or merged cells. To get around these limitations, uncheck the Header Row checkbox under Table Design and use the noheader filter (see DataFrame filters). This will allow you to design your own headers outside of the Excel Table.

Note

	At the moment, you can only assign pandas DataFrames to tables

Excel Charts

To use Excel charts in your reports, follow this process:

	Add some sample/dummy data to your Excel template:

[image: _images/reports_chart1.png]

	If your data source is dynamic, turn it into an Excel Table (Insert > Table). Make sure you do this before adding the chart in the next step.

[image: _images/reports_chart2.png]

	Add your chart and style it:

[image: _images/reports_chart3.png]

	Reduce the Excel table to a 2 x 2 range and add the placeholder in the top-left corner (in our example {{ chart_data }}) . You can leave in some dummy data or clear the values of the Excel table:

[image: _images/reports_chart4.png]

	Assuming your file is called mytemplate.xlsx and your sheet template like on the previous screenshot, you can run the following code:

import xlwings as xw
import pandas as pd

df = pd.DataFrame(data={'Q1': [1000, 2000, 3000],
 'Q2': [4000, 5000, 6000],
 'Q3': [7000, 8000, 9000]},
 index=['North', 'South', 'West'])

book = xw.Book("mytemplate.xlsx")
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(chart_data=df.reset_index())

This will produce the following report, with the chart source correctly adjusted:

[image: _images/reports_chart5.png]

Note

If you don’t want the source data on your report, you can place it on a separate sheet. It’s easiest if you add and design the chart on the separate sheet, before cutting the chart and pasting it on your report template. To prevent the data sheet from being printed when calling to_pdf, you can give it a name that starts with # and it will be ignored. NOTE that if you start your sheet name with ##, it won’t be printed but also not rendered!

Images

Images are inserted so that the cell with the placeholder will become the top-left corner of the image. For example, write the following placeholder into you desired cell: {{ logo }}, then run the following code:

import xlwings as xw
from xlwings.pro.reports import Image

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(logo=Image(r'C:\path\to\logo.png'))

Note

Image also accepts a pathlib.Path object instead of a string.

If you want to use vector-based graphics, you can use svg on Windows and pdf on macOS. You can control the appearance of your image by applying filters on your placeholder.

Available filters for Images:

	width: Set the width in pixels (height will be scaled proportionally).

Example:

{{ logo | width(200) }}

	height: Set the height in pixels (width will be scaled proportionally).

Example:

{{ logo | height(200) }}

	width and height: Setting both width and height will distort the proportions of the image!

Example:

{{ logo | height(200) | width(200) }}

	scale: Scale your image using a factor (height and width will be scaled proportionally).

Example:

{{ logo | scale(1.2) }}

	top: Top margin. Has the effect of moving the image down (positive pixel number) or up (negative pixel number), relative to the top border of the cell. This is very handy to fine-tune the position of graphics object.

See also: left

Example:

{{ logo | top(5) }}

	left: Left margin. Has the effect of moving the image right (positive pixel number) or left (negative pixel number), relative to the left border of the cell. This is very handy to fine-tune the position of graphics object.

See also: top

Example:

{{ logo | left(5) }}

Matplotlib and Plotly Plots

For a general introduction on how to handle Matplotlib and Plotly, see also: Matplotlib. There, you’ll also find the prerequisites to be able to export Plotly charts as pictures.

Matplotlib

Write the following placeholder in the cell where you want to paste the Matplotlib plot: {{ lineplot }}. Then run the following code to get your Matplotlib Figure object:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

Plotly

Plotly works practically the same:

import plotly.express as px
import xlwings as xw

fig = px.line(x=["a","b","c"], y=[1,3,2], title="A line plot")
book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

To change the appearance of the Matplotlib or Plotly plot, you can use the same filters as with images. Additionally, you can use the following filter:

	format: allows to change the default image format from png to e.g., vector, which will export the plot as vector graphics (svg on Windows and pdf on macOS). As an example, to make the chart smaller and use the vector format, you would write the following placeholder:

{{ lineplot | scale(0.8) | format("vector") }}

Text

You can work with placeholders in text that lives in cells or shapes like text boxes. If you have more than just a few words, text boxes usually make more sense as they won’t impact the row height no matter how you style them. Using the same gird formatting across worksheets is key to getting a consistent multi-page report.

Simple Text without Formatting

New in version 0.21.4.

You can use any shapes like rectangles or circles, not just text boxes:

from xlwings.pro.reports import render_template

render_template('template.xlsx', 'output.xlsx', temperature=12.3)

This code turns this template:

[image: _images/shape_text_template.png]

into this report:

[image: _images/shape_text_report.png]

While this works for simple text, you will lose the formatting if you have any. To prevent that, use a Markdown object, as explained in the next section.

If you will be printing on a PDF Layout with a dark background, you may need to change the font color to white. This has the nasty side effect that you won’t see anything on the screen anymore. To solve that issue, use the fontcolor filter:

	fontcolor: Change the color of the whole (!) cell or shape. The primary purpose of this filter is to make white fonts visible in Excel. For most other colors, you can just change the color in Excel itself. Note that this filter changes the font of the whole cell or shape and only has an effect if there is just a single placeholder—if you need to manipulate single words, use Markdown instead, see below. Black and white can be used as word, otherwise use a hex notation of your desired color.

Example:

{{ mytitle | fontcolor("white") }}
{{ mytitle | fontcolor("#efefef") }}

Markdown Formatting

New in version 0.23.0.

You can format text in cells or shapes via Markdown syntax. Note that you can also use placeholders in the Markdown text that will take the values from the variables you supply via the render_template method:

import xlwings as xw
from xlwings.pro import Markdown

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

{{ second_title }}

This paragraph has a line break.
Another line.
"""

The first sheet requires a shape as shown on the screenshot
sheet = xw.sheets.active
sheet.render_template(myplaceholder=Markdown(mytext),
 second_title='Another Title')

This will render this template with the placeholder in a cell and a shape:

[image: _images/markdown_template.png]

Like this (this uses the default formatting):

[image: _images/markdown1.png]

For more details about Markdown, especially about how to change the styling, see Markdown Formatting.

Date and Time

If a placeholder corresponds to a Python datetime object, by default, Excel will format that cell as a date-formatted cell. This isn’t always desired as the formatting depends on the user’s regional settings. To prevent that, format the cell in the Text format or use a TextBox and use the datetime filter to format the date in the desired format. The datetime filter accepts the strftime syntax—for a good reference, see e.g., strftime.org [https://strftime.org/].

To control the language of month and weekday names, you’ll need to set the locale in your Python code. For example, for German, you would use the following:

import locale
locale.setlocale(locale.LC_ALL, 'de_DE')

Example: The default formatting is December 1, 2020:

{{ mydate | datetime }}

Example: To apply a specific formatting, provide the desired format as filter argument. For example, to get it in the 12/31/20 format:

{{ mydate | datetime("%m/%d/%y") }}

Number Format

The format filter allows you to format numbers by using the same mechanism as offered by Python’s f-strings. For example, to format the placeholder performance=0.13 as 13.0%, you would do the following:

{{ performance | format(".1%") }}

This corresponds to the following f-string in Python: f"{performance:0.1%}". To get an introduction to the formatting string syntax, have a look at the Python String Format Cookbook [https://mkaz.blog/code/python-string-format-cookbook/].

Frames: Multi-column Layout

Frames are vertical containers in which content is being aligned according to their height. That is,
within Frames:

	Variables do not overwrite existing cell values as they do without Frames.

	Formatting is applied dynamically, depending on the number of rows your object uses in Excel

To use Frames, insert a Note with the text <frame> into row 1 of your Excel template wherever you want a new dynamic column
to start. Frames go from one <frame> to the next <frame> or the right border of the used range.

How Frames behave is best demonstrated with an example:
The following screenshot defines two frames. The first one goes from column A to column E and the second one
goes from column F to column I, since this is the last column that is used.

[image: _images/frame_template.png]

You can define and format DataFrames by formatting

	one header and

	one data row

If you use the noheader filter for DataFrames, you can leave the header away and format a single data row.
Alternatively, you could also use Excel Tables, as they can make formatting easier.

Running the following code:

from xlwings.pro.reports import render_template
import pandas as pd

df1 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df2 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]])

data = dict(df1=df1.reset_index(), df2=df2.reset_index())

render_template('my_template.xlsx',
 'my_report.xlsx',
 **data)

will generate this report:

[image: _images/frame_report.png]

PDF Layout

Using the layout parameter in the to_pdf() command, you can “print” your Excel workbook on professionally designed PDFs for pixel-perfect reports in your corporate layout including headers, footers, backgrounds and borderless graphics:

from xlwings.pro.reports import render_template
import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

book = render_template('template.xlsx',
 'report.xlsx',
 month_year = 'May 21',
 summary_text = '...')

book.to_pdf('report.pdf', layout='monthly_layout.pdf')

Note that the layout PDF either needs to consist of a single page (will be used for each reporting page) or will need to have the same number of pages as the report (each report page will be printed on the corresponding layout page).

To create your layout PDF, you can use any program capable of exporting a file in PDF format such as PowerPoint or Word, but for the best results consider using a professional desktop publishing software such as Adobe InDesign.

[image: _images/reports_pdf_layout.png]

Markdown Formatting

This feature requires xlwings PRO.

New in version 0.23.0.

Markdown offers an easy and intuitive way of styling text components in your cells and shapes. For an introduction to Markdown, see e.g., Mastering Markdown [https://guides.github.com/features/mastering-markdown/].

Markdown support is in an early stage and currently only supports:

	First-level headings

	Bold (i.e., strong)

	Italic (i.e., emphasis)

	Unordered lists

It doesn’t support nested objects yet such as 2nd-level headings, bold/italic within bullet points or nested bullet points.

Let’s go through an example to see how everything works!

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext)

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text:

[image: _images/markdown1.png]

But why not make things a tad more stylish? By providing a MarkdownStyle object, you can define your style. Let’s change the previous example like this:

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Styling
style = MarkdownStyle()
style.h1.font.color = (255, 0, 0)
style.h1.font.size = 14
style.h1.font.name = 'Comic Sans MS' # No, that's not a font recommendation...
style.h1.blank_lines_after = 0
style.unordered_list.bullet_character = '\N{heavy black heart}' # Emojis are fun!

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext, style) # <= provide your style object here

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext, style)

Here is the output of this:

[image: _images/markdown2.png]

You can override all properties, i.e., you can change the emphasis from italic to a red font or anything else you want:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

Markdown objects can also be used with template-based reporting, see xlwings Reports.

Note

macOS currently doesn’t support the formatting (bold, italic, color etc.) of Markdown text due to a bug with AppleScript/Excel. The text will be rendered correctly though, including bullet points.

See also the API reference:

	Markdown class

	MarkdownStyle class

Releasing xlwings Tools

This feature requires xlwings PRO.

xlwings PRO offers a simple way to deploy your xlwings tools to your end users without the usual hassle that’s involved when installing and configuring Python and xlwings. End users don’t need to know anything about Python as they only need to:

	Run an installer (one installer can power many different Excel workbooks)

	Use the Excel workbook as if it was a normal macro-enabled workbook

Advantages:

	Zero-config: The end user doesn’t have to configure anything throughout the whole process.

	No add-in required: No installation of the xlwings add-in required.

	Easy to update: If you want to deploy an update of your Python code, it’s often good enough to distribute a new version of your workbook.

	No conflicts: The installer doesn’t touch any environment variables or registry keys and will therefore not conflict with any existing Python installations.

	Deploy key: The release command will add a deploy key as your LICENSE_KEY. A deploy key won’t expire and end users won’t need a paid subscription.

You as a developer need to create the one-click installer and run the xlwings release command on the workbook. Let’s go through these two steps in detail!

There is a video walkthrough at: https://www.youtube.com/watch?v=yw36VT_n1qg

Step 1: One-Click Installer

As a subscriber of one of our paid plans [https://www.xlwings.org/pricing], you will get access to a private GitHub repository, where you can build your one-click installer:

	Update your requirements.txt file with your dependencies: in your repository, start by clicking on the requirements.txt file. This will open the following screen where you can click on the pencil icon to edit the file (if you know your way around Git, you can also clone the repository and use your local commit/push workflow instead):

[image: _images/gh_edit_requirements.png]

After you’re done with your edits, click on the green Commit changes button.

Note

If you are unsure about your dependencies, it’s best to work locally with a virtual or Conda environment. In the virtual/Conda environment, only install packages that you need, then run: pip list --format=freeze.

	On the right-hand side of the landing page, click on Releases:

[image: _images/gh_releases.png]

On the next screen, click on Draft a new release (note, the very first time, you will see a green button called Create a new release instead):

[image: _images/gh_create_release.png]

This will bring up the following screen, where you’ll only have to fill in a Tag version (e.g., 1.0.0), then click on the green button Publish release:

[image: _images/gh_publish_release.png]

After 3-5 minutes (you can follow the progress under the Actions tab), you’ll find the installer ready for download under Releases (ignore the zip and tar.gz files):

[image: _images/gh_installer_download.png]

Note

The one-click installer is a normal Python installation that you can use with multiple Excel workbooks. Hence, you don’t need to create a separate installer for each workbook as long as they all work with the same set of dependencies as defined by the requirements.txt file.

Step 2: Release Command (CLI)

The release command is part of the xlwings CLI (command-line client) and will prepare your Excel file to work with the one-click installer generated in the previous step. Before anything else:

	Make sure that you have enabled Trust access to the VBA project object model under File > Options > Trust Center > Trust Center Settings > Macro Settings. You only need to do this once and since this is a developer setting, your end users won’t need to bother about this. This setting is needed so that xlwings can update the Excel file with the correct version of the VBA code.

	Run the installer from the previous step. This will not interfere with your existing Python installation as it won’t touch your environment variables or registry. Instead, it will only write to the following folder: %LOCALAPPDATA%\<installer-name>.

	Make sure that your local version of xlwings corresponds to the version of xlwings in the requirements.txt from the installer. The easiest way to double-check this is to run pip freeze on a Command Prompt or Anaconda Prompt. If your local version of xlwings differs, install the same version as the installer uses via: pip install xlwings==<version from installer>.

To work with the release command, you should have your workbook in the xlsm format and all the Python modules in the same folder:

myworkbook.xlsm
mymodule_one.py
mymodule_two.py
...

You currently can’t organize your code in directories, but you can easily import mymodule_two from mymodule_one.

Make sure that your Excel workbook is the active workbook, then run the following command on a Command/Anaconda Prompt:

xlwings release

If this is the first time you are running this command, you will be asked a few questions. If you are shown a [Y/n], you can hit Enter to accept the default as expressed by the capitalized letter:

	Name of your one-click installer? Type in the name of your one-click installer. If you want to use a different Python distribution (e.g., Anaconda), you can leave this empty (but you will need to update the xlwings.conf sheet with the Conda settings once the release command has been run).

	Embed your Python code? [Y/n] This will copy the Python code into the sheets of the Excel file. It will respect all Python files that are in the same folder as the Excel workbook.

	Hide the config sheet? [Y/n] This will hide the xlwings.conf sheet.

	Hide the sheets with the embedded Python code? [Y/n] If you embed your Python code, this will hide all sheets with a .py ending.

	Allow your tool to run without the xlwings add-in? [Y/n] This will remove the VBA reference to xlwings and copy in the xlwings VBA modules so that the end users don’t need to have the xlwings add-in installed. Note that in this case, you will need to have your RunPython calls bound to a button as you can’t use the Ribbon’s Run main button anymore.

Whatever answers you pick, you can always change them later by editing the xlwings.conf sheet or by deleting the xlwings.conf sheet and re-running the xlwings release command. If you go with the defaults, you only need to provide your end users with the one-click installer and the Excel workbook, no external Python files are required.

Updating a Release

To edit your Python code, it’s easiest to work with external Python files and not with embedded code. To stop xlwings from using the embedded code, simply delete all sheets with a .py ending and the workbook will again use the external Python modules. Once you are done editing the files, simply run the xlwings release command again, which will embed the updated code. If you haven’t done any changes to your dependencies (i.e., you haven’t upgraded a package or introduced a new one), you only need to redeploy your Excel workbook to have the end users get the update.

If you did make changes to the requirements.txt and release a new one-click installer, you will need to have the users install the new version of the installer first.

Note

Every time you change the xlwings version in requirements.txt of your one-click installer, make sure to upgrade your local xlwings installatino to the same version and run xlwings release again!

Embedded Code Explained

When you run the xlwings release command, your code will be embedded automatically (except if you switch this behavior off). You can, however, also embed code directly: on a command line, run the following command:

xlwings code embed

This will import all Python files from the current directory and paste them into Excel sheets of the currently active workbook. Now, you can use RunPython as usual: RunPython "import mymodule;mymodule.myfunction()".

Note that you can have multiple Excel sheets and import them like normal Python files. Consider this example:

[image: _images/embedded_code1.png]

[image: _images/embedded_code2.png]

You can call the main function from VBA like so:

Sub RandomNumbers()
 RunPython "import random_numbers;random_numbers.main()"
End Sub

Note

	UDFs modules don’t have to be added to the UDF Modules explicitly when using embedded code. However, in contrast to how it works with external files, you currently need to re-import the functions when you change them.

	While you can hide your sheets with your code, they will be written to a temporary directory in clear text.

Permissioning of Code Execution

This feature requires xlwings PRO.

xlwings allows you to control which Python modules are allowed to run from Excel. In order to use this functionality, you need to run your own web server. You can choose between an HTTP POST and a GET request for the permissioning:

	GET: This is the simpler option as you only need to host a static JSON file that you can generate via the xlwings CLI. You can use any web server that is capable of serving static files (e.g., nginx) or use a free external service like GitHub pages. However, every permission change requires you to update the JSON file on the server.

	POST: This option relies on the web server to validate the incoming payload of the POST request. While this requires custom logic on your end, you are able to connect it with any internal system (such as a database or LDAP server) to dynamically decide whether a user should be able to run a specific Python module through xlwings.

Before looking at both of these options in more detail, let’s go through the prerequisites and configuration.

Note

This feature does not stop users from running arbitrary Python code through Python directly. Rather, think of it as a mechanism to prevent accidental execution of Python code from Excel via xlwings.

Prerequisites

	This functionality requires every end user to have the requests and cryptography libraries installed. You can install them via pip:

pip install requests cryptography

or via Conda:

conda install requests cryptography

	You need to have a LICENSE_KEY in the form of a trial key [https://www.xlwings.org/trial], a paid license key or a deploy key.

Configuration

While xlwings offers various ways to configure your workbook (see Configuration), it will only respect the permissioning settings in the config file in the user’s home folder (on Windows, this is %USERPROFILE%\.xlwings\xlwings.conf):

	To prevent end users from overwriting xlwings.conf, you’ll need to make sure that the file is owned by the Administrator while giving end users read-only permissions.

	Add the following settings while replacing the PERMISSION_CHECK_URL and PERMISSION_CHECK_METHOD (POST or GET) with the appropriate value for your case. PERMISSION_CHECK_AUTHORIZATION is an optional setting that allows you to send a token with POST requests via the Authorization header:

"LICENSE_KEY","YOUR_LICENSE_OR_DEPLOY_KEY"
"PERMISSION_CHECK_ENABLED","True"
"PERMISSION_CHECK_URL","https://myurl.com"
"PERMISSION_CHECK_METHOD","POST"
"PERMISSION_CHECK_AUTHORIZATION","your_token"

GET request

You can generate the static JSON file by using the xlwings CLI:

	Print the JSON string for all Python modules in a certain folder:

cd myfolder
xlwings permission cwd

	Print the JSON string for all embedded modules of the active workbook:

xlwings permission book

Both commands will print a JSON string similar to this one:

{
 "modules": [
 {
 "file_name": "myfile.py",
 "sha256": "cea259922207049a734c88930b5c09109deb6b55f692fd0832f4e57052d85896",
 "machine_names": [
 "DESKTOP-QQ27RP3"
]
 },
 {
 "file_name": "myfile2.py",
 "sha256": "355200bb9ae00fcec1d7b660e7dd95fb3dbf246a9db397a6daa2471458a8e6cb",
 "machine_names": [
 "DESKTOP-QQ27RP3"
]
 }
]
}

All you need to do at this point is:

	Add additional machines names e.g., "machine_names: [""DESKTOP-QQ27RP3", "DESKTOP-XY12AS2"]. Alternatively, you can use the "*" wildcard if you want to allow the module to be used on all end user’s computers. In case of the wildcard, it will still make sure that the file’s content hasn’t been changed by looking at its sha256 hash. xlwings uses import socket;socket.gethostname() as the machine name.

	Make this JSON file accessible via your web server and update the settings in the xlwings.conf file accordingly (see above).

POST request

If you work with POST requests, xlwings will post a payload similar to the following:

{
 "machine_name": "DESKTOP-QQ27RP3",
 "modules": [
 {
 "file_name": "myfile.py",
 "sha256": "cea259922207049a734c88930b5c09109deb6b55f692fd0832f4e57052d85896"
 },
 {
 "file_name": "myfile2.py",
 "sha256": "355200bb9ae00fcec1d7b660e7dd95fb3dbf246a9db397a6daa2471458a8e6cb"
 }
]
}

It is now up to you to validate this request and:

	Return the HTTP status code 200 (“success”) if the user is allowed to run the code of these modules

	Return the HTTP status code 403 (“forbidden”) if the user is not allowed to run the code of these modules

Note that xlwings only checks for HTTP status code 200, so any other status code will fail.

Implementation Details & Limitations

	Currently, RunPython and user-defined functions (UDFs) are supported. RunFrozenPython is not supported.

	Permissions checks are only done when the Python module is run via Excel/xlwings, it has no effect on Python code that is run from Python directly.

	RunPython won’t allow you to run code that uses the from x import y syntax. Use import x;x.y instead.

	The answer of the permissioning server is cached for the duration of the Python session. For UDFs, this means until the functions are re-imported or the Restart UDF Server button is clicked or until Excel is restarted. The same is true if you run RunPython with the Use UDF Server option. By default, however, RunPython starts a new Python session every time, so it will contact the server whenever you call RunPython.

	Only top-level modules are checked, i.e. modules that are imported as UDFs or run via RunPython call. Any modules that are imported as dependencies of these modules are not checked.

	RunPython with external Python source files depends on logic in the VBA part of xlwings. UDFs and RunPython calls that use embedded code will only rely on Python to perform the permissioning check.

What’s New

v0.27.0 (Mar 8, 2022)

	Feature PRO This release adds support for the remote interpreter to the Excel Desktop apps on both Windows and macOS. The new VBA function RunRemotePython is equivalent to runPython in the JavaScript modules of Google Sheets and Excel on the web, see Remote Interpreter (GH1841 [https://github.com/xlwings/xlwings/issues/1841]).

	Enhancement The xlwings package is now uploaded as wheel to PyPI in addition to the source format (GH1855 [https://github.com/xlwings/xlwings/issues/1855]).

	Enhancement The xlwings package is now compatible with Poetry (GH1265 [https://github.com/xlwings/xlwings/issues/1265]).

	Enhancement The add-in and the dll files are now code signed (GH1848 [https://github.com/xlwings/xlwings/issues/1848]).

	Breaking Change PRO The JavaScript modules (Google Sheet/Excel on the web) changed the parameters in runPython, see Remote Interpreter (GH1852 [https://github.com/xlwings/xlwings/issues/1852]).

	Breaking Change xlwings vba edit has been refactored and there is an additional command xlwings vba import to edit your VBA code outside of the VBA editor, e.g., in VS Code or any other editor, see Command Line Client (CLI) (GH1843 [https://github.com/xlwings/xlwings/issues/1843]).

	Breaking Change The --unprotected flag has been removed from the xlwings addin install command. You can still manually remove the password (xlwings) though (GH1850 [https://github.com/xlwings/xlwings/issues/1850]).

	Bug Fix PRO The Markdown class has been fixed in case the first line was empty (GH1856 [https://github.com/xlwings/xlwings/issues/1856]).

v0.26.3 (Feb 19, 2022)

	Feature If you still have to write VBA code, you can now use the new CLI command xlwings vba edit: this will export all the VBA modules locally so that you can edit them with any editor like e.g., VS Code. Every local change is synced back whenever you save the local file, see Command Line Client (CLI) (GH1839 [https://github.com/xlwings/xlwings/issues/1839]).

	Enhancement PRO The permissioning feature now allows you to send an Authorization header via the new PERMISSION_CHECK_AUTHORIZATION setting (GH1840 [https://github.com/xlwings/xlwings/issues/1840]).

v0.26.2 (Feb 10, 2022)

	Feature Added support for myrange.clear_formats and mysheet.clear_formats (GH1802 [https://github.com/xlwings/xlwings/issues/1802]).

	Feature Added support for mychart.to_pdf() and myrange.to_pdf() (GH1708 [https://github.com/xlwings/xlwings/issues/1708]).

	Feature PRO Remote interpreter: added support for mybook.selection (GH1819 [https://github.com/xlwings/xlwings/issues/1819]).

	Enhancement The quickstart command now makes sure that the project name is a valid Python module name (GH1773 [https://github.com/xlwings/xlwings/issues/1773]).

	Enhancement The to_pdf method now accepts an additional parameter quality that defaults to "standard" but can be set to "minimum" for smaller PDFs (GH1697 [https://github.com/xlwings/xlwings/issues/1697]).

	Bug Fix Allow space in path to Python interpreter when using UDFs / UDF Server (GH974 [https://github.com/xlwings/xlwings/issues/974]).

	Bug Fix A few issues were fixed in case your files are synced with OneDrive or SharePoint (GH1813 [https://github.com/xlwings/xlwings/issues/1813] and GH1810 [https://github.com/xlwings/xlwings/issues/1810]).

	Bug Fix PRO Reports: fixed the aggsmall filter to work without the optional min_rows parameter (GH1824 [https://github.com/xlwings/xlwings/issues/1824]).

v0.26.0 and v0.26.1 (Feb 1, 2022)

	PRO Feature Added experimental support for Google Sheets and Excel on the web via a remote Python interpreter. For all the details, see Remote Interpreter.

	PRO Bug Fix 0.26.1 fixes an issue with the xlwings copy gs command.

	xlwings PRO is now free for noncommercial usage under the PolyForm Noncommercial License 1.0.0 [https://polyformproject.org/licenses/noncommercial/1.0.0], see xlwings PRO for the details.

v0.25.3 (Dec 16, 2021)

	PRO Bug Fix The xlwings Reports filters aggsmall and maxrows don’t fail with empty DataFrames anymore (GH1788 [https://github.com/xlwings/xlwings/issues/1788]).

v0.25.2 (Dec 3, 2021)

	PRO Enhancement xlwings Reports now ignores sheets whose name start with ## for both rendering and printing to PDF (GH1779 [https://github.com/xlwings/xlwings/issues/1779]).

	PRO Enhancement The aggsmall filter in xlwings Reports now accepts a new parameter min_rows (GH1780 [https://github.com/xlwings/xlwings/issues/1780]).

v0.25.1 (Nov 21, 2021)

	Enhancement mybook.save() now supports the password parameter (GH1568 [https://github.com/xlwings/xlwings/issues/1568]).

	PRO Bug Fix xlwings Reports would sometimes cause a Could not activate App instance error (GH1764 [https://github.com/xlwings/xlwings/issues/1764]).

	PRO Enhancement xlwings now warns about expiring developer license keys 30 days before they expire (GH1758 [https://github.com/xlwings/xlwings/issues/1758]).

v0.25.0 (Oct 27, 2021)

	Bug Fix Finally, xlwings adds proper support for OneDrive, OneDrive for Business, and SharePoint. This means that the quickstart setup (Excel file and Python file in the same folder with the same name) works even if the files are stored on OneDrive/SharePoint—as long as they are being synced locally. It also makes mybook.fullname return the local file path instead of a URL. Sometimes, this requires editing the configuration, see: OneDrive and SharePoint for the details (GH1630 [https://github.com/xlwings/xlwings/issues/1630]).

	Feature The update() method of Excel tables has been moved from PRO to open source. You can now easily update an existing table in Excel with the data from a new pandas DataFrame without messing up any formulas that reference that table: mytable.update(df), see: Table.update() (GH1751 [https://github.com/xlwings/xlwings/issues/1751]).

	PRO Breaking Change: Reports: create_report() is now deprecated in favor of render_template() that is available via app, book (new), and sheet objects, see: xlwings Reports (GH1738 [https://github.com/xlwings/xlwings/issues/1738]).

	Bug Fix Running UDFs from other Office apps has been fixed (GH1729 [https://github.com/xlwings/xlwings/issues/1729]).

	Bug Fix Writing to a protected sheet or using an invalid sheet name etc. caused xlwings to hang instead of raising an Exception (GH1725 [https://github.com/xlwings/xlwings/issues/1725]).

v0.24.9 (Aug 26, 2021)

	Bug Fix Fixed a regression introduced with 0.24.8 that was causing an error with pandas DataFrames that have repeated column headers (GH1711 [https://github.com/xlwings/xlwings/issues/1711]).

v0.24.8 (Aug 25, 2021)

	Feature New methods mychart.to_png(), myrange.to_png() and myrange.copy_picture() (GH1707 [https://github.com/xlwings/xlwings/issues/1707] and GH582 [https://github.com/xlwings/xlwings/issues/582]).

	Enhancement You can now use the alias 'df' to convert to a pandas DataFrame: mysheet['A1:C3'].options('df').value is equivalent to import pandas as pd; mysheet['A1:C3'].options(pd.DataFrame).value (GH1533 [https://github.com/xlwings/xlwings/issues/1533]).

	Enhancement Added --dir option to xlwings addin install to allow the installation of all files in a directory as add-ins (GH1702 [https://github.com/xlwings/xlwings/issues/1702]).

	Bug Fix Pandas DataFrames now properly work with PeriodIndex / PeriodDtype (GH1084 [https://github.com/xlwings/xlwings/issues/1084]).

	PRO Reports: If there’s just one Frame, keep height of rows (GH1698 [https://github.com/xlwings/xlwings/issues/1698]).

v0.24.7 (Aug 5, 2021)

	PRO Breaking Change: Reports: Changed the order of the arguments of the arithmetic DataFrame filters: sum, div, mul and div to align them with the other filters. E.g., to multiply column 2 by 100, you now have to write your filter as {{ df | mul(100, 2) }} (GH1696 [https://github.com/xlwings/xlwings/issues/1696]).

	PRO Bug Fix Reports: Fixed an issue with images when pillow wasn’t installed (GH1695 [https://github.com/xlwings/xlwings/issues/1695]).

v0.24.6 (Jul 31, 2021)

	Enhancement You can now also define the color of cells, shapes and font objects with a hex string instead of just an RGB tuple, e.g., mysheet["A1"].color = "#efefef" (GH1535 [https://github.com/xlwings/xlwings/issues/1535]).

	Enhancement When you print a workbook or sheet to a pdf, you can now automatically open the PDF document via the new show argument: mybook.to_pdf(show=True) (GH1683 [https://github.com/xlwings/xlwings/issues/1683]).

	Bug Fix: This release includes another round of fixing the cleanup actions of the App() context manager (GH1687 [https://github.com/xlwings/xlwings/issues/1687]).

	PRO Enhancement Reports: New filter fontcolor, allowing you to write text in black and turn it into e.g., white for the report. This gets around the issue that white text isn’t visible in Excel on a white background: {{ myplaceholder | fontcolor("white") }}. Alternatively, you can also use a hex color (GH1692 [https://github.com/xlwings/xlwings/issues/1692]).

	PRO Bug Fix Positioning shapes wasn’t always respecting the top/left filters (GH1687 [https://github.com/xlwings/xlwings/issues/1687]).

	PRO Bug Fix Fixed a bug with non-string headers when calling table.update (GH1687 [https://github.com/xlwings/xlwings/issues/1687]).

v0.24.5 (Jul 27, 2021)

	PRO Bug Fix Reports: Using the header filter in a Frame was causing rows to be inserted (GH1681 [https://github.com/xlwings/xlwings/issues/1681]).

v0.24.4 (Jul 26, 2021)

	Feature myapp.properties is a new context manager that allows you to easily change the app’s properties temporarily. Once the code leaves the with block, the properties are changed back to their previous state (GH254 [https://github.com/xlwings/xlwings/issues/254]). For example:

import xlwings as xw
app = App()

with app.properties(display_alerts=False):
 # Alerts are disabled until you leave the with block again

	Enhancement The app properties myapp.enable_events and myapp.interactive are now supported (GH254 [https://github.com/xlwings/xlwings/issues/254]).

	Enhancement mybook.to_pdf now ignores sheet names that start with a #. This can be changed by setting the new parameter exclude_start_string (GH1667 [https://github.com/xlwings/xlwings/issues/1667]).

	Enhancement New method mytable.resize() (GH1662 [https://github.com/xlwings/xlwings/issues/1662]).

	Bug Fix The new App context manager introduced with v0.24.3 was sometimes causing an error on Windows during the cleanup actions (GH1668 [https://github.com/xlwings/xlwings/issues/1668]).

PRO xlwings.pro.reports:

	Breaking Change: DataFrame placeholders will now ignore the DataFrame’s index. If you need the index, reset it via : df.reset_index() before passing the DataFrame to create_report or render_template. This was required as the same column index used in filters would point to seemingly different columns in Excel depending on whether the index was included or not. This also means that the noindex and body filters are no obsolete and have been removed (GH1676 [https://github.com/xlwings/xlwings/issues/1676]).

	Enhancement Dataframe filters now respect the order in which they are called and can be used multiple times (GH1675 [https://github.com/xlwings/xlwings/issues/1675]).

	Enhancement New filters: format (to apply f-string like formatting), datetime (to format datetime objects), top and left (to position graphics outside of the grid structure) header, add, sub, mul, div (to only return the header of a DataFrame or apply an arithmetic operation, respectively) (GH1666 [https://github.com/xlwings/xlwings/issues/1666], GH1660 [https://github.com/xlwings/xlwings/issues/1660], GH1677 [https://github.com/xlwings/xlwings/issues/1677]).

	Enhancement: create_report can now be accessed as method of the app object like so: myapp.create_report (GH1665 [https://github.com/xlwings/xlwings/issues/1665]).

	Bug Fix: Excel tables that had the Header Row unchecked were sometimes causing row shifts in the template (GH1663 [https://github.com/xlwings/xlwings/issues/1663]).

	Bug Fix: Rendering a template was sometimes causing the following error PasteSpecial method of Range class failed (GH1672 [https://github.com/xlwings/xlwings/issues/1672]).

v0.24.3 (Jul 15, 2021)

	Enhancement xlwings.App() can now be used as context manager, making sure that there are no zombie processes left over on Windows, even if you use a hidden instance and your code fails. It is therefore recommended to use it whenever you can, like so:

with xw.App(visible=True) as app:
 print(app.books)

	Enhancement mysheet.pictures.add now accepts a new anchor argument that you can use as an alternative to top/left to position the picture by providing an achor range object, e.g.: mysheet.pictures.add(img, anchor=mysheet['A1']) (GH1648 [https://github.com/xlwings/xlwings/issues/1648]).

	Bug Fix macOS: Plots are now sent to Excel in PDF format when you set format='vector' which is supporting transparency unlike the previously used eps format (GH1647 [https://github.com/xlwings/xlwings/issues/1647]).

	PRO Enhancement mybook.to_pdf now accepts a layout parameter so you can “print” your reports onto a PDF with your corporate layout including headers, footers and borderless graphics. See PDF Layout.

v0.24.2 (Jul 6, 2021)

	Feature Added very basic support for mysheet.page_setup and myrange.note (GH1551 [https://github.com/xlwings/xlwings/issues/1551] and GH896 [https://github.com/xlwings/xlwings/issues/896]).

	Enhancement DataFrames are now displayed in Excel tables with empty column names if the DataFrame doesn’t have a column or index name. This effect is e.g. visible when using xw.view() (GH1643 [https://github.com/xlwings/xlwings/issues/1643]).

	Enhancement mysheet.pictures.add() now supports format='vector' which translates to 'svg' on Windows and 'eps' on macOS (GH1640 [https://github.com/xlwings/xlwings/issues/1640]).

	PRO Enhancement: The reports package now offers the additional DataFrame filters rowslice and colslice, see xlwings Reports (GH1645 [https://github.com/xlwings/xlwings/issues/1645]).

	PRO Bug Fix: Bug fix with handling Excel tables without headers.

Breaking Change

	PRO Enhancement: <frame> markers now have to be defined as cell notes in the first row, see Frames: Multi-column Layout. This has the advantage that the Layout view corresponds to the print view (GH1641 [https://github.com/xlwings/xlwings/issues/1641]). Also, the print area is now preserved even if you use Frames.

v0.24.1 (Jun 27, 2021)

	PRO Enhancement: The reports package now offers the additional DataFrame filters head and tail, see xlwings Reports (GH1633 [https://github.com/xlwings/xlwings/issues/1633]).

v0.24.0 (Jun 25, 2021)

	Enhancement pictures.add() now accepts every picture format (including vector-based formats) that your Excel version supports. For example, on Windows you can use the svg format (only supported with Excel that comes with Microsoft 365) and on macOS, you can use eps (GH1624 [https://github.com/xlwings/xlwings/issues/1624]).

	[Enhancements] Support for Plotly images was moved from PRO to the Open Source version, i.e. you can now provide a Plotly image directly to pictures.add().

	Enhancement Matplotlib and Plotly plots can now be sent to Excel in a vector-based format by providing the format argument, e.g. svg on Windows or eps on macOS.

	Enhancement Removed dependency on pillow/PIL to properly size images via pictures.add().

	Bug Fix Various fixes with scaling and positioning images via pictures.add() (GH1491 [https://github.com/xlwings/xlwings/issues/1491]).

	Feature New methods mypicture.lock_aspect_ratio and myapp.cut_copy_mode (GH1622 [https://github.com/xlwings/xlwings/issues/1622] and GH1625 [https://github.com/xlwings/xlwings/issues/1625]).

	PRO Feature: Reports: DataFrames and Images are now offering various filters to influence the behavior of how DataFrames and Images are displayed, giving the template designer the ability to change a lot of things that previously had to be taken care of by the Python developer. For example, to hide a DataFrame’s index, you can now do {{ df | noindex }} or to scale the image to double its size, you can do {{ img | scale(2) }}. You’ll find all available filters under xlwings Reports (GH1602 [https://github.com/xlwings/xlwings/issues/1602]).

Breaking Change

	Enhancement: When using pictures.add(), pictures arrive now in Excel in the same size as if you would manually add them via the Excel UI and setting width/height now behaves consistently during initial adding and resizing. Consequently, you may have to fix your image sizes when you upgrade. (GH1491 [https://github.com/xlwings/xlwings/issues/1491]).

	PRO The default MarkdownStyle removed the empty space after a h1 heading. You can always reintroduce it by applying a custom style (GH1628 [https://github.com/xlwings/xlwings/issues/1628]).

v0.23.4 (Jun 15, 2021)

	Bug Fix Windows: Fixed the ImportUDFs function in the VBA standalone module (GH1601 [https://github.com/xlwings/xlwings/issues/1601]).

	Bug Fix Fixed configuration hierarchy: if you have a setting with an empty value in the xlwings.conf sheet, it will not be overridden by the same key in the directory or user config file anymore. If you wanted it to be overridden, you’d have to get the key out of the “xlwings.conf” sheet (GH1617 [https://github.com/xlwings/xlwings/issues/1617]).

	PRO Feature Added the ability to block the execution of Python modules based on the file hash and/or machine name (GH1586 [https://github.com/xlwings/xlwings/issues/1586]), see Permissioning of Code Execution.

	PRO Feature Added the xlwings release command for an easy release management in connection with the one-click installer, see Releasing xlwings Tools. (GH1429 [https://github.com/xlwings/xlwings/issues/1429]).

v0.23.3 (May 17, 2021)

	Bug Fix Windows: UDFs returning a pandas.NaT were causing a #VALUE! error (GH1590 [https://github.com/xlwings/xlwings/issues/1590]).

v0.23.2 (May 7, 2021)

	Feature Added support for myrange.wrap_text (GH173 [https://github.com/xlwings/xlwings/issues/173]).

	Enhancement xlwings.view() and xlwings.load() now use chunking by default (GH1570 [https://github.com/xlwings/xlwings/issues/1570]).

	Bug Fix Allow to save non-Excel file formats (GH1569 [https://github.com/xlwings/xlwings/issues/1569])

	Bug Fix Calculate formulas by default in the Function Wizard (GH1574 [https://github.com/xlwings/xlwings/issues/1574]).

	PRO Bug Fix Properly embed code with unicode characters (GH1575 [https://github.com/xlwings/xlwings/issues/1575]).

v0.23.1 (Apr 19, 2021)

	Feature You can now save your workbook in any format you want, simply by specifying its extension:

mybook.save('binaryfile.xlsb')
mybook.save('macroenabled.xlsm')

	Feature Added support for the chunksize option: when you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will depend on your system and size of the array, so you will have to try out a few different chunksizes to find one that works well (GH77 [https://github.com/xlwings/xlwings/issues/77]):

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

	Enhancement xw.load() now expands to the current_region instead of relying on expand() (GH1565 [https://github.com/xlwings/xlwings/issues/1565]).

	Enhancement The OneDrive setting has been split up into a Windows and macOS-specific paths: ONEDRIVE_WIN and ONEDRIVE_MAC (GH1556 [https://github.com/xlwings/xlwings/issues/1556]).

	Bug Fix macOS: There are no more timeouts when opening or saving large workbooks that take longer than 60 seconds (GH618 [https://github.com/xlwings/xlwings/issues/618]).

	Bug Fix RunPython was failing when there was a & in the Excel file name (GH1557 [https://github.com/xlwings/xlwings/issues/1557]).

v0.23.0 (Mar 5, 2021)

	PRO Feature: This release adds support for Markdown-based formatting of text, both in cells as well as in shapes, see Markdown Formatting for the details. This is also supported for template-based reports.

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]
sheet['A1'].value = Markdown(mytext)
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text, but you can also define your own style to match your corporate style guide as explained under Markdown Formatting:

[image: _images/markdown1.png]

	Feature Added support for the Font object via range or shape objects, see Font (GH897 [https://github.com/xlwings/xlwings/issues/897] and GH559 [https://github.com/xlwings/xlwings/issues/559]).

	Feature Added support for the Characters object via range or shape objects, see Characters.

v0.22.3 (Mar 3, 2021)

	Enhancement As a convenience method, you can now directly export sheets to PDF instead of having to go through the book: mysheet.to_pdf() (GH1517 [https://github.com/xlwings/xlwings/issues/1517]).

	PRO Bug Fix Running RunPython with embedded code was broken in 0.22.0 (GH1530 [https://github.com/xlwings/xlwings/issues/1530]).

v0.22.2 (Feb 8, 2021)

	Bug Fix Windows: If the path of the Excel file included a single quote, UDFs were failing (GH1511 [https://github.com/xlwings/xlwings/issues/1511]).

	Bug Fix macOS: Prevent Excel from showing up when using hidden Excel instances via xw.App(visible=False) (GH1508 [https://github.com/xlwings/xlwings/issues/1508]).

v0.22.1 (Feb 4, 2021)

	PRO Bug Fix: Table.update has been fixed so it also works when the table is the data source of a chart (GH1507 [https://github.com/xlwings/xlwings/issues/1507]).

	PRO [Docs]: New documentation about how to work with Excel charts in templates; see xlwings Reports.

v0.22.0 (Jan 29, 2021)

	Feature While it’s always been possible to somehow create your own xlwings-based add-ins, this release adds a toolchain to make it a lot easier to create your own white-labeled add-in, see Custom Add-ins (GH1488 [https://github.com/xlwings/xlwings/issues/1488]).

	Enhancement xw.view now formats the pandas DataFrames as Excel table and with the new xw.load function, you can easily load a DataFrame from your active workbook into a Jupyter notebook. See Jupyter Notebooks: Interact with Excel for a full tutorial (GH1487 [https://github.com/xlwings/xlwings/issues/1487]).

	Feature New method mysheet.copy() (GH123 [https://github.com/xlwings/xlwings/issues/123]).

	PRO Feature: in addition to xw.create_report(), you can now also work within a workbook by using the new mysheet.render_template() method, see also xlwings Reports (GH1478 [https://github.com/xlwings/xlwings/issues/1478]).

Older Releases

v0.21.4 (Nov 23, 2020)

	Enhancement New property Shape.text to read and write text to the text frame of shapes (GH1456 [https://github.com/xlwings/xlwings/issues/1456]).

	PRO Feature: xlwings Reports now supports template text in shapes, see xlwings Reports.

v0.21.3 (Nov 22, 2020)

	PRO Breaking Change: The Table.update method has been changed to treat the DataFrame’s index consistently whether or not it’s being written to an Excel table: by default, the index is now transferred to Excel in both cases.

v0.21.2 (Nov 15, 2020)

	Bug Fix The default quickstart setup now also works when you store your workbooks on OneDrive (GH1275 [https://github.com/xlwings/xlwings/issues/1275])

	Bug Fix Excel files that have single quotes in their paths are now working correctly (GH1021 [https://github.com/xlwings/xlwings/issues/1021])

v0.21.1 (Nov 13, 2020)

	Enhancement Added new method Book.to_pdf() to easily export PDF reports. Needless to say, this integrates very nicely with xlwings Reports (GH1363 [https://github.com/xlwings/xlwings/issues/1363]).

	Enhancement Added support for Sheet.visible (GH1459 [https://github.com/xlwings/xlwings/issues/1459]).

v0.21.0 (Nov 9, 2020)

	Enhancement Added support for Excel tables, see: Table and Tables and range.table (GH47 [https://github.com/xlwings/xlwings/issues/47] and GH1364 [https://github.com/xlwings/xlwings/issues/1364])

	Enhancement: When using UDFs, you can now use 'range' for the convert argument where you would use before xw.Range. The latter will be removed in a future version (GH1455 [https://github.com/xlwings/xlwings/issues/1455]).

	Enhancement Windows: The comtypes requirement has been dropped (GH1443 [https://github.com/xlwings/xlwings/issues/1443]).

	PRO Feature: Table.update offers an easy way to keep your Excel tables in sync with your DataFrame source (GH1454 [https://github.com/xlwings/xlwings/issues/1454]).

	PRO Enhancement: The reports package now supports Excel tables in the templates. This is e.g. helpful to style the tables with striped rows, see Excel Tables (GH1364 [https://github.com/xlwings/xlwings/issues/1364]).

v0.20.8 (Oct 18, 2020)

	Enhancement Windows: With UDFs, you can now get easy access to the caller (an xlwings range object) by using caller as a function argument (GH1434 [https://github.com/xlwings/xlwings/issues/1434]). In that sense, caller is now a reserved argument by xlwings and if you have any existing arguments with this name, you’ll need to rename them:

@xw.func
def get_caller_address(caller):
 # caller will not be exposed in Excel, so use it like so:
 # =get_caller_address()
 return caller.address

	Bug Fix Windows: The setting Show Console now also shows/hides the command prompt properly when using the UDF server with Conda. There is no more switching between python and pythonw required (GH1435 [https://github.com/xlwings/xlwings/issues/1435] and GH1421 [https://github.com/xlwings/xlwings/issues/1421]).

	Bug Fix Windows: Functions called via RunPython with Use UDF Server activated don’t require the xw.sub decorator anymore (GH1418 [https://github.com/xlwings/xlwings/issues/1418]).

v0.20.7 (Sep 3, 2020)

	Bug Fix Windows: Fix a regression introduced with 0.20.0 that would cause an AttributeError: Range.CLSID with async and legacy dynamic array UDFs (GH1404 [https://github.com/xlwings/xlwings/issues/1404]).

	Enhancement: Matplotlib figures are now converted to 300 dpi pictures for better quality when using them with pictures.add (GH1402 [https://github.com/xlwings/xlwings/issues/1402]).

v0.20.6 (Sep 1, 2020)

	Bug Fix macOS: App(visible=False) has been fixed (GH652 [https://github.com/xlwings/xlwings/issues/652]).

	Bug Fix macOS: The regression with Book.fullname that was introduced with 0.20.1 has been fixed (GH1390 [https://github.com/xlwings/xlwings/issues/1390]).

	Bug Fix Windows: The retry mechanism has been improved (GH1398 [https://github.com/xlwings/xlwings/issues/1398]).

v0.20.5 (Aug 27, 2020)

	Bug Fix The conda version check was failing with spaces in the installation path (GH1396 [https://github.com/xlwings/xlwings/issues/1396]).

	Bug Fix Windows: when running app.quit(), the application is now properly closed without leaving a zombie process behind (GH1397 [https://github.com/xlwings/xlwings/issues/1397]).

v0.20.4 (Aug 20, 2020)

	Enhancement The add-in can now optionally be installed without the password protection: xlwings addin install --unprotected (GH1392 [https://github.com/xlwings/xlwings/issues/1392]).

v0.20.3 (Aug 15, 2020)

	Bug Fix The conda version check was erroneously triggered when importing UDFs on systems without conda. (GH1389 [https://github.com/xlwings/xlwings/issues/1389]).

v0.20.2 (Aug 13, 2020)

	PRO Feature: Code can now be embedded by calling the new xlwings code embed [--file] CLI command (GH1380 [https://github.com/xlwings/xlwings/issues/1380]).

	Bug Fix Made the import UDFs functionality more robust to prevent an Automation 440 error that some users would see (GH1381 [https://github.com/xlwings/xlwings/issues/1381]).

	Enhancement The standalone Excel file now includes all VBA dependencies to make it work on Windows and macOS (GH1349 [https://github.com/xlwings/xlwings/issues/1349]).

	Enhancement xlwings now blocks the call if the Conda Path/Env settings are used with legacy Conda installations (GH1384 [https://github.com/xlwings/xlwings/issues/1384]).

v0.20.1 (Aug 7, 2020)

	Bug Fix macOS: password-protected sheets caused an alert when calling xw.Book (GH1377 [https://github.com/xlwings/xlwings/issues/1377]).

	Bug Fix macOS: calling wb.save('newname.xlsx') wasn’t updating the wb object properly and caused an alert (GH1129 [https://github.com/xlwings/xlwings/issues/1129] and GH626 [https://github.com/xlwings/xlwings/issues/626] and GH957 [https://github.com/xlwings/xlwings/issues/957]).

v0.20.0 (Jul 22, 2020)

This version drops support for Python 3.5

	Feature New property xlwings.App.status_bar (GH1362 [https://github.com/xlwings/xlwings/issues/1362]).

	Enhancement xlwings.view() now becomes the active window, making it easier to work with in interactive workflows (please speak up if you feel differently) (GH1353 [https://github.com/xlwings/xlwings/issues/1353]).

	Bug Fix The UDF server has received a serious upgrade by njwhite [https://github.com/njwhite], getting rid of the many issues that were around with using a combination of async functions and legacy dynamic arrays. You can now also call functions defined via async def, although for the time being they are still called synchronously from Excel (GH1010 [https://github.com/xlwings/xlwings/issues/1010] and GH1164 [https://github.com/xlwings/xlwings/issues/1164]).

v0.19.5 (Jul 5, 2020)

	Enhancement When you install the add-in via xlwings addin install, it autoconfigures the add-in if it can’t find an existing user config file (GH1322 [https://github.com/xlwings/xlwings/issues/1322]).

	Feature New xlwings config create [--force] command that autogenerates the user config file with the Python settings from which you run the command. Can be used to reset the add-in settings with the --force option (GH1322 [https://github.com/xlwings/xlwings/issues/1322]).

	Feature: There is a new option to show/hide the console window. Note that with Conda Path and Conda Env set, the console always pops up when using the UDF server. Currently only available on Windows (GH1182 [https://github.com/xlwings/xlwings/issues/1182]).

	Enhancement The Interpreter setting has been deprecated in favor of platform-specific settings: Interpreter_Win and Interpreter_Mac, respectively. This allows you to use the sheet config unchanged on both platforms (GH1345 [https://github.com/xlwings/xlwings/issues/1345]).

	Enhancement On macOS, you can now use a few environment-like variables in your settings: $HOME, $APPLICATIONS, $DOCUMENTS, $DESKTOP (GH615 [https://github.com/xlwings/xlwings/issues/615]).

	Bug Fix: Async functions sometimes caused an error on older Excel versions without dynamic arrays (GH1341 [https://github.com/xlwings/xlwings/issues/1341]).

v0.19.4 (May 20, 2020)

	Feature xlwings addin install is now available on macOS. On Windows, it has been fixed so it should now work reliably (GH704 [https://github.com/xlwings/xlwings/issues/704]).

	Bug Fix Fixed a dll load failed issue with pywin32 when installed via pip on Python 3.8 (GH1315 [https://github.com/xlwings/xlwings/issues/1315]).

v0.19.3 (May 19, 2020)

	PRO Feature: Added possibility to create deployment keys.

v0.19.2 (May 11, 2020)

	Feature New methods xlwings.Shape.scale_height() and xlwings.Shape.scale_width() (GH311 [https://github.com/xlwings/xlwings/issues/311]).

	Bug Fix Using Pictures.add is not distorting the proportions anymore (GH311 [https://github.com/xlwings/xlwings/issues/311]).

	PRO Feature: Added support for Plotly (GH1309 [https://github.com/xlwings/xlwings/issues/1309]).

[image: _images/plotly.png]

v0.19.1 (May 4, 2020)

	Bug Fix Fixed an issue with the xlwings PRO license key when there was no xlwings.conf file (GH1308 [https://github.com/xlwings/xlwings/issues/1308]).

v0.19.0 (May 2, 2020)

	Bug Fix Native dynamic array formulas can now be used with async formulas (GH1277 [https://github.com/xlwings/xlwings/issues/1277])

	Enhancement Quickstart references the project’s name when run from Python instead of the active book (GH1307 [https://github.com/xlwings/xlwings/issues/1307])

Breaking Change:

	Conda Base has been renamed into Conda Path to reduce the confusion with the Conda Env called base. Please adjust your settings accordingly! (GH1194 [https://github.com/xlwings/xlwings/issues/1194])

v0.18.0 (Feb 15, 2020)

	Feature Added support for merged cells: xlwings.Range.merge_area, xlwings.Range.merge_cells, xlwings.Range.merge()
xlwings.Range.unmerge() (GH21 [https://github.com/xlwings/xlwings/issues/21]).

	Bug Fix RunPython now works properly with files that have a URL as fullname, i.e. OneDrive and SharePoint (GH1253 [https://github.com/xlwings/xlwings/issues/1253]).

	Bug Fix Fixed a bug with wb.names['...'].refers_to_range on macOS (GH1256 [https://github.com/xlwings/xlwings/issues/1256]).

v0.17.1 (Jan 31, 2020)

	Bug Fix Handle np.float64('nan') correctly (GH1116 [https://github.com/xlwings/xlwings/issues/1116]).

v0.17.0 (Jan 6, 2020)

This release drops support for Python 2.7 in xlwings CE. If you still rely on Python 2.7, you will need to stick to v0.16.6.

v0.16.6 (Jan 5, 2020)

	Enhancement CLI changes with respect to xlwings license (GH1227 [https://github.com/xlwings/xlwings/issues/1227]).

v0.16.5 (Dec 30, 2019)

	Enhancement Improvements with regards to the Run main ribbon button (GH1207 [https://github.com/xlwings/xlwings/issues/1207] and GH1222 [https://github.com/xlwings/xlwings/issues/1222]).

v0.16.4 (Dec 17, 2019)

	Enhancement Added support for xlwings.Range.copy() (GH1214 [https://github.com/xlwings/xlwings/issues/1214]).

	Enhancement Added support for xlwings.Range.paste() (GH1215 [https://github.com/xlwings/xlwings/issues/1215]).

	Enhancement Added support for xlwings.Range.insert() (GH80 [https://github.com/xlwings/xlwings/issues/80]).

	Enhancement Added support for xlwings.Range.delete() (GH862 [https://github.com/xlwings/xlwings/issues/862]).

v0.16.3 (Dec 12, 2019)

	Bug Fix Sometimes, xlwings would show an error of a previous run. Moreover, 0.16.2 introduced an issue that would
not show errors at all on non-conda setups (GH1158 [https://github.com/xlwings/xlwings/issues/1158] and GH1206 [https://github.com/xlwings/xlwings/issues/1206])

	Enhancement The xlwings CLI now prints the version number (GH1200 [https://github.com/xlwings/xlwings/issues/1200])

Breaking Change

	LOG FILE has been retired and removed from the configuration/add-in.

v0.16.2 (Dec 5, 2019)

	Bug Fix RunPython can now be called in parallel from different Excel instances (GH1196 [https://github.com/xlwings/xlwings/issues/1196]).

v0.16.1 (Dec 1, 2019)

	Enhancement xlwings.Book() and myapp.books.open() now accept parameters like
update_links, password etc. (GH1189 [https://github.com/xlwings/xlwings/issues/1189]).

	Bug Fix Conda Env now works correctly with base for UDFs, too (GH1110 [https://github.com/xlwings/xlwings/issues/1110]).

	Bug Fix Conda Base now allows spaces in the path (GH1176 [https://github.com/xlwings/xlwings/issues/1176]).

	Enhancement The UDF server timeout has been increased to 2 minutes (GH1168 [https://github.com/xlwings/xlwings/issues/1168]).

v0.16.0 (Oct 13, 2019)

This release adds a small but very powerful feature: There’s a new Run main button in the add-in.
With that, you can run your Python scripts from standard xlsx files - no need to save your workbook
as macro-enabled anymore!

The only condition to make that work is that your Python script has the same name as your workbook and that it contains
a function called main, which will be called when you click the Run button. All settings from your config file or
config sheet are still respected, so this will work even if you have the source file in a different directory
than your workbook (as long as that directory is added to the PYTHONPATH in your config).

The xlwings quickstart myproject has been updated accordingly. It still produces an xlsm file at the moment
but you can save it as xlsx file if you intend to run it via the new Run button.

[image: _images/ribbon.png]

v0.15.10 (Aug 31, 2019)

	Bug Fix Fixed a Python 2.7 incompatibility introduced with 0.15.9.

v0.15.9 (Aug 31, 2019)

	Enhancement The sql extension now uses the native dynamic arrays if available (GH1138 [https://github.com/xlwings/xlwings/issues/1138]).

	Enhancement xlwings now support Path objects from pathlib for all file paths (GH1126 [https://github.com/xlwings/xlwings/issues/1126]).

	Bug Fix Various bug fixes: (GH1118 [https://github.com/xlwings/xlwings/issues/1118]), (GH1131 [https://github.com/xlwings/xlwings/issues/1131]), (GH1102 [https://github.com/xlwings/xlwings/issues/1102]).

v0.15.8 (May 5, 2019)

	Bug Fix Fixed an issue introduced with the previous release that always showed the command prompt when running UDFs,
not just when using conda envs (GH1098 [https://github.com/xlwings/xlwings/issues/1098]).

v0.15.7 (May 5, 2019)

	Bug Fix Conda Base and Conda Env weren’t stored correctly in the config file from the ribbon (GH1090 [https://github.com/xlwings/xlwings/issues/1090]).

	Bug Fix UDFs now work correctly with Conda Base and Conda Env. Note, however, that currently there is no
way to hide the command prompt in that configuration (GH1090 [https://github.com/xlwings/xlwings/issues/1090]).

	Enhancement Restart UDF Server now actually does what it says: it stops and restarts the server. Previously
it was only stopping the server and only when the first call to Python was made, it was started again (GH1096 [https://github.com/xlwings/xlwings/issues/1096]).

v0.15.6 (Apr 29, 2019)

	Feature New default converter for OrderedDict (GH1068 [https://github.com/xlwings/xlwings/issues/1068]).

	Enhancement Import Functions now restarts the UDF server to guarantee a clean state after importing. (GH1092 [https://github.com/xlwings/xlwings/issues/1092])

	Enhancement The ribbon now shows tooltips on Windows (GH1093 [https://github.com/xlwings/xlwings/issues/1093])

	Bug Fix RunPython now properly supports conda environments on Windows (they started to require proper activation
with packages like numpy etc). Conda >=4.6. required. A fix for UDFs is still pending (GH954 [https://github.com/xlwings/xlwings/issues/954]).

Breaking Change

	Bug Fix RunFronzenPython now accepts spaces in the path of the executable, but in turn requires to be called
with command line arguments as a separate VBA argument.
Example: RunFrozenPython "C:\path\to\frozen_executable.exe", "arg1 arg2" (GH1063 [https://github.com/xlwings/xlwings/issues/1063]).

v0.15.5 (Mar 25, 2019)

	Enhancement wb.macro() now accepts xlwings objects as arguments such as range, sheet etc. when the VBA macro expects the corresponding Excel object (e.g. Range, Worksheet etc.) (GH784 [https://github.com/xlwings/xlwings/issues/784] and GH1084 [https://github.com/xlwings/xlwings/issues/1084])

Breaking Change

	Cells that contain a cell error such as #DIV/0!, #N/A, #NAME?, #NULL!, #NUM!, #REF!, #VALUE! return now
None as value in Python. Previously they were returned as constant on Windows (e.g. -2146826246) or k.missing_value on Mac.

v0.15.4 (Mar 17, 2019)

	[Win] BugFix: The ribbon was not showing up in Excel 2007. (GH1039 [https://github.com/xlwings/xlwings/issues/1039])

	Enhancement: Allow to install xlwings on Linux even though it’s not a supported platform: export INSTALL_ON_LINUX=1; pip install xlwings (GH1052 [https://github.com/xlwings/xlwings/issues/1052])

v0.15.3 (Feb 23, 2019)

Bug Fix release:

	[Mac] RunPython was broken by the previous release. If you install via conda, make sure to run xlwings runpython install again! (GH1035 [https://github.com/xlwings/xlwings/issues/1035])

	[Win] Sometimes, the ribbon was throwing errors (GH1041 [https://github.com/xlwings/xlwings/issues/1041])

v0.15.2 (Feb 3, 2019)

Better support and docs for deployment, see Deployment:

	You can now package your python modules into a zip file for easier distribution (GH1016 [https://github.com/xlwings/xlwings/issues/1016]).

	RunFrozenPython now allows to includes arguments, e.g. RunFrozenPython "C:\path\to\my.exe arg1 arg2" (GH588 [https://github.com/xlwings/xlwings/issues/588]).

Breaking Change

	Accessing a not existing PID in the apps collection raises now a KeyError instead of an Exception (GH1002 [https://github.com/xlwings/xlwings/issues/1002]).

v0.15.1 (Nov 29, 2018)

Bug Fix release:

	[Win] Calling Subs or UDFs from VBA was causing an error (GH998 [https://github.com/xlwings/xlwings/issues/998]).

v0.15.0 (Nov 20, 2018)

Dynamic Array Refactor

While we’re all waiting for the new native dynamic arrays, it’s still going to take another while until the
majority can use them (they are not yet part of Office 2019).

In the meantime, this refactor improves the current xlwings dynamic arrays in the following way:

	Use of native (“legacy”) array formulas instead of having a normal formula in the top left cell and writing around it

	It’s up to 2x faster

	There’s no empty row/col required outside of the dynamic array anymore

	It continues to overwrite existing cells (no change there)

	There’s a small breaking change in the unlikely case that you were assigning values with the expand option:
myrange.options(expand='table').value = [['b'] * 3] * 3. This was previously clearing contiguous cells to
the right and bottom (or one of them depending on the option), now you have to do that explicitly.

Bug Fixes:

	Importing multiple UDF modules has been fixed (GH991 [https://github.com/xlwings/xlwings/issues/991]).

v0.14.1 (Nov 9, 2018)

This is a bug fix release:

	[Win] Fixed an issue when the new async_mode was used together with numpy arrays (GH984 [https://github.com/xlwings/xlwings/issues/984])

	[Mac] Fixed an issue with multiple arguments in RunPython (GH905 [https://github.com/xlwings/xlwings/issues/905])

	[Mac] Fixed an issue with the config file (GH982 [https://github.com/xlwings/xlwings/issues/982])

v0.14.0 (Nov 5, 2018)

Features:

This release adds support for asynchronous functions (like all UDF related functionality, this is only available on Windows).
Making a function asynchronous is as easy as:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):
 time.sleep(5) # long running tasks
 return a

See Asynchronous UDFs for the full docs.

Bug Fixes:

	See GH970 [https://github.com/xlwings/xlwings/issues/970] and GH973 [https://github.com/xlwings/xlwings/issues/973].

v0.13.0 (Oct 22, 2018)

Features:

This release adds a REST API server to xlwings, allowing you to easily expose your workbook over the internet,
see REST API for all the details!

Enhancements:

	Dynamic arrays are now more robust. Before, they often didn’t manage to write everything when there was a lot going on in the workbook (GH880 [https://github.com/xlwings/xlwings/issues/880])

	Jagged arrays (lists of lists where not all rows are of equal length) now raise an error (GH942 [https://github.com/xlwings/xlwings/issues/942])

	xlwings can now be used with threading, see the docs: Threading (GH759 [https://github.com/xlwings/xlwings/issues/759]).

	[Win] xlwings now enforces pywin32 224 when installing xlwings on Python 3.7 (GH959 [https://github.com/xlwings/xlwings/issues/959])

	New xlwings.Sheet.used_range property (GH112 [https://github.com/xlwings/xlwings/issues/112])

Bug Fixes:

	The current directory is now inserted in front of everything else on the PYTHONPATH (GH958 [https://github.com/xlwings/xlwings/issues/958])

	The standalone files had an issue in the VBA module (GH960 [https://github.com/xlwings/xlwings/issues/960])

Breaking Change

	Members of the xw.apps collection are now accessed by key (=PID) instead of index, e.g.:
xw.apps[12345] instead of xw.apps[0]. The apps collection also has a new xw.apps.keys() method. (GH951 [https://github.com/xlwings/xlwings/issues/951])

v0.12.1 (Oct 7, 2018)

[Py27] Bug Fix for a Python 2.7 glitch.

v0.12.0 (Oct 7, 2018)

Features:

This release adds support to call Python functions from VBA in all Office apps (e.g. Access, Outlook etc.), not just Excel. As
this uses UDFs, it is only available on Windows.
See the docs: xlwings with other Office Apps.

Breaking Change

Previously, Python functions were always returning 2d arrays when called from VBA, no matter whether it was actually a 2d array or not.
Now you get the proper dimensionality which makes it easier if the return value is e.g. a string or scalar as you don’t have to
unpack it anymore.

Consider the following example using the VBA Editor’s Immediate Window after importing UDFs from a project created
using by xlwings quickstart:

Old behaviour

?TypeName(hello("xlwings"))
Variant()
?hello("xlwings")(0,0)
hello xlwings

New behaviour

?TypeName(hello("xlwings"))
String
?hello("xlwings")
hello xlwings

Bug Fixes:

	[Win] Support expansion of environment variables in config values (GH615 [https://github.com/xlwings/xlwings/issues/615])

	Other bug fixes: GH889 [https://github.com/xlwings/xlwings/issues/889], GH939 [https://github.com/xlwings/xlwings/issues/939], GH940 [https://github.com/xlwings/xlwings/issues/940], GH943 [https://github.com/xlwings/xlwings/issues/943].

v0.11.8 (May 13, 2018)

	[Win] pywin32 is now automatically installed when using pip (GH827 [https://github.com/xlwings/xlwings/issues/827])

	xlwings.bas has been readded to the python package. This facilitates e.g. the use of xlwings within other addins (GH857 [https://github.com/xlwings/xlwings/issues/857])

v0.11.7 (Feb 5, 2018)

	[Win] This release fixes a bug introduced with v0.11.6 that wouldn’t allow to open workbooks by name (GH804 [https://github.com/xlwings/xlwings/issues/804])

v0.11.6 (Jan 27, 2018)

Bug Fixes:

	[Win] When constantly writing to a spreadsheet, xlwings now correctly resumes after clicking into cells, previously it was crashing. (GH587 [https://github.com/xlwings/xlwings/issues/587])

	Options are now correctly applied when writing to a sheet (GH798 [https://github.com/xlwings/xlwings/issues/798])

v0.11.5 (Jan 7, 2018)

This is mostly a bug fix release:

	Config files can now additionally be saved in the directory of the workbooks, overriding the global Ribbon config, see Environment Variables (GH772 [https://github.com/xlwings/xlwings/issues/772])

	Reading Pandas DataFrames with a simple index was creating a MultiIndex with Pandas > 0.20 (GH786 [https://github.com/xlwings/xlwings/issues/786])

	[Win] The xlwings dlls are now properly versioned, allowing to use pre 0.11 releases in parallel with >0.11 releases (GH743 [https://github.com/xlwings/xlwings/issues/743])

	[Mac] Sheet.names.add() was always adding the names on workbook level (GH771 [https://github.com/xlwings/xlwings/issues/771])

	[Mac] UDF decorators now don’t cause errors on Mac anymore (GH780 [https://github.com/xlwings/xlwings/issues/780])

v0.11.4 (Jul 23, 2017)

This release brings further improvements with regards to the add-in:

	The add-in now shows the version on the ribbon. This makes it easy to check if you are using the correct version (GH724 [https://github.com/xlwings/xlwings/issues/724]):

[image: _images/addin_version.png]

	[Mac] On Mac Excel 2016, the ribbon now only shows the available functionality (GH723 [https://github.com/xlwings/xlwings/issues/723]):

[image: _images/mac_ribbon.png]

	[Mac] Mac Excel 2011 is now supported again with the new add-in. However, since Excel 2011 doesn’t support the ribbon,
the config file has been created/edited manually, see Environment Variables (GH714 [https://github.com/xlwings/xlwings/issues/714]).

Also, some new docs:

	[Win] How to use imported functions in VBA, see Call UDFs from VBA.

	For more up-to-date installations via conda, use the conda-forge channel, see Installation.

	A troubleshooting section: Troubleshooting.

v0.11.3 (Jul 14, 2017)

	Bug Fix: When using the xlwings.conf sheet, there was a subscript out of range error (GH708 [https://github.com/xlwings/xlwings/issues/708])

	Enhancement: The add-in is now password protected (pw: xlwings) to declutter the VBA editor (GH710 [https://github.com/xlwings/xlwings/issues/710])

You need to update your xlwings add-in to get the fixes!

v0.11.2 (Jul 6, 2017)

	Bug Fix: The sql extension was sometimes not correctly assigning the table aliases (GH699 [https://github.com/xlwings/xlwings/issues/699])

	Bug Fix: Permission errors during pip installation should be resolved now (GH693 [https://github.com/xlwings/xlwings/issues/693])

v0.11.1 (Jul 5, 2017)

	Bug Fix: The sql extension installs now correctly (GH695 [https://github.com/xlwings/xlwings/issues/695])

	Added migration guide for v0.11, see migrate_to_0.11

v0.11.0 (Jul 2, 2017)

Big news! This release adds a full blown add-in! We also throw in a great In-Excel SQL Extension and a few bug fixes:

Add-in

[image: _images/ribbon.png]

A few highlights:

	Settings don’t have to be manipulated in VBA code anymore, but can be either set globally via Ribbon/config file or
for the workbook via a special worksheet

	UDF server can be restarted directly from the add-in

	You can still use a VBA module instead of the add-in, but the recommended way is the add-in

	Get all the details here: Add-in & Settings

In-Excel SQL Extension

The add-in can be extended with own code. We throw in an sql function, that allows you to perform SQL queries
on data in your spreadsheets. It’s pretty awesome, get the details here: Extensions.

Bug Fixes

	[Win]: Running Debug > Compile is not throwing errors anymore (GH678 [https://github.com/xlwings/xlwings/issues/678])

	Pandas deprecation warnings have been fixed (GH675 [https://github.com/xlwings/xlwings/issues/675] and GH664 [https://github.com/xlwings/xlwings/issues/664])

	[Mac]: Errors are again shown correctly in a pop up (GH660 [https://github.com/xlwings/xlwings/issues/660])

	[Mac]: Like Windows, Mac now also only shows errors in a popup. Before it was including stdout, too (GH666 [https://github.com/xlwings/xlwings/issues/666])

Breaking Change

	RunFrozenPython now requires the full path to the executable.

	The xlwings CLI xlwings template functionality has been removed. Use quickstart instead.

Migrate to v0.11 (Add-in)

This migration guide shows you how you can start using the new xlwings add-in as opposed to the old xlwings VBA module
(and the old add-in that consisted of just a single import button).

Upgrade the xlwings Python package

	Check where xlwings is currently installed

>>> import xlwings
>>> xlwings.__path__

	If you installed xlwings with pip, for once, you should first uninstall xlwings: pip uninstall xlwings

	Check the directory that you got under 1): if there are any files left over, delete the xlwings folder and the
remaining files manually

	Install the latest xlwings version: pip install xlwings

	Verify that you have >= 0.11 by doing

>>> import xlwings
>>> xlwings.__version__

Install the add-in

	If you have the old xlwings addin installed, find the location and remove it or overwrite it with the new version (see next step).
If you installed it via the xlwings command line client, you should be able to do: xlwings addin remove.

	Close Excel. Run xlwings addin install from a command prompt. Reopen Excel and check if the xlwings Ribbon
appears. If not, copy xlwings.xlam (from your xlwings installation folder under addin\xlwings.xlam manually
into the XLSTART folder.
You can find the location of this folder under Options > Trust Center > Trust Center Settings… > Trusted Locations,
under the description Excel default location: User StartUp. Restart Excel and you should see the add-in.

Upgrade existing workbooks

	Make a backup of your Excel file

	Open the file and go to the VBA Editor (Alt-F11)

	Remove the xlwings VBA module

	Add a reference to the xlwings addin, see Installation

	If you want to use workbook specific settings, add a sheet xlwings.conf, see Workbook Config: xlwings.conf Sheet

Note: To import UDFs, you need to have the reference to the xlwings add-in set!

v0.10.4 (Feb 19, 2017)

	[Win] Bug Fix: v0.10.3 introduced a bug that imported UDFs by default with volatile=True, this has now been fixed.
You will need to reimport your functions after upgrading the xlwings package.

v0.10.3 (Jan 28, 2017)

This release adds new features to User Defined Functions (UDFs):

	categories

	volatile option

	suppress calculation in function wizard

Syntax:

import xlwings as xw
@xw.func(category="xlwings", volatile=False, call_in_wizard=True)
def myfunction():
 return ...

For details, check out the (also new) and comprehensive API docs about the decorators: UDF decorators

v0.10.2 (Dec 31, 2016)

	[Win] Python 3.6 is now supported (GH592 [https://github.com/xlwings/xlwings/issues/592])

v0.10.1 (Dec 5, 2016)

	Writing a Pandas Series with a MultiIndex header was not writing out the header (GH572 [https://github.com/xlwings/xlwings/issues/572])

	[Win] Docstrings for UDF arguments are now working (GH367 [https://github.com/xlwings/xlwings/issues/367])

	[Mac] Range.clear_contents() has been fixed (it was doing clear() instead) (GH576 [https://github.com/xlwings/xlwings/issues/576])

	xw.Book(...) and xw.books.open(...) raise now the same error in case the file doesn’t exist (GH540 [https://github.com/xlwings/xlwings/issues/540])

v0.10.0 (Sep 20, 2016)

Dynamic Array Formulas

This release adds an often requested & powerful new feature to User Defined Functions (UDFs): Dynamic expansion for
array formulas. While Excel offers array formulas, you need to specify their dimensions up front by selecting the
result array first, then entering the formula and finally hitting Ctrl-Shift-Enter. While this makes sense from
a data integrity point of view, in practice, it often turns out to be a cumbersome limitation, especially when working
with dynamic arrays such as time series data.

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):
 return np.random.randn(int(r), int(c))

[image: _images/dynamic_array1.png]

[image: _images/dynamic_array2.png]

Note: Expanding array formulas will overwrite cells without prompting and leave an empty border around them, i.e.
they will clear the row to the bottom and the column to the right of the array.

Bug Fixes

	The int converter works now always as you would expect (e.g.: xw.Range('A1').options(numbers=int).value). Before,
it could happen that the number was off by 1 due to floating point issues (GH554 [https://github.com/xlwings/xlwings/issues/554]).

v0.9.3 (Aug 22, 2016)

	[Win] App.visible wasn’t behaving correctly (GH551 [https://github.com/xlwings/xlwings/issues/551]).

	[Mac] Added support for the new 64bit version of Excel 2016 on Mac (GH549 [https://github.com/xlwings/xlwings/issues/549]).

	Unicode book names are again supported (GH546 [https://github.com/xlwings/xlwings/issues/546]).

	xlwings.Book.save() now supports relative paths. Also, when saving an existing book under a new name
without specifying the full path, it’ll be saved in Python’s current working directory instead of in Excel’s default
directory (GH185 [https://github.com/xlwings/xlwings/issues/185]).

v0.9.2 (Aug 8, 2016)

Another round of bug fixes:

	[Mac]: Sometimes, a column was referenced instead of a named range (GH545 [https://github.com/xlwings/xlwings/issues/545])

	[Mac]: Python 2.7 was raising a LookupError: unknown encoding: mbcs (GH544 [https://github.com/xlwings/xlwings/issues/544])

	Fixed docs regarding set_mock_caller (GH543 [https://github.com/xlwings/xlwings/issues/543])

v0.9.1 (Aug 5, 2016)

This is a bug fix release: As to be expected after a rewrite, there were some rough edges that have now been taken care of:

	[Win] Opening a file via xw.Book() was causing an additional Book1 to be opened in case Excel was not running yet (GH531 [https://github.com/xlwings/xlwings/issues/531])

	[Win] Some users were getting an ImportError (GH533 [https://github.com/xlwings/xlwings/issues/533])

	[PY 2.7] RunPython was broken with Python 2.7 (GH537 [https://github.com/xlwings/xlwings/issues/537])

	Some corrections in the docs (GH538 [https://github.com/xlwings/xlwings/issues/538] and GH536 [https://github.com/xlwings/xlwings/issues/536])

v0.9.0 (Aug 2, 2016)

Exciting times! v0.9.0 is a complete rewrite of xlwings with loads of syntax changes (hence the version jump). But more
importantly, this release adds a ton of new features and bug fixes that would have otherwise been impossible. Some of the
highlights are listed below, but make sure to check out the full migration guide for the syntax changes in details.
Note, however, that the syntax for user defined functions (UDFs) did not change.
At this point, the API is fairly stable and we’re expecting only smaller changes on our way towards a stable v1.0 release.

	Active book instead of current book: xw.Range('A1') goes against the active sheet of the active book
like you’re used to from VBA. Instantiating an explicit connection to a Book is not necessary anymore:

>>> import xlwings as xw
>>> xw.Range('A1').value = 11
>>> xw.Range('A1').value
11.0

	Excel Instances: Full support of multiple Excel instances (even on Mac!)

>>> app1 = xw.App()
>>> app2 = xw.App()
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

	New powerful object model based on collections and close to Excel’s original, allowing to fully qualify objects:
xw.apps[0].books['MyBook.xlsx'].sheets[0].range('A1:B2').value

It supports both Python indexing (square brackets) and Excel indexing (round brackets):

xw.books[0].sheets[0] is the same as xw.books(1).sheets(1)

It also supports indexing and slicing of range objects:

>>> rng = xw.Range('A1:E10')
>>> rng[1]
<Range [Workbook1]Sheet1!B1>
>>> rng[:2, :2]
<Range [Workbook1]Sheet1!A1:B2>

For more details, see Syntax Overview.

	UDFs can now also be imported from packages, not just modules (GH437 [https://github.com/xlwings/xlwings/issues/437])

	Named Ranges: Introduction of full object model and proper support for sheet and workbook scope (GH256 [https://github.com/xlwings/xlwings/issues/256])

	Excel doesn’t become the active window anymore so the focus stays on your Python environment (GH414 [https://github.com/xlwings/xlwings/issues/414])

	When writing to ranges while Excel is busy, xlwings is now retrying until Excel is idle again (GH468 [https://github.com/xlwings/xlwings/issues/468])

	xlwings.view() has been enhanced to accept an optional sheet object (GH469 [https://github.com/xlwings/xlwings/issues/469])

	Objects like books, sheets etc. can now be compared (e.g. wb1 == wb2) and are properly hashable

	Note that support for Python 2.6 has been dropped

Some of the new methods/properties worth mentioning are:

	xlwings.App.display_alerts

	xlwings.App.macro() in addition to xlwings.Book.macro()

	xlwings.App.kill()

	xlwings.Sheet.cells

	xlwings.Range.rows

	xlwings.Range.columns

	xlwings.Range.end()

	xlwings.Range.raw_value

Bug Fixes

	See here [https://github.com/xlwings/xlwings/issues?q=is%3Aclosed+is%3Aissue+milestone%3Av0.9.0+label%3Abug]
for details about which bugs have been fixed.

Migrate to v0.9

The purpose of this document is to enable you a smooth experience when upgrading to xlwings v0.9.0 and above by laying out
the concept and syntax changes in detail. If you want to get an overview of the new features and bug fixes, have a look at the
release notes. Note that the syntax for User Defined Functions (UDFs) didn’t change.

Full qualification: Using collections

The new object model allows to specify the Excel application instance if needed:

	old: xw.Range('Sheet1', 'A1', wkb=xw.Workbook('Book1'))

	new: xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')

See Syntax Overview for the details of the new object model.

Connecting to Books

	old: xw.Workbook()

	new: xw.Book() or via xw.books if you need to control the app instance.

See Connect to a Book for the details.

Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sht = xw.sheets.active # in active book
>>> sht = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

Round vs. Square Brackets

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based indexing/slicing.

As an example, the following all reference the same range:

xw.apps[0].books[0].sheets[0].range('A1')
xw.apps(1).books(1).sheets(1).range('A1')
xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(1).books('Book1').sheets('Sheet1').range('A1')

Access the underlying Library/Engine

	old: xw.Range('A1').xl_range and xl_sheet etc.

	new: xw.Range('A1').api, same for all other objects

This returns a pywin32 COM object on Windows and an appscript object on Mac.

Cheat sheet

Note that sht stands for a sheet object, like e.g. (in 0.9.0 syntax): sht = xw.books['Book1'].sheets[0]

	
	v0.9.0

	v0.7.2

	Active Excel instance

	xw.apps.active

	unsupported

	New Excel instance

	app = xw.App()

	unsupported

	Get app from book

	app = wb.app

	app = xw.Application(wb)

	Target installation (Mac)

	app = xw.App(spec=...)

	wb = xw.Workbook(app_target=...)

	Hide Excel Instance

	app = xw.App(visible=False)

	wb = xw.Workbook(app_visible=False)

	Selected Range

	app.selection

	wb.get_selection()

	Calculation mode

	app.calculation = 'manual'

	app.calculation = xw.constants.Calculation.xlCalculationManual

	All books in app

	app.books

	unsupported

	
	
	

	Fully qualified book

	app.books['Book1']

	unsupported

	Active book in active app

	xw.books.active

	xw.Workbook.active()

	New book in active app

	wb = xw.Book()

	wb = xw.Workbook()

	New book in specific app

	wb = app.books.add()

	unsupported

	All sheets in book

	wb.sheets

	xw.Sheet.all(wb)

	Call a macro in an addin

	app.macro('MacroName')

	unsupported

	
	
	

	First sheet of book wb

	wb.sheets[0]

	xw.Sheet(1, wkb=wb)

	Active sheet

	wb.sheets.active

	xw.Sheet.active(wkb=wb) or wb.active_sheet

	Add sheet

	wb.sheets.add()

	xw.Sheet.add(wkb=wb)

	Sheet count

	wb.sheets.count or len(wb.sheets)

	xw.Sheet.count(wb)

	
	
	

	Add chart to sheet

	chart = wb.sheets[0].charts.add()

	chart = xw.Chart.add(sheet=1, wkb=wb)

	Existing chart

	wb.sheets['Sheet 1'].charts[0]

	xw.Chart('Sheet 1', 1)

	Chart Type

	chart.chart_type = '3d_area'

	chart.chart_type = xw.constants.ChartType.xl3DArea

	
	
	

	Add picture to sheet

	wb.sheets[0].pictures.add('path/to/pic')

	xw.Picture.add('path/to/pic', sheet=1, wkb=wb)

	Existing picture

	wb.sheets['Sheet 1'].pictures[0]

	xw.Picture('Sheet 1', 1)

	Matplotlib

	sht.pictures.add(fig, name='x', update=True)

	xw.Plot(fig).show('MyPlot', sheet=sht, wkb=wb)

	
	
	

	Table expansion

	sht.range('A1').expand('table')

	xw.Range(sht, 'A1', wkb=wb).table

	Vertical expansion

	sht.range('A1').expand('down')

	xw.Range(sht, 'A1', wkb=wb).vertical

	Horizontal expansion

	sht.range('A1').expand('right')

	xw.Range(sht, 'A1', wkb=wb).horizontal

	
	
	

	Set name of range

	sht.range('A1').name = 'name'

	xw.Range(sht, 'A1', wkb=wb).name = 'name'

	Get name of range

	sht.range('A1').name.name

	xw.Range(sht, 'A1', wkb=wb).name

	
	
	

	mock caller

	xw.Book('file.xlsm').set_mock_caller()

	xw.Workbook.set_mock_caller('file.xlsm')

v0.7.2 (May 18, 2016)

Bug Fixes

	[Win] UDFs returning Pandas DataFrames/Series containing nan were failing (GH446 [https://github.com/xlwings/xlwings/issues/446]).

	[Win] RunFrozenPython was not finding the executable (GH452 [https://github.com/xlwings/xlwings/issues/452]).

	The xlwings VBA module was not finding the Python interpreter if PYTHON_WIN or PYTHON_MAC contained spaces (GH461 [https://github.com/xlwings/xlwings/issues/461]).

v0.7.1 (April 3, 2016)

Enhancements

	[Win]: User Defined Functions (UDFs) support now optional/default arguments (GH363 [https://github.com/xlwings/xlwings/issues/363])

	[Win]: User Defined Functions (UDFs) support now multiple source files, see also under API changes below. For example
(VBA settings): UDF_MODULES="common;myproject"

	VBA Subs & Functions are now callable from Python:

As an example, this VBA function:

Function MySum(x, y)
 MySum = x + y
End Function

can be accessed like this:

>>> import xlwings as xw
>>> wb = xw.Workbook.active()
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3.0

	New xw.view method: This opens a new workbook and displays an object on its first sheet. E.g.:

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
>>> xw.view(df)

	New docs about Matplotlib and Custom Converter

	New method: xlwings.Range.formula_array() (GH411 [https://github.com/xlwings/xlwings/issues/411])

API changes

	VBA settings: PYTHON_WIN and PYTHON_MAC must now include the interpreter if you are not using the default
(PYTHON_WIN = "") (GH289 [https://github.com/xlwings/xlwings/issues/289]). E.g.:

PYTHON_WIN: "C:\Python35\pythonw.exe"
PYTHON_MAC: "/usr/local/bin/python3.5"

	[Win]: VBA settings: UDF_PATH has been replaced with UDF_MODULES. The default behaviour doesn’t change though
(i.e. if UDF_MODULES = "", then a Python source file with the same name as the Excel file, but with .py ending
will be imported from the same directory as the Excel file).

New:

UDF_MODULES: "mymodule"
PYTHONPATH: "C:\path\to"

Old:

UDF_PATH: "C:\path\to\mymodule.py"

Bug Fixes

	Numpy scalars issues were resolved (GH415 [https://github.com/xlwings/xlwings/issues/415])

	[Win]: xlwings was failing with freezers like cx_Freeze (GH413 [https://github.com/xlwings/xlwings/issues/413])

	[Win]: UDFs were failing if they were returning None or np.nan (GH390 [https://github.com/xlwings/xlwings/issues/390])

	Multiindex Pandas Series have been fixed (GH383 [https://github.com/xlwings/xlwings/issues/383])

	[Mac]: xlwings runpython install was failing (GH424 [https://github.com/xlwings/xlwings/issues/424])

v0.7.0 (March 4, 2016)

This version marks an important first step on our path towards a stable release. It introduces converters, a new and powerful
concept that brings a consistent experience for how Excel Ranges and their values are treated both when reading and writing but
also across xlwings.Range objects and User Defined Functions (UDFs).

As a result, a few highlights of this release include:

	Pandas DataFrames and Series are now supported for reading and writing, both via Range object and UDFs

	New Range converter options: transpose, dates, numbers, empty, expand

	New dictionary converter

	New UDF debug server

	No more pyc files when using RunPython

Converters are accessed via the new options method when dealing with xlwings.Range objects or via the @xw.arg
and @xw.ret decorators when using UDFs. As an introductory sample, let’s look at how to read and write Pandas DataFrames:

[image: _images/df_converter.png]

Range object:

>>> import xlwings as xw
>>> import pandas as pd
>>> wb = xw.Workbook()
>>> df = xw.Range('A1:D5').options(pd.DataFrame, header=2).value
>>> df
 a b
 c d e
ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> Range('A1').value = df

Writing back and changing some of the options, e.g. getting rid of the index:
>>> Range('B7').options(index=False).value = df

UDFs:

This is the same sample as above (starting in Range('A13') on screenshot). If you wanted to return a DataFrame with
the defaults, the @xw.ret decorator can be left away.

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):
 # x is a DataFrame, do something with it
 return x

Enhancements

	Dictionary (dict) converter:

[image: _images/dict_converter.png]

>>> Range('A1:B2').options(dict).value
{'a': 1.0, 'b': 2.0}
>>> Range('A4:B5').options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

	transpose option: This works in both directions and finally allows us to e.g. write a list in column
orientation to Excel (GH11 [https://github.com/xlwings/xlwings/issues/11]):

Range('A1').options(transpose=True).value = [1, 2, 3]

	dates option: This allows us to read Excel date-formatted cells in specific formats:

>>> import datetime as dt
>>> Range('A1').value
datetime.datetime(2015, 1, 13, 0, 0)
>>> Range('A1').options(dates=dt.date).value
datetime.date(2015, 1, 13)

	empty option: This allows us to override the default behavior for empty cells:

>>> Range('A1:B1').value
[None, None]
>>> Range('A1:B1').options(empty='NA')
['NA', 'NA']

	numbers option: This transforms all numbers into the indicated type.

>>> xw.Range('A1').value = 1
>>> type(xw.Range('A1').value) # Excel stores all numbers interally as floats
float
>>> type(xw.Range('A1').options(numbers=int).value)
int

	expand option: This works the same as the Range properties table, vertical and horizontal but is
only evaluated when getting the values of a Range:

>>> import xlwings as xw
>>> wb = xw.Workbook()
>>> xw.Range('A1').value = [[1,2], [3,4]]
>>> rng1 = xw.Range('A1').table
>>> rng2 = xw.Range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> xw.Range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

All these options work the same with decorators for UDFs, e.g. for transpose:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):
 # x will be returned unchanged as transposed both when reading and writing
 return x

Note: These options (dates, empty, numbers) currently apply to the whole Range and can’t be selectively
applied to e.g. only certain columns.

	UDF debug server

The new UDF debug server allows you to easily debug UDFs: just set UDF_DEBUG_SERVER = True in the VBA Settings,
at the top of the xlwings VBA module (make sure to update it to the latest version!). Then add the following lines
to your Python source file and run it:

if __name__ == '__main__':
 xw.serve()

When you recalculate the Sheet, the code will stop at breakpoints or print any statements that you may have. For
details, see: Debugging.

	pyc files: The creation of pyc files has been disabled when using RunPython, leaving your directory in an
uncluttered state when having the Python source file next to the Excel workbook (GH326 [https://github.com/xlwings/xlwings/issues/326]).

API changes

	UDF decorator changes (it is assumed that xlwings is imported as xw and numpy as np):

	New

	Old

	@xw.func

	@xw.xlfunc

	@xw.arg

	@xw.xlarg

	@xw.ret

	@xw.xlret

	@xw.sub

	@xw.xlsub

Pay attention to the following subtle change:

	New

	Old

	@xw.arg("x", np.array)

	@xw.xlarg("x", "nparray")

	Samples of how the new options method replaces the old Range keyword arguments:

	New

	Old

	Range('A1:A2').options(ndim=2)

	Range('A1:A2', atleast_2d=True)

	Range('A1:B2').options(np.array)

	Range('A1:B2', asarray=True)

	Range('A1').options(index=False, header=False).value = df

	Range('A1', index=False, header=False).value = df

	Upon writing, Pandas Series are now shown by default with their name and index name, if they exist. This can be
changed using the same options as for DataFrames (GH276 [https://github.com/xlwings/xlwings/issues/276]):

import pandas as pd

unchanged behaviour
Range('A1').value = pd.Series([1,2,3])

Changed behaviour: This will print a header row in Excel
s = pd.Series([1,2,3], name='myseries', index=pd.Index([0,1,2], name='myindex'))
Range('A1').value = s

Control this behaviour like so (as with DataFrames):
Range('A1').options(header=False, index=True).value = s

	NumPy scalar values

Previously, NumPy scalar values were returned as np.atleast_1d. To keep the same behaviour, this now has to be
set explicitly using ndim=1. Otherwise they’re returned as numpy scalar values.

	New

	Old

	Range('A1').options(np.array, ndim=1).value

	Range('A1', asarray=True).value

Bug Fixes

A few bugfixes were made: GH352 [https://github.com/xlwings/xlwings/issues/352], GH359 [https://github.com/xlwings/xlwings/issues/359].

v0.6.4 (January 6, 2016)

API changes

None

Enhancements

	Quickstart: It’s now easier than ever to start a new xlwings project, simply use the command line client (GH306 [https://github.com/xlwings/xlwings/issues/306]):

xlwings quickstart myproject will produce a folder with the following files, ready to be used (see Command Line Client (CLI)):

myproject
 |--myproject.xlsm
 |--myproject.py

	New documentation about how to use xlwings with other languages like R and Julia.

Bug Fixes

	[Win]: Importing UDFs with the add-in was throwing an error if the filename was including characters like spaces or dashes (GH331 [https://github.com/xlwings/xlwings/issues/331]).
To fix this, close Excel completely and run xlwings addin update.

	[Win]: Workbook.caller() is now also accessible within functions that are decorated with @xlfunc. Previously,
it was only available with functions that used the @xlsub decorator (GH316 [https://github.com/xlwings/xlwings/issues/316]).

	Writing a Pandas DataFrame failed in case the index was named the same as a column (GH334 [https://github.com/xlwings/xlwings/issues/334]).

v0.6.3 (December 18, 2015)

Bug Fixes

	[Mac]: This fixes a bug introduced in v0.6.2: When using RunPython from VBA, errors were not shown in a pop-up window (GH330 [https://github.com/xlwings/xlwings/issues/330]).

v0.6.2 (December 15, 2015)

API changes

	LOG_FILE: So far, the log file has been placed next to the Excel file per default (VBA settings). This has been changed as it was
causing issues for files on SharePoint/OneDrive and Mac Excel 2016: The place where LOG_FILE = "" refers to depends on the OS and the Excel version.

Enhancements

	[Mac]: This version adds support for the VBA module on Mac Excel 2016 (i.e. the RunPython command) and is now feature equivalent
with Mac Excel 2011 (GH206 [https://github.com/xlwings/xlwings/issues/206]).

Bug Fixes

	[Win]: On certain systems, the xlwings dlls weren’t found (GH323 [https://github.com/xlwings/xlwings/issues/323]).

v0.6.1 (December 4, 2015)

Bug Fixes

	[Python 3]: The command line client has been fixed (GH319 [https://github.com/xlwings/xlwings/issues/319]).

	[Mac]: It now works correctly with psutil>=3.0.0 (GH315 [https://github.com/xlwings/xlwings/issues/315]).

v0.6.0 (November 30, 2015)

API changes

None

Enhancements

	User Defined Functions (UDFs) - currently Windows only

The ExcelPython [https://github.com/ericremoreynolds/excelpython/] project has been fully merged into xlwings. This means
that on Windows, UDF’s are now supported via decorator syntax. A simple example:

from xlwings import xlfunc

@xlfunc
def double_sum(x, y):
 """Returns twice the sum of the two arguments"""
 return 2 * (x + y)

For array formulas with or without NumPy, see the docs: User Defined Functions (UDFs)

	Command Line Client

The new xlwings command line client makes it easy to work with the xlwings template and the developer add-in
(the add-in is currently Windows-only). E.g. to create a new Excel spreadsheet from the template, run:

xlwings template open

For all commands, see the docs: Command Line Client (CLI)

	Other enhancements:

	New method: xlwings.Sheet.delete()

	New method: xlwings.Range.top()

	New method: xlwings.Range.left()

v0.5.0 (November 10, 2015)

API changes

None

Enhancements

This version adds support for Matplotlib! Matplotlib figures can be shown in Excel as pictures in just 2 lines of code:

[image: _images/matplotlib.png]

	Get a matplotlib figure object:

	via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

	via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

	via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

	Show it in Excel as picture:

plot = Plot(fig)
plot.show('Plot1')

See the full API: xlwings.Plot(). There’s also a new example available both on
GitHub [https://github.com/xlwings/xlwings/tree/master/examples/matplotlib/] and as download on the
homepage [http://www.xlwings.org/examples].

Other enhancements:

	New xlwings.Shape() class

	New xlwings.Picture() class

	The PYTHONPATH in the VBA settings now accepts multiple directories, separated by ; (GH258 [https://github.com/xlwings/xlwings/issues/258])

	An explicit exception is raised when Range is called with 0-based indices (GH106 [https://github.com/xlwings/xlwings/issues/106])

Bug Fixes

	Sheet.add was not always acting on the correct workbook (GH287 [https://github.com/xlwings/xlwings/issues/287])

	Iteration over a Range only worked the first time (GH272 [https://github.com/xlwings/xlwings/issues/272])

	[Win]: Sometimes, an error was raised when Excel was not running (GH269 [https://github.com/xlwings/xlwings/issues/269])

	[Win]: Non-default Python interpreters (as specified in the VBA settings under PYTHON_WIN) were not found
if the path contained a space (GH257 [https://github.com/xlwings/xlwings/issues/257])

v0.4.1 (September 27, 2015)

API changes

None

Enhancements

This release makes it easier than ever to connect to Excel from Python! In addition to the existing ways, you can now
connect to the active Workbook (on Windows across all instances) and if the Workbook is already open, it’s good enough
to refer to it by name (instead of having to use the full path). Accordingly, this is how you make a connection to…
(GH30 [https://github.com/xlwings/xlwings/issues/30] and GH226 [https://github.com/xlwings/xlwings/issues/226]):

	a new workbook: wb = Workbook()

	the active workbook [New!]: wb = Workbook.active()

	an unsaved workbook: wb = Workbook('Book1')

	a saved (open) workbook by name (incl. xlsx etc.) [New!]: wb = Workbook('MyWorkbook.xlsx')

	a saved (open or closed) workbook by path: wb = Workbook(r'C:\\path\\to\\file.xlsx')

Also, there are some new docs:

	Connect to a Book

	Missing Features

Bug Fixes

	The Excel template was updated to the latest VBA code (GH234 [https://github.com/xlwings/xlwings/issues/234]).

	Connections to files that are saved on OneDrive/SharePoint are now working correctly (GH215 [https://github.com/xlwings/xlwings/issues/215]).

	Various issues with timezone-aware objects were fixed (GH195 [https://github.com/xlwings/xlwings/issues/195]).

	[Mac]: A certain range of integers were not written to Excel (GH227 [https://github.com/xlwings/xlwings/issues/227]).

v0.4.0 (September 13, 2015)

API changes

None

Enhancements

The most important update with this release was made on Windows: The methodology used to make a connection
to Workbooks has been completely replaced. This finally allows xlwings to reliably connect to multiple instances of
Excel even if the Workbooks are opened from untrusted locations (network drives or files downloaded from the internet).
This gets rid of the dreaded Filename is already open... error message that was sometimes shown in this
context. It also allows the VBA hooks (RunPython) to work correctly if the very same file is opened in various instances of
Excel.

Note that you will need to update the VBA module and that apart from pywin32 there is now a new dependency for the
Windows version: comtypes. It should be installed automatically though when installing/upgrading xlwings with
pip.

Other updates:

	Added support to manipulate named Ranges (GH92 [https://github.com/xlwings/xlwings/issues/92]):

>>> wb = Workbook()
>>> Range('A1').name = 'Name1'
>>> Range('A1').name
>>> 'Name1'
>>> del wb.names['Name1']

	
	New Range properties (GH81 [https://github.com/xlwings/xlwings/issues/81]):
	
	xlwings.Range.column_width()

	xlwings.Range.row_height()

	xlwings.Range.width()

	xlwings.Range.height()

	Range now also accepts Sheet objects, the following 3 ways are hence all valid (GH92 [https://github.com/xlwings/xlwings/issues/92]):

r = Range(1, 'A1')
r = Range('Sheet1', 'A1')
sheet1 = Sheet(1)
r = Range(sheet1, 'A1')

	[Win]: Error pop-ups show now the full error message that can also be copied with Ctrl-C (GH221 [https://github.com/xlwings/xlwings/issues/221]).

Bug Fixes

	The VBA module was not accepting lower case drive letters (GH205 [https://github.com/xlwings/xlwings/issues/205]).

	Fixed an error when adding a new Sheet that was already existing (GH211 [https://github.com/xlwings/xlwings/issues/211]).

v0.3.6 (July 14, 2015)

API changes

Application as attribute of a Workbook has been removed (wb is a Workbook object):

	Correct Syntax (as before)

	Removed

	Application(wkb=wb)

	wb.application

Enhancements

Excel 2016 for Mac Support (GH170 [https://github.com/xlwings/xlwings/issues/170])

Excel 2016 for Mac is finally supported (Python side). The VBA hooks (RunPython) are currently not yet supported.
In more details:

	This release allows Excel 2011 and Excel 2016 to be installed in parallel.

	Workbook() will open the default Excel installation (usually Excel 2016).

	The new keyword argument app_target allows to connect to a different Excel installation, e.g.:

Workbook(app_target='/Applications/Microsoft Office 2011/Microsoft Excel')

Note that app_target is only available on Mac. On Windows, if you want to change the version of Excel that
xlwings talks to, go to Control Panel > Programs and Features and Repair the Office version that you want
as default.

	The RunPython calls in VBA are not yet available through Excel 2016 but Excel 2011 doesn’t get confused anymore if
Excel 2016 is installed on the same system - make sure to update your VBA module!

Other enhancements

	New method: xlwings.Application.calculate() (GH207 [https://github.com/xlwings/xlwings/issues/207])

Bug Fixes

	[Win]: When using the OPTIMIZED_CONNECTION on Windows, Excel left an orphaned process running after
closing (GH193 [https://github.com/xlwings/xlwings/issues/193]).

Various improvements regarding unicode file path handling, including:

	[Mac]: Excel 2011 for Mac now supports unicode characters in the filename when called via VBA’s RunPython
(but not in the path - this is a limitation of Excel 2011 that will be resolved in Excel 2016) (GH154 [https://github.com/xlwings/xlwings/issues/154]).

	[Win]: Excel on Windows now handles unicode file paths correctly with untrusted documents.
(GH154 [https://github.com/xlwings/xlwings/issues/154]).

v0.3.5 (April 26, 2015)

API changes

Sheet.autofit() and Range.autofit(): The integer argument for the axis has been removed (GH186 [https://github.com/xlwings/xlwings/issues/186]).
Use string arguments rows or r for autofitting rows and columns or c for autofitting columns
(as before).

Enhancements

New methods:

	xlwings.Range.row() (GH143 [https://github.com/xlwings/xlwings/issues/143])

	xlwings.Range.column() (GH143 [https://github.com/xlwings/xlwings/issues/143])

	xlwings.Range.last_cell() (GH142 [https://github.com/xlwings/xlwings/issues/142])

Example:

>>> rng = Range('A1').table
>>> rng.row, rng.column
(1, 1)
>>> rng.last_cell.row, rng.last_cell.column
(4, 5)

Bug Fixes

	The unicode bug on Windows/Python3 has been fixed (GH161 [https://github.com/xlwings/xlwings/issues/161])

v0.3.4 (March 9, 2015)

Bug Fixes

	The installation error on Windows has been fixed (GH160 [https://github.com/xlwings/xlwings/issues/160])

v0.3.3 (March 8, 2015)

API changes

None

Enhancements

	New class Application with quit method and properties screen_updating und calculation (GH101 [https://github.com/xlwings/xlwings/issues/101],
GH158 [https://github.com/xlwings/xlwings/issues/158], GH159 [https://github.com/xlwings/xlwings/issues/159]). It can be
conveniently accessed from within a Workbook (on Windows, Application is instance dependent). A few examples:

>>> from xlwings import Workbook, Calculation
>>> wb = Workbook()
>>> wb.application.screen_updating = False
>>> wb.application.calculation = Calculation.xlCalculationManual
>>> wb.application.quit()

	New headless mode: The Excel application can be hidden either during Workbook instantiation or through the
application object:

>>> wb = Workbook(app_visible=False)
>>> wb.application.visible
False
>>> wb.application.visible = True

	Newly included Excel template which includes the xlwings VBA module and boilerplate code. This is currently
accessible from an interactive interpreter session only:

>>> from xlwings import Workbook
>>> Workbook.open_template()

Bug Fixes

	[Win]: datetime.date objects were causing an error (GH44 [https://github.com/xlwings/xlwings/issues/44]).

	Depending on how it was instantiated, Workbook was sometimes missing the fullname attribute (GH76 [https://github.com/xlwings/xlwings/issues/76]).

	Range.hyperlink was failing if the hyperlink had been set as formula (GH132 [https://github.com/xlwings/xlwings/issues/132]).

	A bug introduced in v0.3.0 caused frozen versions (eg. with cx_Freeze) to fail (GH133 [https://github.com/xlwings/xlwings/issues/133]).

	[Mac]: Sometimes, xlwings was causing an error when quitting the Python interpreter (GH136 [https://github.com/xlwings/xlwings/issues/136]).

v0.3.2 (January 17, 2015)

API changes

None

Enhancements

None

Bug Fixes

	The xlwings.Workbook.save() method has been fixed to show the expected behavior (GH138 [https://github.com/xlwings/xlwings/issues/138]): Previously,
calling save() without a path argument would always create a new file in the current working directory. This is
now only happening if the file hasn’t been previously saved.

v0.3.1 (January 16, 2015)

API changes

None

Enhancements

	New method xlwings.Workbook.save() (GH110 [https://github.com/xlwings/xlwings/issues/110]).

	New method xlwings.Workbook.set_mock_caller() (GH129 [https://github.com/xlwings/xlwings/issues/129]). This makes calling files from both
Excel and Python much easier:

import os
from xlwings import Workbook, Range

def my_macro():
 wb = Workbook.caller()
 Range('A1').value = 1

if __name__ == '__main__':
 # To run from Python, not needed when called from Excel.
 # Expects the Excel file next to this source file, adjust accordingly.
 path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'myfile.xlsm'))
 Workbook.set_mock_caller(path)
 my_macro()

	The simulation example on the homepage works now also on Mac.

Bug Fixes

	[Win]: A long-standing bug that caused the Excel file to close and reopen under certain circumstances has been
fixed (GH10 [https://github.com/xlwings/xlwings/issues/10]): Depending on your security settings (Trust Center) and in connection with files downloaded from
the internet or possibly in connection with some add-ins, Excel was either closing the file and reopening it or giving
a “file already open” warning. This has now been fixed which means that the examples downloaded from the homepage should
work right away after downloading and unzipping.

v0.3.0 (November 26, 2014)

API changes

	To reference the calling Workbook when running code from VBA, you now have to use Workbook.caller(). This means
that wb = Workbook() is now consistently creating a new Workbook, whether the code is called interactively or
from VBA.

	New

	Old

	Workbook.caller()

	Workbook()

Enhancements

This version adds two exciting but still experimental features from
ExcelPython (Windows only!):

	Optimized connection: Set the OPTIMIZED_CONNECTION = True in the VBA settings. This will use a COM server that
will keep the connection to Python alive between different calls and is therefore much more efficient. However,
changes in the Python code are not being picked up until the pythonw.exe process is restarted by killing it
manually in the Windows Task Manager. The suggested workflow is hence to set OPTIMIZED_CONNECTION = False for
development and only set it to True for production - keep in mind though that this feature is still experimental!

	User Defined Functions (UDFs): Using ExcelPython’s wrapper syntax in VBA, you can expose Python functions as UDFs, see
User Defined Functions (UDFs) for details.

Note: ExcelPython’s developer add-in that autogenerates the VBA wrapper code by simply using Python decorators
isn’t available through xlwings yet.

Further enhancements include:

	New method xlwings.Range.resize() (GH90 [https://github.com/xlwings/xlwings/issues/90]).

	New method xlwings.Range.offset() (GH89 [https://github.com/xlwings/xlwings/issues/89]).

	New property xlwings.Range.shape (GH109 [https://github.com/xlwings/xlwings/issues/109]).

	New property xlwings.Range.size (GH109 [https://github.com/xlwings/xlwings/issues/109]).

	New property xlwings.Range.hyperlink and new method xlwings.Range.add_hyperlink() (GH104 [https://github.com/xlwings/xlwings/issues/104]).

	New property xlwings.Range.color (GH97 [https://github.com/xlwings/xlwings/issues/97]).

	The len built-in function can now be used on Range (GH109 [https://github.com/xlwings/xlwings/issues/109]):

>>> len(Range('A1:B5'))
5

	The Range object is now iterable (GH108 [https://github.com/xlwings/xlwings/issues/108]):

for cell in Range('A1:B2'):
 if cell.value < 2:
 cell.color = (255, 0, 0)

	[Mac]: The VBA module finds now automatically the default Python installation as per PATH variable on
.bash_profile when PYTHON_MAC = "" (the default in the VBA settings) (GH95 [https://github.com/xlwings/xlwings/issues/95]).

	The VBA error pop-up can now be muted by setting SHOW_LOG = False in the VBA settings. To be used with
care, but it can be useful on Mac, as the pop-up window is currently showing printed log messages even if no error
occurred(GH94 [https://github.com/xlwings/xlwings/issues/94]).

Bug Fixes

	[Mac]: Environment variables from .bash_profile are now available when called from VBA, e.g. by using:
os.environ['USERNAME'] (GH95 [https://github.com/xlwings/xlwings/issues/95])

v0.2.3 (October 17, 2014)

API changes

None

Enhancements

	New method Sheet.add() (GH71 [https://github.com/xlwings/xlwings/issues/71]):

>>> Sheet.add() # Place at end with default name
>>> Sheet.add('NewSheet', before='Sheet1') # Include name and position
>>> new_sheet = Sheet.add(after=3)
>>> new_sheet.index
4

	New method Sheet.count():

>>> Sheet.count()
3

	autofit() works now also on Sheet objects, not only on Range objects (GH66 [https://github.com/xlwings/xlwings/issues/66]):

>>> Sheet(1).autofit() # autofit columns and rows
>>> Sheet('Sheet1').autofit('c') # autofit columns

	New property number_format for Range objects (GH60 [https://github.com/xlwings/xlwings/issues/60]):

>>> Range('A1').number_format
'General'
>>> Range('A1:C3').number_format = '0.00%'
>>> Range('A1:C3').number_format
'0.00%'

Works also with the Range properties table, vertical, horizontal:

>>> Range('A1').value = [1,2,3,4,5]
>>> Range('A1').table.number_format = '0.00%'

	New method get_address for Range objects (GH7 [https://github.com/xlwings/xlwings/issues/7]):

>>> Range((1,1)).get_address()
'A1'
>>> Range((1,1)).get_address(False, False)
'A1'
>>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, include_sheetname=True)
'Sheet1!A$1:C$3'
>>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, external=True)
'[Workbook1]Sheet1!A$1:C$3'

	New method Sheet.all() returning a list with all Sheet objects:

>>> Sheet.all()
[<Sheet 'Sheet1' of Workbook 'Book1'>, <Sheet 'Sheet2' of Workbook 'Book1'>]
>>> [i.name.lower() for i in Sheet.all()]
['sheet1', 'sheet2']
>>> [i.autofit() for i in Sheet.all()]

Bug Fixes

	xlwings works now also with NumPy < 1.7.0. Before, doing something like Range('A1').value = 'Foo' was causing
a NotImplementedError: Not implemented for this type error when NumPy < 1.7.0 was installed (GH73 [https://github.com/xlwings/xlwings/issues/73]).

	[Win]: The VBA module caused an error on the 64bit version of Excel (GH72 [https://github.com/xlwings/xlwings/issues/72]).

	[Mac]: The error pop-up wasn’t shown on Python 3 (GH85 [https://github.com/xlwings/xlwings/issues/85]).

	[Mac]: Autofitting bigger Ranges, e.g. Range('A:D').autofit() was causing a time out (GH74 [https://github.com/xlwings/xlwings/issues/74]).

	[Mac]: Sometimes, calling xlwings from Python was causing Excel to show old errors as pop-up alert (GH70 [https://github.com/xlwings/xlwings/issues/70]).

v0.2.2 (September 23, 2014)

API changes

	The Workbook qualification changed: It now has to be specified as keyword argument. Assume we have instantiated
two Workbooks like so: wb1 = Workbook() and wb2 = Workbook(). Sheet, Range and Chart classes will
default to wb2 as it was instantiated last. To target wb1, use the new wkb keyword argument:

	New

	Old

	Range('A1', wkb=wb1).value

	wb1.range('A1').value

	Chart('Chart1', wkb=wb1)

	wb1.chart('Chart1')

Alternatively, simply set the current Workbook before using the Sheet, Range or Chart classes:

wb1.set_current()
Range('A1').value

	Through the introduction of the Sheet class (see Enhancements), a few methods moved from the Workbook
to the Sheet class. Assume the current Workbook is: wb = Workbook():

	New

	Old

	Sheet('Sheet1').activate()

	wb.activate('Sheet1')

	Sheet('Sheet1').clear()

	wb.clear('Sheet1')

	Sheet('Sheet1').clear_contents()

	wb.clear_contents('Sheet1')

	Sheet.active().clear_contents()

	wb.clear_contents()

	The syntax to add a new Chart has been slightly changed (it is a class method now):

	New

	Old

	Chart.add()

	Chart().add()

Enhancements

	[Mac]: Python errors are now also shown in a Message Box. This makes the Mac version feature equivalent with the
Windows version (GH57 [https://github.com/xlwings/xlwings/issues/57]):

[image: _images/mac_error.png]

	New Sheet class: The new class handles everything directly related to a Sheet. See the Python API section about
Sheet for details (GH62 [https://github.com/xlwings/xlwings/issues/62]). A few examples:

>>> Sheet(1).name
'Sheet1'
>>> Sheet('Sheet1').clear_contents()
>>> Sheet.active()
<Sheet 'Sheet1' of Workbook 'Book1'>

	The Range class has a new method autofit() that autofits the width/height of either columns, rows or both
(GH33 [https://github.com/xlwings/xlwings/issues/33]).

Arguments:

axis : string or integer, default None
 - To autofit rows, use one of the following: 'rows' or 'r'
 - To autofit columns, use one of the following: 'columns' or 'c'
 - To autofit rows and columns, provide no arguments

Examples:

Autofit column A
Range('A:A').autofit()
Autofit row 1
Range('1:1').autofit()
Autofit columns and rows, taking into account Range('A1:E4')
Range('A1:E4').autofit()
AutoFit rows, taking into account Range('A1:E4')
Range('A1:E4').autofit('rows')

	The Workbook class has the following additional methods: current() and set_current(). They determine the
default Workbook for Sheet, Range or Chart. On Windows, in case there are various Excel instances, when
creating new or opening existing Workbooks,
they are being created in the same instance as the current Workbook.

>>> wb1 = Workbook()
>>> wb2 = Workbook()
>>> Workbook.current()
<Workbook 'Book2'>
>>> wb1.set_current()
>>> Workbook.current()
<Workbook 'Book1'>

	If a Sheet, Range or Chart object is instantiated without an existing Workbook object, a user-friendly
error message is raised (GH58 [https://github.com/xlwings/xlwings/issues/58]).

	New docs about Debugging and Data Structures Tutorial.

Bug Fixes

	The atleast_2d keyword had no effect on Ranges consisting of a single cell and was raising an error when used in
combination with the asarray keyword. Both have been fixed (GH53 [https://github.com/xlwings/xlwings/issues/53]):

>>> Range('A1').value = 1
>>> Range('A1', atleast_2d=True).value
[[1.0]]
>>> Range('A1', atleast_2d=True, asarray=True).value
array([[1.]])

	[Mac]: After creating two new unsaved Workbooks with Workbook(), any Sheet, Range or Chart
object would always just access the latest one, even if the Workbook had been specified (GH63 [https://github.com/xlwings/xlwings/issues/63]).

	[Mac]: When xlwings was imported without ever instantiating a Workbook object, Excel would start upon
quitting the Python interpreter (GH51 [https://github.com/xlwings/xlwings/issues/51]).

	[Mac]: When installing xlwings, it now requires psutil to be at least version 2.0.0 (GH48 [https://github.com/xlwings/xlwings/issues/48]).

v0.2.1 (August 7, 2014)

API changes

None

Enhancements

	All VBA user settings have been reorganized into a section at the top of the VBA xlwings module:

PYTHON_WIN = ""
PYTHON_MAC = GetMacDir("Home") & "/anaconda/bin"
PYTHON_FROZEN = ThisWorkbook.Path & "\build\exe.win32-2.7"
PYTHONPATH = ThisWorkbook.Path
LOG_FILE = ThisWorkbook.Path & "\xlwings_log.txt"

	Calling Python from within Excel VBA is now also supported on Mac, i.e. Python functions can be called like
this: RunPython("import bar; bar.foo()"). Running frozen executables (RunFrozenPython) isn’t available
yet on Mac though.

Note that there is a slight difference in the way that this functionality behaves on Windows and Mac:

	Windows: After calling the Macro (e.g. by pressing a button), Excel waits until Python is done. In case there’s an
error in the Python code, a pop-up message is being shown with the traceback.

	Mac: After calling the Macro, the call returns instantly but Excel’s Status Bar turns into “Running…” during the
duration of the Python call. Python errors are currently not shown as a pop-up, but need to be checked in the
log file. I.e. if the Status Bar returns to its default (“Ready”) but nothing has happened, check out the log file
for the Python traceback.

Bug Fixes

None

Special thanks go to Georgi Petrov for helping with this release.

v0.2.0 (July 29, 2014)

API changes

None

Enhancements

	Cross-platform: xlwings is now additionally supporting Microsoft Excel for Mac. The only functionality that is not
yet available is the possibility to call the Python code from within Excel via VBA macros.

	The clear and clear_contents methods of the Workbook object now default to the active
sheet (GH5 [https://github.com/xlwings/xlwings/issues/5]):

wb = Workbook()
wb.clear_contents() # Clears contents of the entire active sheet

Bug Fixes

	DataFrames with MultiHeaders were sometimes getting truncated (GH41 [https://github.com/xlwings/xlwings/issues/41]).

v0.1.1 (June 27, 2014)

API Changes

	If asarray=True, NumPy arrays are now always at least 1d arrays, even in the case of a single cell (GH14 [https://github.com/xlwings/xlwings/issues/14]):

>>> Range('A1', asarray=True).value
array([34.])

	Similar to NumPy’s logic, 1d Ranges in Excel, i.e. rows or columns, are now being read in as flat lists or 1d arrays.
If you want the same behavior as before, you can use the atleast_2d keyword (GH13 [https://github.com/xlwings/xlwings/issues/13]).

Note

The table property is also delivering a 1d array/list, if the table Range is really a column or row.

[image: _images/1d_ranges.png]

>>> Range('A1').vertical.value
[1.0, 2.0, 3.0, 4.0]
>>> Range('A1', atleast_2d=True).vertical.value
[[1.0], [2.0], [3.0], [4.0]]
>>> Range('C1').horizontal.value
[1.0, 2.0, 3.0, 4.0]
>>> Range('C1', atleast_2d=True).horizontal.value
[[1.0, 2.0, 3.0, 4.0]]
>>> Range('A1', asarray=True).table.value
array([1., 2., 3., 4.])
>>> Range('A1', asarray=True, atleast_2d=True).table.value
array([[1.],
 [2.],
 [3.],
 [4.]])

	The single file approach has been dropped. xlwings is now a traditional Python package.

Enhancements

	xlwings is now officially suppported on Python 2.6-2.7 and 3.1-3.4

	Support for Pandas Series has been added (GH24 [https://github.com/xlwings/xlwings/issues/24]):

>>> import numpy as np
>>> import pandas as pd
>>> from xlwings import Workbook, Range
>>> wb = Workbook()
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.])
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
>>> Range('A1').value = s
>>> Range('D1', index=False).value = s

[image: _images/pandas_series.png]

	Excel constants have been added under their original Excel name, but categorized under their enum (GH18 [https://github.com/xlwings/xlwings/issues/18]),
e.g.:

Extra long version
import xlwings as xl
xl.constants.ChartType.xlArea

Long version
from xlwings import constants
constants.ChartType.xlArea

Short version
from xlwings import ChartType
ChartType.xlArea

	Slightly enhanced Chart support to control the ChartType (GH1 [https://github.com/xlwings/xlwings/issues/1]):

>>> from xlwings import Workbook, Range, Chart, ChartType
>>> wb = Workbook()
>>> Range('A1').value = [['one', 'two'],[10, 20]]
>>> my_chart = Chart().add(chart_type=ChartType.xlLine,
 name='My Chart',
 source_data=Range('A1').table)

alternatively, the properties can also be set like this:

>>> my_chart = Chart().add() # Existing Charts: my_chart = Chart('My Chart')
>>> my_chart.name = 'My Chart'
>>> my_chart.chart_type = ChartType.xlLine
>>> my_chart.set_source_data(Range('A1').table)

[image: _images/chart_type.png]

	pytz is no longer a dependency as datetime object are now being read in from Excel as time-zone naive (Excel
doesn’t know timezones). Before, datetime objects got the UTC timezone attached.

	The Workbook class has the following additional methods: close()

	The Range class has the following additional methods: is_cell(), is_column(), is_row(),
is_table()

Bug Fixes

	Writing None or np.nan to Excel works now (GH16 [https://github.com/xlwings/xlwings/issues/16] & GH15 [https://github.com/xlwings/xlwings/issues/15]).

	The import error on Python 3 has been fixed (GH26 [https://github.com/xlwings/xlwings/issues/26]).

	Python 3 now handles Pandas DataFrames with MultiIndex headers correctly (GH39 [https://github.com/xlwings/xlwings/issues/39]).

	Sometimes, a Pandas DataFrame was not handling nan correctly in Excel or numbers were being truncated
(GH31 [https://github.com/xlwings/xlwings/issues/31]) & (GH35 [https://github.com/xlwings/xlwings/issues/35]).

	Installation is now putting all files in the correct place (GH20 [https://github.com/xlwings/xlwings/issues/20]).

v0.1.0 (March 19, 2014)

Initial release of xlwings.

License

xlwings (Open Source)

xlwings (Open Source) is a distributed under a BSD-3-Clause license. xlwings (Open Source) includes all files in the xlwings package except the pro folder, i.e., the xlwings.pro subpackage.

	xlwings (Open Source) License [https://github.com/xlwings/xlwings/blob/main/LICENSE.txt]

xlwings PRO

xlwings PRO is source available [https://en.wikipedia.org/wiki/Source-available_software] and dual-licensed under one of the following licenses:

	PolyForm Noncommercial License 1.0.0 [https://polyformproject.org/licenses/noncommercial/1.0.0] (noncommercial use is free)

	xlwings PRO License [https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt] (commercial use requires a paid plan [https://www.xlwings.org/pricing])

Open Source Licenses

Depending on the platform and features that you use, xlwings requires various Open Source dependencies. Their licenses are listed here:

pywin32 (Windows only)

com subpackage

Unless stated in the specific source file, this work is
Copyright (c) 1996-2008, Greg Stein and Mark Hammond.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

Neither names of Greg Stein, Mark Hammond nor the name of contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS
IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

win32 subpackage

Unless stated in the specfic source file, this work is
Copyright (c) 1994-2008, Mark Hammond
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

Neither name of Mark Hammond nor the name of contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS
IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Pythonwin subpackage

Unless stated in the specfic source file, this work is
Copyright (c) 1994-2008, Mark Hammond
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

Neither name of Mark Hammond nor the name of contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS
IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

psutil (macOS only)

BSD 3-Clause License

Copyright (c) 2009, Jay Loden, Dave Daeschler, Giampaolo Rodola’
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the psutil authors nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Appscript (macOS only)

Appscript is released into the public domain, except for the following code:

	
portions of ae.c, which are Copyright (C) the original authors:

Original code taken from _AEmodule.c, _CFmodule.c, _Launchmodule.c

Copyright (C) 2001-2008 Python Software Foundation.

License: https://docs.python.org/3/license.html.

	
SendThreadSafe.h/SendThreadSafe.m, which are modified versions of Apple

code (https://developer.apple.com/library/archive/samplecode/AESendThreadSafe):

Written by: DTS

Copyright: Copyright (c) 2007 Apple Inc. All Rights Reserved.

Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc.

(“Apple”) in consideration of your agreement to the following
terms, and your use, installation, modification or
redistribution of this Apple software constitutes acceptance of
these terms. If you do not agree with these terms, please do
not use, install, modify or redistribute this Apple software.
In consideration of your agreement to abide by the following
terms, and subject to these terms, Apple grants you a personal,
non-exclusive license, under Apple’s copyrights in this
original Apple software (the “Apple Software”), to use,
reproduce, modify and redistribute the Apple Software, with or
without modifications, in source and/or binary forms; provided
that if you redistribute the Apple Software in its entirety and
without modifications, you must retain this notice and the
following text and disclaimers in all such redistributions of
the Apple Software. Neither the name, trademarks, service marks
or logos of Apple Inc. may be used to endorse or promote
products derived from the Apple Software without specific prior
written permission from Apple. Except as expressly stated in
this notice, no other rights or licenses, express or implied,
are granted by Apple herein, including but not limited to any
patent rights that may be infringed by your derivative works or
by other works in which the Apple Software may be incorporated.
The Apple Software is provided by Apple on an “AS IS” basis.

APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING
THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN
COMBINATION WITH YOUR PRODUCTS.
IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY
OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION
OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY
OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR
OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

cryptography (PRO only)

This software is made available under the terms of either of the licenses
found in LICENSE.APACHE or LICENSE.BSD. Contributions to cryptography are made
under the terms of both these licenses.

The code used in the OpenSSL locking callback and OS random engine is derived
from CPython, and is licensed under the terms of the PSF License Agreement.

LICENSE BSD:

Copyright (c) Individual contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of PyCA Cryptography nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

PSF License Agreement:

	This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and
the Individual or Organization (“Licensee”) accessing and otherwise using Python
2.7.12 software in source or binary form and its associated documentation.

	Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.12 alone or in any derivative
version, provided, however, that PSF’s License Agreement and PSF’s notice of
copyright, i.e., “Copyright © 2001-2016 Python Software Foundation; All Rights
Reserved” are retained in Python 2.7.12 alone or in any derivative version
prepared by Licensee.

	In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.12 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
2.7.12.

	PSF is making Python 2.7.12 available to Licensee on an “AS IS” basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON 2.7.12 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.12
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.12, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

	Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

	By copying, installing or otherwise using Python 2.7.12, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

Mistune

BSD 3-Clause License

Copyright (c) 2014, Hsiaoming Yang

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

	Neither the name of the creator nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

VBA-Dictionary

The MIT License (MIT)

Copyright (c) 2020 Tim Hall

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

VBA-Web

The MIT License (MIT)

Copyright (c) 2016-2019 Tim Hall

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Python API

Top-level functions

	
xlwings.load(index=1, header=1, chunksize=5000)

	Loads the selected cell(s) of the active workbook into a pandas DataFrame. If you
select a single cell that has adjacent cells, the range is auto-expanded (via
current region) and turned into a pandas DataFrame. If you don’t have pandas
installed, it returns the values as nested lists.

Note

Only use this in an interactive context like e.g. a Jupyter notebook! Don’t use
this in a script as it depends on the active book.

	Parameters

	
	index (bool or int, default 1) – Defines the number of columns on the left that will be turned into the
DataFrame’s index

	header (bool or int, default 1) – Defines the number of rows at the top that will be turned into the DataFrame’s
columns

	chunksize (int, default 5000) – Chunks the loading of big arrays.

Examples

>>> import xlwings as xw
>>> xw.load()

See also: view

Changed in version 0.23.1.

	
xlwings.view(obj, sheet=None, table=True, chunksize=5000)

	Opens a new workbook and displays an object on its first sheet by default. If you
provide a sheet object, it will clear the sheet before displaying the object on the
existing sheet.

Note

Only use this in an interactive context like e.g., a Jupyter notebook! Don’t use
this in a script as it depends on the active book.

	Parameters

	
	obj (any type with built-in converter) – the object to display, e.g. numbers, strings, lists, numpy arrays, pandas
DataFrames

	sheet (Sheet, default None) – Sheet object. If none provided, the first sheet of a new workbook is used.

	table (bool, default True) – If your object is a pandas DataFrame, by default it is formatted as an Excel
Table

	chunksize (int, default 5000) – Chunks the loading of big arrays.

Examples

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
>>> xw.view(df)

See also: load

Changed in version 0.22.0.

Object model

Apps

	
class xlwings.main.Apps(impl)

	A collection of all app objects:

>>> import xlwings as xw
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

	
property active

	Returns the active app.

New in version 0.9.0.

	
add(**kwargs)

	Creates a new App. The new App becomes the active one. Returns an App object.

	
property count

	Returns the number of apps.

New in version 0.9.0.

	
keys()

	Provides the PIDs of the Excel instances
that act as keys in the Apps collection.

New in version 0.13.0.

App

	
class xlwings.App(visible=None, spec=None, add_book=True, impl=None)

	An app corresponds to an Excel instance and should normally be used as context
manager to make sure that everything is properly cleaned up again and to prevent
zombie processes. New Excel instances can be fired up like so:

import xlwings as xw

with xw.App() as app:
 print(app.books)

An app object is a member of the apps collection:

>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])
>>> xw.apps[1668] # get the available PIDs via xw.apps.keys()
<Excel App 1668>
>>> xw.apps.active
<Excel App 1668>

	Parameters

	
	visible (bool, default None) – Returns or sets a boolean value that determines whether the app is visible. The
default leaves the state unchanged or sets visible=True if the object doesn’t
exist yet.

	spec (str, default None) – Mac-only, use the full path to the Excel application,
e.g. /Applications/Microsoft Office 2011/Microsoft Excel or
/Applications/Microsoft Excel

On Windows, if you want to change the version of Excel that xlwings talks to, go
to Control Panel > Programs and Features and Repair the Office version
that you want as default.

Note

On Mac, while xlwings allows you to run multiple instances of Excel, it’s a
feature that is not officially supported by Excel for Mac: Unlike on Windows,
Excel will not ask you to open a read-only version of a file if it is already
open in another instance. This means that you need to watch out yourself so
that the same file is not being overwritten from different instances.

	
activate(steal_focus=False)

	Activates the Excel app.

	Parameters

	steal_focus (bool, default False) – If True, make frontmost application
and hand over focus from Python to Excel.

New in version 0.9.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.9.0.

	
property books

	A collection of all Book objects that are currently open.

New in version 0.9.0.

	
calculate()

	Calculates all open books.

New in version 0.3.6.

	
property calculation

	Returns or sets a calculation value that represents the calculation mode.
Modes: 'manual', 'automatic', 'semiautomatic'

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.app.calculation = 'manual'

Changed in version 0.9.0.

	
property cut_copy_mode

	Gets or sets the status of the cut or copy mode.
Accepts False for setting and returns None,
copy or cut when getting the status.

New in version 0.24.0.

	
property display_alerts

	The default value is True. Set this property to False to suppress prompts and
alert messages while code is running; when a message requires a response, Excel
chooses the default response.

New in version 0.9.0.

	
property enable_events

	True if events are enabled. Read/write boolean.

New in version 0.24.4.

	
property hwnd

	Returns the Window handle (Windows-only).

New in version 0.9.0.

	
property interactive

	True if Excel is in interactive mode. If you set this property to False,
Excel blocks all input from the keyboard and mouse (except input to dialog boxes
that are displayed by your code). Read/write Boolean.
NOTE: Not supported on macOS.

New in version 0.24.4.

	
kill()

	Forces the Excel app to quit by killing its process.

New in version 0.9.0.

	
macro(name)

	Runs a Sub or Function in Excel VBA that are not part of a specific workbook
but e.g. are part of an add-in.

	Parameters

	name (Name of Sub or Function with or without module name,) – e.g., 'Module1.MyMacro' or 'MyMacro'

Examples

This VBA function:

Function MySum(x, y)
 MySum = x + y
End Function

can be accessed like this:

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

Types are supported too:

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

However typed arrays are not supported. So the following won’t work

Function MySum(arr() as integer)
 ' code here
End Function

See also: Book.macro()

New in version 0.9.0.

	
property pid

	Returns the PID of the app.

New in version 0.9.0.

	
properties(**kwargs)

	Context manager that allows you to easily change the app’s properties
temporarily. Once the code leaves the with block, the properties are changed
back to their previous state.
Note: Must be used as context manager or else will have no effect. Also, you can
only use app properties that you can both read and write.

Examples

import xlwings as xw
app = App()

Sets app.display_alerts = False
with app.properties(display_alerts=False):
 # do stuff

Sets app.calculation = 'manual' and app.enable_events = True
with app.properties(calculation='manual', enable_events=True):
 # do stuff

Makes sure the status bar is reset even if an error happens in the with block
with app.properties(status_bar='Calculating...'):
 # do stuff

New in version 0.24.4.

	
quit()

	Quits the application without saving any workbooks.

New in version 0.3.3.

	
range(cell1, cell2=None)

	Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

	
render_template(template=None, output=None, book_settings=None, **data)

	This function requires xlwings PRO.

This is a convenience wrapper around mysheet.render_template

Writes the values of all key word arguments to the output file according to
the template and the variables contained in there (Jinja variable syntax).
Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, pictures
and Matplotlib/Plotly figures.

	Parameters

	
	template (str or path-like object) – Path to your Excel template, e.g. r'C:\Path\to\my_template.xlsx'

	output (str or path-like object) – Path to your Report, e.g. r'C:\Path\to\my_report.xlsx'

	book_settings (dict, default None) – A dictionary of xlwings.Book parameters, for details see:
xlwings.Book.
For example: book_settings={'update_links': False}.

	data (kwargs) – All key/value pairs that are used in the template.

	Returns

	wb

	Return type

	xlwings Book

New in version 0.24.4.

	
property screen_updating

	Turn screen updating off to speed up your script. You won’t be able to see what
the script is doing, but it will run faster. Remember to set the screen_updating
property back to True when your script ends.

New in version 0.3.3.

	
property selection

	Returns the selected cells as Range.

New in version 0.9.0.

	
property startup_path

	Returns the path to XLSTART which is where the xlwings add-in gets
copied to by doing xlwings addin install.

New in version 0.19.4.

	
property status_bar

	Gets or sets the value of the status bar.
Returns False if Excel has control of it.

New in version 0.20.0.

	
property version

	Returns the Excel version number object.

Examples

>>> import xlwings as xw
>>> xw.App().version
VersionNumber('15.24')
>>> xw.apps[10559].version.major
15

Changed in version 0.9.0.

	
property visible

	Gets or sets the visibility of Excel to True or False.

New in version 0.3.3.

Books

	
class xlwings.main.Books(impl)

	A collection of all book objects:

>>> import xlwings as xw
>>> xw.books # active app
Books([<Book [Book1]>, <Book [Book2]>])
>>> xw.apps[10559].books # specific app, get the PIDs via xw.apps.keys()
Books([<Book [Book1]>, <Book [Book2]>])

New in version 0.9.0.

	
property active

	Returns the active Book.

	
add()

	Creates a new Book. The new Book becomes the active Book. Returns a Book object.

	
open(fullname=None, update_links=None, read_only=None, format=None, password=None, write_res_password=None, ignore_read_only_recommended=None, origin=None, delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None, local=None, corrupt_load=None, json=None)

	Opens a Book if it is not open yet and returns it. If it is already open,
it doesn’t raise an exception but simply returns the Book object.

	Parameters

	
	fullname (str or path-like object) – filename or fully qualified filename, e.g. r'C:\path\to\file.xlsx'
or 'file.xlsm'. Without a full path, it looks for the file in the
current working directory.

	Parameters (Other) – see: xlwings.Book()

	Returns

	Book

	Return type

	Book that has been opened.

Book

	
class xlwings.Book(fullname=None, update_links=None, read_only=None, format=None, password=None, write_res_password=None, ignore_read_only_recommended=None, origin=None, delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None, local=None, corrupt_load=None, impl=None, json=None)

	A book object is a member of the books collection:

>>> import xlwings as xw
>>> xw.books[0]
<Book [Book1]>

The easiest way to connect to a book is offered by xw.Book: it looks for the
book in all app instances and returns an error, should the same book be open in
multiple instances. To connect to a book in the active app instance, use
xw.books and to refer to a specific app, use:

>>> app = xw.App() # or xw.apps[10559] (get the PIDs via xw.apps.keys())
>>> app.books['Book1']

	
	xw.Book

	xw.books

	New book

	xw.Book()

	xw.books.add()

	Unsaved book

	xw.Book('Book1')

	xw.books['Book1']

	Book by (full)name

	xw.Book(r'C:/path/to/file.xlsx')

	xw.books.open(r'C:/path/to/file.xlsx')

	Parameters

	
	fullname (str or path-like object, default None) – Full path or name (incl. xlsx, xlsm etc.) of existing workbook or name of an
unsaved workbook. Without a full path, it looks for the file in the current
working directory.

	update_links (bool, default None) – If this argument is omitted, the user is prompted to specify how links will be
updated

	read_only (bool, default False) – True to open workbook in read-only mode

	format (str) – If opening a text file, this specifies the delimiter character

	password (str) – Password to open a protected workbook

	write_res_password (str) – Password to write to a write-reserved workbook

	ignore_read_only_recommended (bool, default False) – Set to True to mute the read-only recommended message

	origin (int) – For text files only. Specifies where it originated. Use Platform constants.

	delimiter (str) – If format argument is 6, this specifies the delimiter.

	editable (bool, default False) – This option is only for legacy Microsoft Excel 4.0 addins.

	notify (bool, default False) – Notify the user when a file becomes available If the file cannot be opened in
read/write mode.

	converter (int) – The index of the first file converter to try when opening the file.

	add_to_mru (bool, default False) – Add this workbook to the list of recently added workbooks.

	local (bool, default False) – If True, saves files against the language of Excel, otherwise against the
language of VBA. Not supported on macOS.

	corrupt_load (int, default xlNormalLoad) – Can be one of xlNormalLoad, xlRepairFile or xlExtractData.
Not supported on macOS.

	json (dict) – A JSON object as delivered by the MS Office Scripts or Google Apps Script
xlwings module but in a deserialized form, i.e., as dictionary.

New in version 0.26.0.

	
activate(steal_focus=False)

	Activates the book.

	Parameters

	steal_focus (bool, default False) – If True, make frontmost window and hand over focus from Python to Excel.

	
property api

	Returns the native object (pywin32 or appscript obj) of the engine being
used.

New in version 0.9.0.

	
property app

	Returns an app object that represents the creator of the book.

New in version 0.9.0.

	
classmethod caller()

	References the calling book when the Python function is called from Excel via
RunPython. Pack it into the function being called from Excel, e.g.:

import xlwings as xw

 def my_macro():
 wb = xw.Book.caller()
 wb.sheets[0].range('A1').value = 1

To be able to easily invoke such code from Python for debugging, use
xw.Book.set_mock_caller().

New in version 0.3.0.

	
close()

	Closes the book without saving it.

New in version 0.1.1.

	
property fullname

	Returns the name of the object, including its path on disk, as a string.
Read-only String.

	
json()

	Returns a JSON serializable object as expected by the MS Office Scripts or
Google Apps Script xlwings module. Only available with book objects that have
been instantiated via xw.Book(json=...).

New in version 0.26.0.

	
macro(name)

	Runs a Sub or Function in Excel VBA.

	Parameters

	
	name (Name of Sub or Function with or without module name, e.g.,) –

	'MyMacro' ('Module1.MyMacro' or) –

Examples

This VBA function:

Function MySum(x, y)
 MySum = x + y
End Function

can be accessed like this:

>>> import xlwings as xw
>>> wb = xw.books.active
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3

See also: App.macro()

New in version 0.7.1.

	
property name

	Returns the name of the book as str.

	
property names

	Returns a names collection that represents all the names in the specified book
(including all sheet-specific names).

Changed in version 0.9.0.

	
render_template(**data)

	This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the book
with the keyword argument of the same name.

New in version 0.25.0.

	Parameters

	data (kwargs) – All key/value pairs that are used in the template.

Examples

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.render_template(myvar='test')

	
save(path=None, password=None)

	Saves the Workbook. If a path is being provided, this works like SaveAs() in
Excel. If no path is specified and if the file hasn’t been saved previously,
it’s being saved in the current working directory with the current filename.
Existing files are overwritten without prompting.

	Parameters

	
	path (str or path-like object, default None) – Full path to the workbook

	password (str, default None) – Protection password with max. 15 characters

New in version 0.25.1.

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.save()
>>> wb.save(r'C:\path\to\new_file_name.xlsx')

New in version 0.3.1.

	
property selection

	Returns the selected cells as Range.

New in version 0.9.0.

	
set_mock_caller()

	Sets the Excel file which is used to mock xw.Book.caller() when the code is
called from Python and not from Excel via RunPython.

Examples

This code runs unchanged from Excel via RunPython and from Python directly
import os
import xlwings as xw

def my_macro():
 sht = xw.Book.caller().sheets[0]
 sht.range('A1').value = 'Hello xlwings!'

if __name__ == '__main__':
 xw.Book('file.xlsm').set_mock_caller()
 my_macro()

New in version 0.3.1.

	
property sheets

	Returns a sheets collection that represents all the sheets in the book.

New in version 0.9.0.

	
to_pdf(path=None, include=None, exclude=None, layout=None, exclude_start_string='#', show=False, quality='standard')

	Exports the whole Excel workbook or a subset of the sheets to a PDF file.
If you want to print hidden sheets, you will need to list them explicitely
under include.

	Parameters

	
	path (str or path-like object, default None) – Path to the PDF file, defaults to the same name as the workbook, in the same
directory. For unsaved workbooks, it defaults to the current working
directory instead.

	include (int or str or list, default None) – Which sheets to include: provide a selection of sheets in the form of sheet
indices (1-based like in Excel) or sheet names. Can be an int/str for a
single sheet or a list of int/str for multiple sheets.

	exclude (int or str or list, default None) – Which sheets to exclude: provide a selection of sheets in the form of sheet
indices (1-based like in Excel) or sheet names. Can be an int/str for a
single sheet or a list of int/str for multiple sheets.

	layout (str or path-like object, default None) – This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for
headers and footers as well as borderless printing of graphics/artwork. The
PDF file either needs to have only 1 page (every report page uses the same
layout) or otherwise needs the same amount of pages as the report (each
report page is printed on the respective page in the layout PDF).

New in version 0.24.3.

	exclude_start_string (str, default '#') – Sheet names that start with this character/string will not be printed.

New in version 0.24.4.

	show (bool, default False) – Once created, open the PDF file with the default application.

New in version 0.24.6.

	quality (str, default 'standard') – Quality of the PDF file. Can either be 'standard' or 'minimum'.

New in version 0.26.2.

Examples

>>> wb = xw.Book()
>>> wb.sheets[0]['A1'].value = 'PDF'
>>> wb.to_pdf()

See also xlwings.Sheet.to_pdf()

New in version 0.21.1.

PageSetup

	
class xlwings.main.PageSetup(impl)

	
	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.24.2.

	
property print_area

	Gets or sets the range address that defines the print area.

Examples

>>> mysheet.page_setup.print_area = 'A1:B3'
>>> mysheet.page_setup.print_area
'A1:B3'
>>> mysheet.page_setup.print_area = None # clear the print_area

New in version 0.24.2.

Sheets

	
class xlwings.main.Sheets(impl)

	A collection of all sheet objects:

>>> import xlwings as xw
>>> xw.sheets # active book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])
>>> xw.Book('Book1').sheets # specific book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])

New in version 0.9.0.

	
property active

	Returns the active Sheet.

	
add(name=None, before=None, after=None)

	Creates a new Sheet and makes it the active sheet.

	Parameters

	
	name (str, default None) – Name of the new sheet. If None, will default to Excel’s default name.

	before (Sheet, default None) – An object that specifies the sheet before which the new sheet is added.

	after (Sheet, default None) – An object that specifies the sheet after which the new sheet is added.

Sheet

	
class xlwings.Sheet(sheet=None, impl=None)

	A sheet object is a member of the sheets collection:

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets[0]
<Sheet [Book1]Sheet1>
>>> wb.sheets['Sheet1']
<Sheet [Book1]Sheet1>
>>> wb.sheets.add()
<Sheet [Book1]Sheet2>

Changed in version 0.9.0.

	
activate()

	Activates the Sheet and returns it.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.9.0.

	
autofit(axis=None)

	Autofits the width of either columns, rows or both on a whole Sheet.

	Parameters

	axis (string, default None) –
	To autofit rows, use one of the following: rows or r

	To autofit columns, use one of the following: columns or c

	To autofit rows and columns, provide no arguments

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets['Sheet1'].autofit('c')
>>> wb.sheets['Sheet1'].autofit('r')
>>> wb.sheets['Sheet1'].autofit()

New in version 0.2.3.

	
property book

	Returns the Book of the specified Sheet. Read-only.

	
property cells

	Returns a Range object that represents all the cells on the Sheet
(not just the cells that are currently in use).

New in version 0.9.0.

	
property charts

	See Charts

New in version 0.9.0.

	
clear()

	Clears the content and formatting of the whole sheet.

	
clear_contents()

	Clears the content of the whole sheet but leaves the formatting.

	
clear_formats()

	Clears the format of the whole sheet but leaves the content.

New in version 0.26.2.

	
copy(before=None, after=None, name=None)

	Copy a sheet to the current or a new Book. By default, it places the copied
sheet after all existing sheets in the current Book. Returns the copied sheet.

New in version 0.22.0.

	Parameters

	
	before (sheet object, default None) – The sheet object before which you want to place the sheet

	after (sheet object, default None) – The sheet object after which you want to place the sheet,
by default it is placed after all existing sheets

	name (str, default None) – The sheet name of the copy

	Returns

	Sheet object – The copied sheet

	Return type

	Sheet

Examples

Create two books and add a value to the first sheet of the first book
first_book = xw.Book()
second_book = xw.Book()
first_book.sheets[0]['A1'].value = 'some value'

Copy to same Book with the default location and name
first_book.sheets[0].copy()

Copy to same Book with custom sheet name
first_book.sheets[0].copy(name='copied')

Copy to second Book requires to use before or after
first_book.sheets[0].copy(after=second_book.sheets[0])

	
delete()

	Deletes the Sheet.

	
property index

	Returns the index of the Sheet (1-based as in Excel).

	
property name

	Gets or sets the name of the Sheet.

	
property names

	Returns a names collection that represents all the sheet-specific names
(names defined with the “SheetName!” prefix).

New in version 0.9.0.

	
property page_setup

	Returns a PageSetup object.

New in version 0.24.2.

	
property pictures

	See Pictures

New in version 0.9.0.

	
range(cell1, cell2=None)

	Returns a Range object from the active sheet of the active book,
see Range().

New in version 0.9.0.

	
render_template(**data)

	This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the sheet with the keyword
argument that has the same name. Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames,
PIL Image objects that have a filename and Matplotlib figures.

New in version 0.22.0.

	Parameters

	data (kwargs) – All key/value pairs that are used in the template.

Examples

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.sheets[0].render_template(myvar='test')

	
select()

	Selects the Sheet. Select only works on the active book.

New in version 0.9.0.

	
property shapes

	See Shapes

New in version 0.9.0.

	
property tables

	See Tables

New in version 0.21.0.

	
to_pdf(path=None, layout=None, show=False, quality='standard')

	Exports the sheet to a PDF file.

	Parameters

	
	path (str or path-like object, default None) – Path to the PDF file, defaults to the name of the sheet in the same
directory of the workbook. For unsaved workbooks, it defaults to the current
working directory instead.

	layout (str or path-like object, default None) – This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for
headers and footers as well as borderless printing of graphics/artwork. The
PDF file either needs to have only 1 page (every report page uses the same
layout) or otherwise needs the same amount of pages as the report (each
report page is printed on the respective page in the layout PDF).

New in version 0.24.3.

	show (bool, default False) – Once created, open the PDF file with the default application.

New in version 0.24.6.

	quality (str, default 'standard') – Quality of the PDF file. Can either be 'standard' or 'minimum'.

New in version 0.26.2.

Examples

>>> wb = xw.Book()
>>> sheet = wb.sheets[0]
>>> sheet['A1'].value = 'PDF'
>>> sheet.to_pdf()

See also xlwings.Book.to_pdf()

New in version 0.22.3.

	
property used_range

	Used Range of Sheet.

	Returns

	

	Return type

	xw.Range

New in version 0.13.0.

	
property visible

	Gets or sets the visibility of the Sheet (bool).

New in version 0.21.1.

Range

	
class xlwings.Range(cell1=None, cell2=None, **options)

	Returns a Range object that represents a cell or a range of cells.

	Parameters

	
	cell1 (str or tuple or Range) – Name of the range in the upper-left corner in A1 notation or as index-tuple or
as name or as xw.Range object. It can also specify a range using the range
operator (a colon), .e.g. ‘A1:B2’

	cell2 (str or tuple or Range, default None) – Name of the range in the lower-right corner in A1 notation or as index-tuple or
as name or as xw.Range object.

Examples

Active Sheet:

import xlwings as xw
xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))
xw.Range((1,1), (3,3))
xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

Specific Sheet:

xw.books['MyBook.xlsx'].sheets[0].range('A1')

	
add_hyperlink(address, text_to_display=None, screen_tip=None)

	Adds a hyperlink to the specified Range (single Cell)

	Parameters

	
	address (str) – The address of the hyperlink.

	text_to_display (str, default None) – The text to be displayed for the hyperlink. Defaults to the hyperlink
address.

	screen_tip (str, default None) – The screen tip to be displayed when the mouse pointer is paused over the
hyperlink. Default is set to ‘<address> - Click once to follow. Click and
hold to select this cell.’

New in version 0.3.0.

	
property address

	Returns a string value that represents the range reference.
Use get_address() to be able to provide paramaters.

New in version 0.9.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.9.0.

	
autofit()

	Autofits the width and height of all cells in the range.

	To autofit only the width of the columns use
xw.Range('A1:B2').columns.autofit()

	To autofit only the height of the rows use
xw.Range('A1:B2').rows.autofit()

Changed in version 0.9.0.

	
clear()

	Clears the content and the formatting of a Range.

	
clear_contents()

	Clears the content of a Range but leaves the formatting.

	
clear_formats()

	Clears the format of a Range but leaves the content.

New in version 0.26.2.

	
property color

	Gets and sets the background color of the specified Range.

To set the color, either use an RGB tuple (0, 0, 0) or a hex string
like #efefef or an Excel color constant.
To remove the background, set the color to None, see Examples.

	Returns

	RGB

	Return type

	tuple

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').color = (255, 255, 255) # or '#ffffff'
>>> xw.Range('A2').color
(255, 255, 255)
>>> xw.Range('A2').color = None
>>> xw.Range('A2').color is None
True

New in version 0.3.0.

	
property column

	Returns the number of the first column in the in the specified range. Read-only.

	Returns

	

	Return type

	Integer

New in version 0.3.5.

	
property column_width

	Gets or sets the width, in characters, of a Range.
One unit of column width is equal to the width of one character in the Normal
style. For proportional fonts, the width of the character 0 (zero) is used.

If all columns in the Range have the same width, returns the width.
If columns in the Range have different widths, returns None.

column_width must be in the range:
0 <= column_width <= 255

Note: If the Range is outside the used range of the Worksheet, and columns in
the Range have different widths, returns the width of the first column.

	Returns

	

	Return type

	float

New in version 0.4.0.

	
property columns

	Returns a RangeColumns object that represents the columns in the
specified range.

New in version 0.9.0.

	
copy(destination=None)

	Copy a range to a destination range or clipboard.

	Parameters

	destination (xlwings.Range) – xlwings Range to which the specified range will be copied. If omitted,
the range is copied to the clipboard.

	Returns

	

	Return type

	None

	
copy_picture(appearance='screen', format='picture')

	Copies the range to the clipboard as picture.

	Parameters

	
	appearance (str, default 'screen') – Either ‘screen’ or ‘printer’.

	format (str, default 'picture') – Either ‘picture’ or ‘bitmap’.

New in version 0.24.8.

	
property count

	Returns the number of cells.

	
property current_region

	This property returns a Range object representing a range bounded by (but not
including) any combination of blank rows and blank columns or the edges of the
worksheet. It corresponds to Ctrl-* on Windows and Shift-Ctrl-Space on
Mac.

	Returns

	

	Return type

	Range object

	
delete(shift=None)

	Deletes a cell or range of cells.

	Parameters

	shift (str, default None) – Use left or up. If omitted, Excel decides based on the shape of
the range.

	Returns

	

	Return type

	None

	
end(direction)

	Returns a Range object that represents the cell at the end of the region that
contains the source range. Equivalent to pressing Ctrl+Up, Ctrl+down,
Ctrl+left, or Ctrl+right.

	Parameters

	direction (One of 'up', 'down', 'right', 'left') –

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1:B2').value = 1
>>> xw.Range('A1').end('down')
<Range [Book1]Sheet1!A2>
>>> xw.Range('B2').end('right')
<Range [Book1]Sheet1!B2>

New in version 0.9.0.

	
expand(mode='table')

	Expands the range according to the mode provided. Ignores empty top-left cells
(unlike Range.end()).

	Parameters

	mode (str, default 'table') – One of 'table' (=down and right), 'down', 'right'.

	Returns

	

	Return type

	Range

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value = [[None, 1], [2, 3]]
>>> xw.Range('A1').expand().address
A1:B2
>>> xw.Range('A1').expand('right').address
A1:B1

New in version 0.9.0.

	
property formula

	Gets or sets the formula for the given Range.

	
property formula2

	Gets or sets the formula2 for the given Range.

	
property formula_array

	Gets or sets an array formula for the given Range.

New in version 0.7.1.

	
get_address(row_absolute=True, column_absolute=True, include_sheetname=False, external=False)

	Returns the address of the range in the specified format. address can be
used instead if none of the defaults need to be changed.

	Parameters

	
	row_absolute (bool, default True) – Set to True to return the row part of the reference as an absolute
reference.

	column_absolute (bool, default True) – Set to True to return the column part of the reference as an absolute
reference.

	include_sheetname (bool, default False) – Set to True to include the Sheet name in the address. Ignored if
external=True.

	external (bool, default False) – Set to True to return an external reference with workbook and worksheet
name.

	Returns

	

	Return type

	str

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range((1,1)).get_address()
'A1'
>>> xw.Range((1,1)).get_address(False, False)
'A1'
>>> xw.Range((1,1), (3,3)).get_address(True, False, True)
'Sheet1!A$1:C$3'
>>> xw.Range((1,1), (3,3)).get_address(True, False, external=True)
'[Book1]Sheet1!A$1:C$3'

New in version 0.2.3.

	
property has_array

	True if the range is part of a legacy CSE Array formula
and False otherwise.

	
property height

	Returns the height, in points, of a Range. Read-only.

	Returns

	

	Return type

	float

New in version 0.4.0.

	
property hyperlink

	Returns the hyperlink address of the specified Range (single Cell only)

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value
'www.xlwings.org'
>>> xw.Range('A1').hyperlink
'http://www.xlwings.org'

New in version 0.3.0.

	
insert(shift=None, copy_origin='format_from_left_or_above')

	Insert a cell or range of cells into the sheet.

	Parameters

	
	shift (str, default None) – Use right or down. If omitted, Excel decides based on the shape of
the range.

	copy_origin (str, default format_from_left_or_above) – Use format_from_left_or_above or format_from_right_or_below.
Note that this is not supported on macOS.

	Returns

	

	Return type

	None

	
property last_cell

	Returns the bottom right cell of the specified range. Read-only.

	Returns

	

	Return type

	Range

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> rng = xw.Range('A1:E4')
>>> rng.last_cell.row, rng.last_cell.column
(4, 5)

New in version 0.3.5.

	
property left

	Returns the distance, in points, from the left edge of column A to the left
edge of the range. Read-only.

	Returns

	

	Return type

	float

New in version 0.6.0.

	
merge(across=False)

	Creates a merged cell from the specified Range object.

	Parameters

	across (bool, default False) – True to merge cells in each row of the specified Range as separate merged
cells.

	
property merge_area

	Returns a Range object that represents the merged Range containing the
specified cell. If the specified cell isn’t in a merged range, this property
returns the specified cell.

	
property merge_cells

	Returns True if the Range contains merged cells, otherwise False

	
property name

	Sets or gets the name of a Range.

New in version 0.4.0.

	
property note

	Returns a Note object.
Before the introduction of threaded comments, a Note was called a Comment.

New in version 0.24.2.

	
property number_format

	Gets and sets the number_format of a Range.

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').number_format
'General'
>>> xw.Range('A1:C3').number_format = '0.00%'
>>> xw.Range('A1:C3').number_format
'0.00%'

New in version 0.2.3.

	
offset(row_offset=0, column_offset=0)

	Returns a Range object that represents a Range that’s offset from the
specified range.

	Returns

	Range object

	Return type

	Range

New in version 0.3.0.

	
options(convert=None, **options)

	Allows you to set a converter and their options. Converters define how Excel
Ranges and their values are being converted both during reading and writing
operations. If no explicit converter is specified, the base converter is being
applied, see Converters and Options.

	Parameters

	convert (object, default None) – A converter, e.g. dict, np.array, pd.DataFrame, pd.Series,
defaults to default converter

	Keyword Arguments

	
	ndim (int, default None) – number of dimensions

	numbers (type, default None) – type of numbers, e.g. int

	dates (type, default None) – e.g. datetime.date defaults to datetime.datetime

	empty (object, default None) – transformation of empty cells

	transpose (Boolean, default False) – transpose values

	expand (str, default None) – One of 'table', 'down', 'right'

	chunksize (int) –
	Use a chunksize, e.g. 10000 to prevent timeout or memory issues when
	reading or writing large amounts of data. Works with all formats, including
DataFrames, NumPy arrays, and list of lists.

=> For converter-specific options, see Converters and Options.

	Returns

	

	Return type

	Range object

New in version 0.7.0.

	
paste(paste=None, operation=None, skip_blanks=False, transpose=False)

	Pastes a range from the clipboard into the specified range.

	Parameters

	
	paste (str, default None) – One of all_merging_conditional_formats, all, all_except_borders,
all_using_source_theme, column_widths, comments, formats,
formulas, formulas_and_number_formats, validation, values,
values_and_number_formats.

	operation (str, default None) – One of “add”, “divide”, “multiply”, “subtract”.

	skip_blanks (bool, default False) – Set to True to skip over blank cells

	transpose (bool, default False) – Set to True to transpose rows and columns.

	Returns

	

	Return type

	None

	
property raw_value

	Gets and sets the values directly as delivered from/accepted by the engine that
s being used (pywin32 or appscript) without going through any of
xlwings’ data cleaning/converting. This can be helpful if speed is an issue but
naturally will be engine specific, i.e. might remove the cross-platform
compatibility.

	
resize(row_size=None, column_size=None)

	Resizes the specified Range

	Parameters

	
	row_size (int > 0) – The number of rows in the new range (if None, the number of rows in the
range is unchanged).

	column_size (int > 0) – The number of columns in the new range (if None, the number of columns in
the range is unchanged).

	Returns

	Range object

	Return type

	Range

New in version 0.3.0.

	
property row

	Returns the number of the first row in the specified range. Read-only.

	Returns

	

	Return type

	Integer

New in version 0.3.5.

	
property row_height

	Gets or sets the height, in points, of a Range.
If all rows in the Range have the same height, returns the height.
If rows in the Range have different heights, returns None.

row_height must be in the range:
0 <= row_height <= 409.5

Note: If the Range is outside the used range of the Worksheet, and rows in the
Range have different heights, returns the height of the first row.

	Returns

	

	Return type

	float

New in version 0.4.0.

	
property rows

	Returns a RangeRows object that represents the rows in the specified
range.

New in version 0.9.0.

	
select()

	Selects the range. Select only works on the active book.

New in version 0.9.0.

	
property shape

	Tuple of Range dimensions.

New in version 0.3.0.

	
property sheet

	Returns the Sheet object to which the Range belongs.

New in version 0.9.0.

	
property size

	Number of elements in the Range.

New in version 0.3.0.

	
property table

	Returns a Table object if the range is part of one, otherwise None.

New in version 0.21.0.

	
to_pdf(path=None, layout=None, show=None, quality='standard')

	Exports the range as PDF.

	Parameters

	
	path (str or path-like, default None) – Path where you want to store the pdf. Defaults to the address of the range
in the same directory as the Excel file if the Excel file is stored and to
the current working directory otherwise.

	layout (str or path-like object, default None) – This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for
headers and footers as well as borderless printing of graphics/artwork. The
PDF file either needs to have only 1 page (every report page uses the same
layout) or otherwise needs the same amount of pages as the report (each
report page is printed on the respective page in the layout PDF).

	show (bool, default False) – Once created, open the PDF file with the default application.

	quality (str, default 'standard') – Quality of the PDF file. Can either be 'standard' or 'minimum'.

New in version 0.26.2.

	
to_png(path=None)

	Exports the range as PNG picture.

	Parameters

	path (str or path-like, default None) – Path where you want to store the picture. Defaults to the name of the range
in the same directory as the Excel file if the Excel file is stored and to
the current working directory otherwise.

New in version 0.24.8.

	
property top

	Returns the distance, in points, from the top edge of row 1 to the top edge of
the range. Read-only.

	Returns

	

	Return type

	float

New in version 0.6.0.

	
unmerge()

	Separates a merged area into individual cells.

	
property value

	Gets and sets the values for the given Range. See xlwings.Range.options()
about how to set options, e.g., to transform it into a DataFrame or how to set
a chunksize.

	Returns

	object – see xlwings.Range.options()

	Return type

	returned object depends on the converter being used,

	
property width

	Returns the width, in points, of a Range. Read-only.

	Returns

	

	Return type

	float

New in version 0.4.0.

	
property wrap_text

	Returns True if the wrap_text property is enabled and False if it’s
disabled. If not all cells have the same value in a range, on Windows it returns
None and on macOS False.

New in version 0.23.2.

RangeRows

	
class xlwings.RangeRows(rng)

	Represents the rows of a range. Do not construct this class directly, use
Range.rows instead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.rows) == 4 # or rng.rows.count

rng.rows[0].value = 'a'

assert rng.rows[2] == xw.Range('A3:C3')
assert rng.rows(2) == xw.Range('A2:C2')

for r in rng.rows:
 print(r.address)

	
autofit()

	Autofits the height of the rows.

	
property count

	Returns the number of rows.

New in version 0.9.0.

RangeColumns

	
class xlwings.RangeColumns(rng)

	Represents the columns of a range. Do not construct this class directly, use
Range.columns instead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.columns) == 3 # or rng.columns.count

rng.columns[0].value = 'a'

assert rng.columns[2] == xw.Range('C1:C4')
assert rng.columns(2) == xw.Range('B1:B4')

for c in rng.columns:
 print(c.address)

	
autofit()

	Autofits the width of the columns.

	
property count

	Returns the number of columns.

New in version 0.9.0.

Shapes

	
class xlwings.main.Shapes(impl)

	A collection of all shape objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].shapes
Shapes([<Shape 'Oval 1' in <Sheet [Book1]Sheet1>>,
 <Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

	
property count

	Returns the number of objects in the collection.

Shape

	
class xlwings.Shape(*args, **options)

	The shape object is a member of the shapes collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.shapes[0] # or sht.shapes['ShapeName']
<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

	
activate()

	Activates the shape.

New in version 0.5.0.

	
property api

	Returns the native object (pywin32 or appscript obj) of the engine
being used.

New in version 0.19.2.

	
delete()

	Deletes the shape.

New in version 0.5.0.

	
property height

	Returns or sets the number of points that represent the height of the shape.

New in version 0.5.0.

	
property left

	Returns or sets the number of points that represent the horizontal position of
the shape.

New in version 0.5.0.

	
property name

	Returns or sets the name of the shape.

New in version 0.5.0.

	
property parent

	Returns the parent of the shape.

New in version 0.9.0.

	
scale_height(factor, relative_to_original_size=False, scale='scale_from_top_left')

	
	factorfloat
	For example 1.5 to scale it up to 150%

	relative_to_original_sizebool, optional
	If False, it scales relative to current height (default).
For True must be a picture or OLE object.

	scalestr, optional
	One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

New in version 0.19.2.

	
scale_width(factor, relative_to_original_size=False, scale='scale_from_top_left')

	
	factorfloat
	For example 1.5 to scale it up to 150%

	relative_to_original_sizebool, optional
	If False, it scales relative to current width (default).
For True must be a picture or OLE object.

	scalestr, optional
	One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

New in version 0.19.2.

	
property text

	Returns or sets the text of a shape.

New in version 0.21.4.

	
property top

	Returns or sets the number of points that represent the vertical position of
the shape.

New in version 0.5.0.

	
property type

	Returns the type of the shape.

New in version 0.9.0.

	
property width

	Returns or sets the number of points that represent the width of the shape.

New in version 0.5.0.

Charts

	
class xlwings.main.Charts(impl)

	A collection of all chart objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].charts
Charts([<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>,
 <Chart 'Chart 1' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

	
add(left=0, top=0, width=355, height=211)

	Creates a new chart on the specified sheet.

	Parameters

	
	left (float, default 0) – left position in points

	top (float, default 0) – top position in points

	width (float, default 355) – width in points

	height (float, default 211) – height in points

	Returns

	

	Return type

	Chart

Examples

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [['Foo1', 'Foo2'], [1, 2]]
>>> chart = sht.charts.add()
>>> chart.set_source_data(sht.range('A1').expand())
>>> chart.chart_type = 'line'
>>> chart.name
'Chart1'

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

	
property count

	Returns the number of objects in the collection.

Chart

	
class xlwings.Chart(name_or_index=None, impl=None)

	The chart object is a member of the charts collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.charts[0] # or sht.charts['ChartName']
<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.9.0.

	
property chart_type

	Returns and sets the chart type of the chart.
The following chart types are available:

3d_area,
3d_area_stacked,
3d_area_stacked_100,
3d_bar_clustered,
3d_bar_stacked,
3d_bar_stacked_100,
3d_column,
3d_column_clustered,
3d_column_stacked,
3d_column_stacked_100,
3d_line,
3d_pie,
3d_pie_exploded,
area,
area_stacked,
area_stacked_100,
bar_clustered,
bar_of_pie,
bar_stacked,
bar_stacked_100,
bubble,
bubble_3d_effect,
column_clustered,
column_stacked,
column_stacked_100,
combination,
cone_bar_clustered,
cone_bar_stacked,
cone_bar_stacked_100,
cone_col,
cone_col_clustered,
cone_col_stacked,
cone_col_stacked_100,
cylinder_bar_clustered,
cylinder_bar_stacked,
cylinder_bar_stacked_100,
cylinder_col,
cylinder_col_clustered,
cylinder_col_stacked,
cylinder_col_stacked_100,
doughnut,
doughnut_exploded,
line,
line_markers,
line_markers_stacked,
line_markers_stacked_100,
line_stacked,
line_stacked_100,
pie,
pie_exploded,
pie_of_pie,
pyramid_bar_clustered,
pyramid_bar_stacked,
pyramid_bar_stacked_100,
pyramid_col,
pyramid_col_clustered,
pyramid_col_stacked,
pyramid_col_stacked_100,
radar,
radar_filled,
radar_markers,
stock_hlc,
stock_ohlc,
stock_vhlc,
stock_vohlc,
surface,
surface_top_view,
surface_top_view_wireframe,
surface_wireframe,
xy_scatter,
xy_scatter_lines,
xy_scatter_lines_no_markers,
xy_scatter_smooth,
xy_scatter_smooth_no_markers

New in version 0.1.1.

	
delete()

	Deletes the chart.

	
property height

	Returns or sets the number of points that represent the height of the chart.

	
property left

	Returns or sets the number of points that represent the horizontal position
of the chart.

	
property name

	Returns or sets the name of the chart.

	
property parent

	Returns the parent of the chart.

New in version 0.9.0.

	
set_source_data(source)

	Sets the source data range for the chart.

	Parameters

	source (Range) – Range object, e.g. xw.books['Book1'].sheets[0].range('A1')

	
to_pdf(path=None, show=None, quality='standard')

	Exports the chart as PDF.

	Parameters

	
	path (str or path-like, default None) – Path where you want to store the pdf. Defaults to the name of the chart in
the same directory as the Excel file if the Excel file is stored and to the
current working directory otherwise.

	show (bool, default False) – Once created, open the PDF file with the default application.

	quality (str, default 'standard') – Quality of the PDF file. Can either be 'standard' or 'minimum'.

New in version 0.26.2.

	
to_png(path=None)

	Exports the chart as PNG picture.

	Parameters

	path (str or path-like, default None) – Path where you want to store the picture. Defaults to the name of the chart
in the same directory as the Excel file if the Excel file is stored and to
the current working directory otherwise.

New in version 0.24.8.

	
property top

	Returns or sets the number of points that represent the vertical position
of the chart.

	
property width

	Returns or sets the number of points that represent the width of the chart.

Pictures

	
class xlwings.main.Pictures(impl)

	A collection of all picture objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].pictures
Pictures([<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>,
 <Picture 'Picture 2' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

	
add(image, link_to_file=False, save_with_document=True, left=None, top=None, width=None, height=None, name=None, update=False, scale=None, format=None, anchor=None)

	Adds a picture to the specified sheet.

	Parameters

	
	image (str or path-like object or matplotlib.figure.Figure) – Either a filepath or a Matplotlib figure object.

	left (float, default None) – Left position in points, defaults to 0. If you use top/left, you
must not provide a value for anchor.

	top (float, default None) – Top position in points, defaults to 0. If you use top/left,
you must not provide a value for anchor.

	width (float, default None) – Width in points. Defaults to original width.

	height (float, default None) – Height in points. Defaults to original height.

	name (str, default None) – Excel picture name. Defaults to Excel standard name if not provided,
e.g., ‘Picture 1’.

	update (bool, default False) – Replace an existing picture with the same name. Requires name to be set.

	scale (float, default None) – Scales your picture by the provided factor.

	format (str, default None) – Only used if image is a Matplotlib or Plotly plot. By default, the plot is
inserted in the “png” format, but you may want to change this to a
vector-based format like “svg” on Windows (may require Microsoft 365) or
“eps” on macOS for better print quality. If you use 'vector', it will be
using 'svg' on Windows and 'eps' on macOS. To find out which formats
your version of Excel supports, see:
https://support.microsoft.com/en-us/topic/support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840

	anchor (xw.Range, default None) – The xlwings Range object of where you want to insert the picture. If you use
anchor, you must not provide values for top/left.

New in version 0.24.3.

	Returns

	

	Return type

	Picture

Examples

	Picture

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(r'C:\path\to\file.png')
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

	Matplotlib

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Book1]Sheet1>>

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

	
property count

	Returns the number of objects in the collection.

Picture

	
class xlwings.Picture(impl=None)

	The picture object is a member of the pictures
collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.pictures[0] # or sht.charts['PictureName']
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

	
property api

	Returns the native object (pywin32 or appscript obj) of the engine
being used.

New in version 0.9.0.

	
delete()

	Deletes the picture.

New in version 0.5.0.

	
property height

	Returns or sets the number of points that represent the height of the picture.

New in version 0.5.0.

	
property left

	Returns or sets the number of points that represent the horizontal position
of the picture.

New in version 0.5.0.

	
property lock_aspect_ratio

	True will keep the original proportion,
False will allow you to change height and width independently of each other
(read/write).

New in version 0.24.0.

	
property name

	Returns or sets the name of the picture.

New in version 0.5.0.

	
property parent

	Returns the parent of the picture.

New in version 0.9.0.

	
property top

	Returns or sets the number of points that represent the vertical position
of the picture.

New in version 0.5.0.

	
update(image, format=None)

	Replaces an existing picture with a new one, taking over the attributes of the
existing picture.

	Parameters

	image (str or path-like object or matplotlib.figure.Figure) – Either a filepath or a Matplotlib figure object.

New in version 0.5.0.

	
property width

	Returns or sets the number of points that represent the width of the picture.

New in version 0.5.0.

Names

	
class xlwings.main.Names(impl)

	A collection of all name objects in the workbook:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names
[<Name 'MyName': =Sheet1!A3>]

New in version 0.9.0.

	
add(name, refers_to)

	Defines a new name for a range of cells.

	Parameters

	
	name (str) – Specifies the text to use as the name. Names cannot include spaces and
cannot be formatted as cell references.

	refers_to (str) – Describes what the name refers to, in English, using A1-style notation.

	Returns

	

	Return type

	Name

New in version 0.9.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine beingused.

New in version 0.9.0.

	
property count

	Returns the number of objects in the collection.

Name

	
class xlwings.Name(impl)

	The name object is a member of the names collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names[0] # or sht.names['MyName']
<Name 'MyName': =Sheet1!A3>

New in version 0.9.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.9.0.

	
delete()

	Deletes the name.

New in version 0.9.0.

	
property name

	Returns or sets the name of the name object.

New in version 0.9.0.

	
property refers_to

	Returns or sets the formula that the name is defined to refer to,
in A1-style notation, beginning with an equal sign.

New in version 0.9.0.

	
property refers_to_range

	Returns the Range object referred to by a Name object.

New in version 0.9.0.

Note

	
class xlwings.main.Note(impl)

	
	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.24.2.

	
delete()

	Delete the note.

New in version 0.24.2.

	
property text

	Gets or sets the text of a note. Keep in mind that the note must already exist!

Examples

>>> sheet = xw.Book(...).sheets[0]
>>> sheet['A1'].note.text = 'mynote'
>>> sheet['A1'].note.text
>>> 'mynote'

New in version 0.24.2.

Tables

	
class xlwings.main.Tables(impl)

	A collection of all table objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].tables
Tables([<Table 'Table1' in <Sheet [Book11]Sheet1>>,
 <Table 'Table2' in <Sheet [Book11]Sheet1>>])

New in version 0.21.0.

	
add(source=None, name=None, source_type=None, link_source=None, has_headers=True, destination=None, table_style_name='TableStyleMedium2')

	Creates a Table to the specified sheet.

	Parameters

	
	source (xlwings range, default None) – An xlwings range object, representing the data source.

	name (str, default None) – The name of the Table. By default, it uses the autogenerated name that is
assigned by Excel.

	source_type (str, default None) – This currently defaults to xlSrcRange, i.e. expects an xlwings range
object. No other options are allowed at the moment.

	link_source (bool, default None) – Currently not implemented as this is only in case source_type is
xlSrcExternal.

	has_headers (bool or str, default True) – Indicates whether the data being imported has column labels. Defaults to
True. Possible values: True, FAlse, 'guess'

	destination (xlwings range, default None) – Currently not implemented as this is used in case source_type is
xlSrcExternal.

	table_style_name (str, default 'TableStyleMedium2') – Possible strings: 'TableStyleLightN'' (where N is 1-21),
'TableStyleMediumN' (where N is 1-28),
‘TableStyleDarkN’` (where N is 1-11)

	Returns

	

	Return type

	Table

Examples

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [['a', 'b'], [1, 2]]
>>> table = sheet.tables.add(source=sheet['A1'].expand(), name='MyTable')
>>> table
<Table 'MyTable' in <Sheet [Book1]Sheet1>>

Table

	
class xlwings.main.Table(*args, **options)

	The table object is a member of the tables collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.tables[0] # or sht.tables['TableName']
<Table 'Table 1' in <Sheet [Book1]Sheet1>>

New in version 0.21.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

	
property data_body_range

	Returns an xlwings range object that represents the range of values,
excluding the header row

	
property display_name

	Returns or sets the display name for the specified Table object

	
property header_row_range

	Returns an xlwings range object that represents the range of the header row

	
property insert_row_range

	Returns an xlwings range object representing the row where data is going to
be inserted. This is only available for empty tables, otherwise it’ll return
None

	
property name

	Returns or sets the name of the Table.

	
property parent

	Returns the parent of the table.

	
property range

	Returns an xlwings range object of the table.

	
resize(range)

	Resize a Table by providing an xlwings range object

New in version 0.24.4.

	
property show_autofilter

	Turn the autofilter on or off by setting it to True or False
(read/write boolean)

	
property show_headers

	Show or hide the header (read/write)

	
property show_table_style_column_stripes

	Returns or sets if the Column Stripes table style is used for
(read/write boolean)

	
property show_table_style_first_column

	Returns or sets if the first column is formatted (read/write boolean)

	
property show_table_style_last_column

	Returns or sets if the last column is displayed (read/write boolean)

	
property show_table_style_row_stripes

	Returns or sets if the Row Stripes table style is used
(read/write boolean)

	
property show_totals

	Gets or sets a boolean to show/hide the Total row.

	
property table_style

	Gets or sets the table style.
See Tables.add for possible values.

	
property totals_row_range

	Returns an xlwings range object representing the Total row

	
update(data, index=True)

	Updates the Excel table with the provided data.
Currently restricted to DataFrames.

Changed in version 0.24.0.

	Parameters

	
	data (pandas DataFrame) – Currently restricted to pandas DataFrames.

	index (bool, default True) – Whether or not the index of a pandas DataFrame should be written to the
Excel table.

	Returns

	

	Return type

	Table

Examples

import pandas as pd
import xlwings as xw

sheet = xw.Book('Book1.xlsx').sheets[0]
table_name = 'mytable'

Sample DataFrame
nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],
 columns=['col ' + str(i) for i in range(ncols)])

Hide the index, then insert a new table if it doesn't exist yet,
otherwise update the existing one
df = df.set_index('col 0')
if table_name in [table.name for table in sheet.tables]:
 sheet.tables[table_name].update(df)
else:
 mytable = sheet.tables.add(source=sheet['A1'],
 name=table_name).update(df)

Font

	
class xlwings.main.Font(impl)

	The font object can be accessed as an attribute of the range or shape object.

	mysheet['A1'].font

	mysheet.shapes[0].font

New in version 0.23.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine being used.

New in version 0.23.0.

	
property bold

	Returns or sets the bold property (boolean).

>>> sheet['A1'].font.bold = True
>>> sheet['A1'].font.bold
True

New in version 0.23.0.

	
property color

	Returns or sets the color property (tuple).

>>> sheet['A1'].font.color = (255, 0, 0) # or '#ff0000'
>>> sheet['A1'].font.color
(255, 0, 0)

New in version 0.23.0.

	
property italic

	Returns or sets the italic property (boolean).

>>> sheet['A1'].font.italic = True
>>> sheet['A1'].font.italic
True

New in version 0.23.0.

	
property name

	Returns or sets the name of the font (str).

>>> sheet['A1'].font.name = 'Calibri'
>>> sheet['A1'].font.name
Calibri

New in version 0.23.0.

	
property size

	Returns or sets the size (float).

>>> sheet['A1'].font.size = 13
>>> sheet['A1'].font.size
13

New in version 0.23.0.

Characters

	
class xlwings.main.Characters(impl)

	The characters object can be accessed as an attribute of the range or shape object.

	mysheet['A1'].characters

	mysheet.shapes[0].characters

Note

On macOS, characters are currently not supported due to bugs/lack of
support in AppleScript.

New in version 0.23.0.

	
property api

	Returns the native object (pywin32 or appscript obj) of the engine
being used.

New in version 0.23.0.

	
property font

	Returns or sets the text property of a characters object.

>>> sheet['A1'].characters[1:3].font.bold = True
>>> sheet['A1'].characters[1:3].font.bold
True

New in version 0.23.0.

	
property text

	Returns or sets the text property of a characters object.

>>> sheet['A1'].value = 'Python'
>>> sheet['A1'].characters[:3].text
Pyt

New in version 0.23.0.

Markdown

	
class xlwings.pro.Markdown(text, style=<MarkdownStyle> h1.font: .bold: True paragraph.blank_lines_after: 1 unordered_list.bullet_character: • unordered_list.blank_lines_after: 1 strong.bold: True emphasis.italic: True)

	Markdown objects can be assigned to a single cell or shape via myrange.value or
myshape.text. They accept a string in Markdown format which will cause the text
in the cell to be formatted accordingly. They can also be used in
mysheet.render_template().

Note

On macOS, formatting is currently not supported, but things like bullet
points will still work.

	Parameters

	
	text (str) – The text in Markdown syntax

	style (MarkdownStyle object, optional) – The MarkdownStyle object defines how the text will be formatted.

Examples

>>> mysheet['A1'].value = Markdown("A text with *emphasis* and **strong** style.")
>>> myshape.text = Markdown("A text with *emphasis* and **strong** style.")

New in version 0.23.0.

MarkdownStyle

	
class xlwings.pro.MarkdownStyle

	MarkdownStyle defines how Markdown objects are being rendered in Excel cells
or shapes. Start by instantiating a MarkdownStyle object. Printing it will show
you the current (default) style:

>>> style = MarkdownStyle()
>>> style
<MarkdownStyle>
h1.font: .bold: True
h1.blank_lines_after: 1
paragraph.blank_lines_after: 1
unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1
strong.bold: True
emphasis.italic: True

You can override the defaults, e.g., to make **strong** text red instead of
bold, do this:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

New in version 0.23.0.

UDF decorators

	
xlwings.func(category='xlwings', volatile=False, call_in_wizard=True)

	Functions decorated with xlwings.func will be imported as Function to Excel when running
“Import Python UDFs”.

	categoryint or str, default “xlwings”
	1-14 represent built-in categories, for user-defined categories use strings

New in version 0.10.3.

	volatilebool, default False
	Marks a user-defined function as volatile. A volatile function must be recalculated
whenever calculation occurs in any cells on the worksheet. A nonvolatile function is
recalculated only when the input variables change. This method has no effect if it’s
not inside a user-defined function used to calculate a worksheet cell.

New in version 0.10.3.

	call_in_wizardbool, default True
	Set to False to suppress the function call in the function wizard.

New in version 0.10.3.

	
xlwings.sub()

	Functions decorated with xlwings.sub will be imported as Sub (i.e. macro) to Excel when running
“Import Python UDFs”.

	
xlwings.arg(arg, convert=None, **options)

	Apply converters and options to arguments, see also Range.options().

Examples:

Convert x into a 2-dimensional numpy array:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
def add_one(x):
 return x + 1

	
xlwings.ret(convert=None, **options)

	Apply converters and options to return values, see also Range.options().

Examples

	Suppress the index and header of a returned DataFrame:

import pandas as pd

@xw.func
@xw.ret(index=False, header=False)
def get_dataframe(n, m):
 return pd.DataFrame(np.arange(n * m).reshape((n, m)))

	Dynamic array:

Note

If your version of Excel supports the new native dynamic arrays, then you don’t have to do anything special,
and you shouldn’t use the expand decorator! To check if your version of Excel supports it, see if you
have the =UNIQUE() formula available. Native dynamic arrays were introduced in Office 365 Insider Fast
at the end of September 2018.

expand='table' turns the UDF into a dynamic array. Currently you must not use volatile functions
as arguments of a dynamic array, e.g. you cannot use =TODAY() as part of a dynamic array. Also
note that a dynamic array needs an empty row and column at the bottom and to the right and will overwrite
existing data without warning.

Unlike standard Excel arrays, dynamic arrays are being used from a single cell like a standard function
and auto-expand depending on the dimensions of the returned array:

import xlwings as xw
import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(n, m):
 return np.arange(n * m).reshape((n, m))

New in version 0.10.0.

Reports

Required Notice: Copyright (C) Zoomer Analytics GmbH.

xlwings PRO is dual-licensed under one of the following licenses:

	PolyForm Noncommercial License 1.0.0 (for noncommercial use):
https://polyformproject.org/licenses/noncommercial/1.0.0

	xlwings PRO License (for commercial use):
https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt

Commercial licenses can be purchased at https://www.xlwings.org

	
class xlwings.pro.reports.Image(filename)

	Use this class to provide images to either render_template().

	Parameters

	filename (str or pathlib.Path object) – The file name or path

	
class xlwings.pro.reports.Markdown(text, style=<MarkdownStyle> h1.font: .bold: True paragraph.blank_lines_after: 1 unordered_list.bullet_character: • unordered_list.blank_lines_after: 1 strong.bold: True emphasis.italic: True)

	Markdown objects can be assigned to a single cell or shape via myrange.value or
myshape.text. They accept a string in Markdown format which will cause the text
in the cell to be formatted accordingly. They can also be used in
mysheet.render_template().

Note

On macOS, formatting is currently not supported, but things like bullet
points will still work.

	Parameters

	
	text (str) – The text in Markdown syntax

	style (MarkdownStyle object, optional) – The MarkdownStyle object defines how the text will be formatted.

Examples

>>> mysheet['A1'].value = Markdown("A text with *emphasis* and **strong** style.")
>>> myshape.text = Markdown("A text with *emphasis* and **strong** style.")

New in version 0.23.0.

	
class xlwings.pro.reports.MarkdownStyle

	MarkdownStyle defines how Markdown objects are being rendered in Excel cells
or shapes. Start by instantiating a MarkdownStyle object. Printing it will show
you the current (default) style:

>>> style = MarkdownStyle()
>>> style
<MarkdownStyle>
h1.font: .bold: True
h1.blank_lines_after: 1
paragraph.blank_lines_after: 1
unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1
strong.bold: True
emphasis.italic: True

You can override the defaults, e.g., to make **strong** text red instead of
bold, do this:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

New in version 0.23.0.

	
xlwings.pro.reports.render_template(template, output, book_settings=None, app=None, **data)

	This function requires xlwings PRO.

This is a convenience wrapper around
mysheet.render_template

Writes the values of all key word arguments to the output file according to the
template and the variables contained in there (Jinja variable syntax).
Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, pictures and
Matplotlib/Plotly figures.

	Parameters

	
	template (str) – Path to your Excel template, e.g. r'C:\Path\to\my_template.xlsx'

	output (str) – Path to your Report, e.g. r'C:\Path\to\my_report.xlsx'

	book_settings (dict, default None) – A dict of xlwings.Book parameters, for details see: xlwings.Book.
For example: book_settings={'update_links': False}.

	app (xlwings App, default None) – By passing in an xlwings App instance, you can control where your report runs
and configure things like visible=False. For details see
xlwings.App. By default, it creates the report in the currently active
instance of Excel.

	data (kwargs) – All key/value pairs that are used in the template.

	Returns

	

	Return type

	xlwings Book

Examples

In my_template.xlsx, put the following Jinja variables in two cells:
{{ title }} and {{ df }}

>>> from xlwings.pro.reports import render_template
>>> import pandas as pd
>>> df = pd.DataFrame(data=[[1,2],[3,4]])
>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx',
 title='MyTitle', df=df)

With many template variables it may be useful to collect the data first:

>>> data = dict(title='MyTitle', df=df)
>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx', **data)

If you need to handle external links or a password, use it like so:

>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx',
 book_settings={'update_links': True,
 'password': 'mypassword'}, **data)

REST API

Note

This is an experimental feature and may be removed in the future.

New in version 0.13.0.

Quickstart

xlwings offers an easy way to expose an Excel workbook via REST API both on Windows and macOS. This can be useful
when you have a workbook running on a single computer and want to access it from another computer. Or you can
build a Linux based web app that can interact with a legacy Excel application while you are in the progress
of migrating the Excel functionality into your web app (if you need help with that, give us a shout [https://www.xlwings.org/contact]).

You can run the REST API server from a command prompt or terminal as follows (this requires Flask>=1.0, so make sure to pip install Flask):

xlwings restapi run

Then perform a GET request e.g. via PowerShell on Windows or Terminal on Mac (while having an unsaved “Book1” open). Note
that you need to run the server and the GET request from two separate terminals (or you can use something
more convenient like Postman [https://www.getpostman.com/] or Insomnia [https://insomnia.rest/] for testing the API):

$ curl "http://127.0.0.1:5000/book/book1/sheets/0/range/A1:B2"
{
 "address": "A1:B2",
 "color": null,
 "column": 1,
 "column_width": 10.0,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "1",
 "2"
],
 [
 "3",
 "4"
]
],
 "formula_array": null,
 "height": 32.0,
 "last_cell": "B2",
 "left": 0.0,
 "name": null,
 "number_format": "General",
 "row": 1,
 "row_height": 16.0,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 0.0,
 "value": [
 [
 1.0,
 2.0
],
 [
 3.0,
 4.0
]
],
 "width": 130.0
}

In the command prompt where your server is running, press Ctrl-C to shut it down again.

The xlwings REST API is a thin wrapper around the Python API which makes it very easy if
you have worked previously with xlwings. It also means that the REST API does require the Excel application to be up and
running which makes it a great choice if the data in your Excel workbook is constantly changing as the REST API will
always deliver the current state of the workbook without the need of saving it first.

Note

Currently, we only provide the GET methods to read the workbook. If you are also interested in the POST methods
to edit the workbook, let us know via GitHub issues. Some other things will also need improvement, most notably
exception handling.

Run the server

xlwings restapi run will run a Flask development server on http://127.0.0.1:5000. You can provide --host and --port as
command line args and it also respects the Flask environment variables like FLASK_ENV=development.

If you want to have more control, you can run the server directly with Flask, see the
Flask docs [http://flask.pocoo.org/docs/1.0/quickstart/] for more details:

set FLASK_APP=xlwings.rest.api
flask run

If you are on Mac, use export FLASK_APP=xlwings.rest.api instead of set FLASK_APP=xlwings.rest.api.

For production, you can use any WSGI HTTP Server like gunicorn [https://gunicorn.org/] (on Mac) or waitress [https://docs.pylonsproject.org/projects/waitress/en/latest/] (on Mac/Windows) to serve the API. For example,
with gunicorn you would do: gunicorn xlwings.rest.api:api. Or with waitress (adjust the host accordingly if
you want to make the api accessible from outside of localhost):

from xlwings.rest.api import api
from waitress import serve
serve(wsgiapp, host='127.0.0.1', port=5000)

Indexing

While the Python API offers Python’s 0-based indexing (e.g. xw.books[0]) as well as Excel’s 1-based indexing (e.g. xw.books(1)),
the REST API only offers 0-based indexing, e.g. /books/0.

Range Options

The REST API accepts Range options as query parameters, see xlwings.Range.options() e.g.

/book/book1/sheets/0/range/A1?expand=table&transpose=true

Remember that options only affect the value property.

Endpoint overview

	Endpoint

	Corresponds to

	Short Description

	/book

	Book

	Finds your workbook across all open instances of Excel and will open it if it can’t find it

	/books

	Books

	Books collection of the active Excel instance

	/apps

	Apps

	This allows you to specify the Excel instance you want to work with

Endpoint details

/book

	
GET /book/<fullname_or_name>

	

Example response:

{
 "app": 1104,
 "fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
 "name": "Book1.xlsx",
 "names": [
 "Sheet1!myname1",
 "myname2"
],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1",
 "Sheet2"
]
}

	
GET /book/<fullname_or_name>/names

	

Example response:

{
 "names": [
 {
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
 },
 {
 "name": "myname2",
 "refers_to": "=Sheet1!A1"
 }
]
}

	
GET /book/<fullname_or_name>/names/<name>

	

Example response:

{
 "name": "myname2",
 "refers_to": "=Sheet1!A1"
}

	
GET /book/<fullname_or_name>/names/<name>/range

	

Example response:

{
 "address": "A1",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 1,
 "current_region": "A1:B2",
 "formula": "=1+1.1",
 "formula_array": "=1+1,1",
 "height": 14.25,
 "last_cell": "A1",
 "left": 0.0,
 "name": "myname2",
 "number_format": "General",
 "row": 1,
 "row_height": 14.3,
 "shape": [
 1,
 1
],
 "size": 1,
 "top": 0.0,
 "value": 2.1,
 "width": 51.0
}

	
GET /book/<fullname_or_name>/sheets

	

Example response:

{
 "sheets": [
 {
 "charts": [
 "Chart 1"
],
 "name": "Sheet1",
 "names": [
 "Sheet1!myname1"
],
 "pictures": [
 "Picture 3"
],
 "shapes": [
 "Chart 1",
 "Picture 3"
],
 "used_range": "A1:B2"
 },
 {
 "charts": [],
 "name": "Sheet2",
 "names": [],
 "pictures": [],
 "shapes": [],
 "used_range": "A1"
 }
]
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>

	

Example response:

{
 "charts": [
 "Chart 1"
],
 "name": "Sheet1",
 "names": [
 "Sheet1!myname1"
],
 "pictures": [
 "Picture 3"
],
 "shapes": [
 "Chart 1",
 "Picture 3"
],
 "used_range": "A1:B2"
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts

	

Example response:

{
 "charts": [
 {
 "chart_type": "line",
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "width": 355.0
 }
]
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

	

Example response:

{
 "chart_type": "line",
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "width": 355.0
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names

	

Example response:

{
 "names": [
 {
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
 }
]
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

	

Example response:

{
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

	

Example response:

{
 "address": "B2:C3",
 "color": null,
 "column": 2,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "",
 ""
],
 [
 "",
 ""
]
],
 "formula_array": "",
 "height": 28.5,
 "last_cell": "C3",
 "left": 51.0,
 "name": "Sheet1!myname1",
 "number_format": "General",
 "row": 2,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 14.25,
 "value": [
 [
 null,
 null
],
 [
 null,
 null
]
],
 "width": 102.0
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures

	

Example response:

{
 "pictures": [
 {
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "width": 100.0
 }
]
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

	

Example response:

{
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "width": 100.0
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range

	

Example response:

{
 "address": "A1:B2",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "=1+1.1",
 "a string"
],
 [
 "43395.0064583333",
 ""
]
],
 "formula_array": null,
 "height": 28.5,
 "last_cell": "B2",
 "left": 0.0,
 "name": null,
 "number_format": null,
 "row": 1,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 0.0,
 "value": [
 [
 2.1,
 "a string"
],
 [
 "Mon, 22 Oct 2018 00:09:18 GMT",
 null
]
],
 "width": 102.0
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range/<address>

	

Example response:

{
 "address": "A1:B2",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "=1+1.1",
 "a string"
],
 [
 "43395.0064583333",
 ""
]
],
 "formula_array": null,
 "height": 28.5,
 "last_cell": "B2",
 "left": 0.0,
 "name": null,
 "number_format": null,
 "row": 1,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 0.0,
 "value": [
 [
 2.1,
 "a string"
],
 [
 "Mon, 22 Oct 2018 00:09:18 GMT",
 null
]
],
 "width": 102.0
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes

	

Example response:

{
 "shapes": [
 {
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "type": "chart",
 "width": 355.0
 },
 {
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "type": "picture",
 "width": 100.0
 }
]
}

	
GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

	

Example response:

{
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "type": "chart",
 "width": 355.0
}

/books

	
GET /books

	

Example response:

{
 "books": [
 {
 "app": 1104,
 "fullname": "Book1",
 "name": "Book1",
 "names": [],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1"
]
 },
 {
 "app": 1104,
 "fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
 "name": "Book1.xlsx",
 "names": [
 "Sheet1!myname1",
 "myname2"
],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1",
 "Sheet2"
]
 },
 {
 "app": 1104,
 "fullname": "Book4",
 "name": "Book4",
 "names": [],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1"
]
 }
]
}

	
GET /books/<book_name_or_ix>

	

Example response:

{
 "app": 1104,
 "fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
 "name": "Book1.xlsx",
 "names": [
 "Sheet1!myname1",
 "myname2"
],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1",
 "Sheet2"
]
}

	
GET /books/<book_name_or_ix>/names

	

Example response:

{
 "names": [
 {
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
 },
 {
 "name": "myname2",
 "refers_to": "=Sheet1!A1"
 }
]
}

	
GET /books/<book_name_or_ix>/names/<name>

	

Example response:

{
 "name": "myname2",
 "refers_to": "=Sheet1!A1"
}

	
GET /books/<book_name_or_ix>/names/<name>/range

	

Example response:

{
 "address": "A1",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 1,
 "current_region": "A1:B2",
 "formula": "=1+1.1",
 "formula_array": "=1+1,1",
 "height": 14.25,
 "last_cell": "A1",
 "left": 0.0,
 "name": "myname2",
 "number_format": "General",
 "row": 1,
 "row_height": 14.3,
 "shape": [
 1,
 1
],
 "size": 1,
 "top": 0.0,
 "value": 2.1,
 "width": 51.0
}

	
GET /books/<book_name_or_ix>/sheets

	

Example response:

{
 "sheets": [
 {
 "charts": [
 "Chart 1"
],
 "name": "Sheet1",
 "names": [
 "Sheet1!myname1"
],
 "pictures": [
 "Picture 3"
],
 "shapes": [
 "Chart 1",
 "Picture 3"
],
 "used_range": "A1:B2"
 },
 {
 "charts": [],
 "name": "Sheet2",
 "names": [],
 "pictures": [],
 "shapes": [],
 "used_range": "A1"
 }
]
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

	

Example response:

{
 "charts": [
 "Chart 1"
],
 "name": "Sheet1",
 "names": [
 "Sheet1!myname1"
],
 "pictures": [
 "Picture 3"
],
 "shapes": [
 "Chart 1",
 "Picture 3"
],
 "used_range": "A1:B2"
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

	

Example response:

{
 "charts": [
 {
 "chart_type": "line",
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "width": 355.0
 }
]
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

	

Example response:

{
 "chart_type": "line",
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "width": 355.0
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

	

Example response:

{
 "names": [
 {
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
 }
]
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

	

Example response:

{
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

	

Example response:

{
 "address": "B2:C3",
 "color": null,
 "column": 2,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "",
 ""
],
 [
 "",
 ""
]
],
 "formula_array": "",
 "height": 28.5,
 "last_cell": "C3",
 "left": 51.0,
 "name": "Sheet1!myname1",
 "number_format": "General",
 "row": 2,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 14.25,
 "value": [
 [
 null,
 null
],
 [
 null,
 null
]
],
 "width": 102.0
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

	

Example response:

{
 "pictures": [
 {
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "width": 100.0
 }
]
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

	

Example response:

{
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "width": 100.0
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

	

Example response:

{
 "address": "A1:B2",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "=1+1.1",
 "a string"
],
 [
 "43395.0064583333",
 ""
]
],
 "formula_array": null,
 "height": 28.5,
 "last_cell": "B2",
 "left": 0.0,
 "name": null,
 "number_format": null,
 "row": 1,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 0.0,
 "value": [
 [
 2.1,
 "a string"
],
 [
 "Mon, 22 Oct 2018 00:09:18 GMT",
 null
]
],
 "width": 102.0
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

	

Example response:

{
 "address": "A1:B2",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "=1+1.1",
 "a string"
],
 [
 "43395.0064583333",
 ""
]
],
 "formula_array": null,
 "height": 28.5,
 "last_cell": "B2",
 "left": 0.0,
 "name": null,
 "number_format": null,
 "row": 1,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 0.0,
 "value": [
 [
 2.1,
 "a string"
],
 [
 "Mon, 22 Oct 2018 00:09:18 GMT",
 null
]
],
 "width": 102.0
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

	

Example response:

{
 "shapes": [
 {
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "type": "chart",
 "width": 355.0
 },
 {
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "type": "picture",
 "width": 100.0
 }
]
}

	
GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

	

Example response:

{
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "type": "chart",
 "width": 355.0
}

/apps

	
GET /apps

	

Example response:

{
 "apps": [
 {
 "books": [
 "Book1",
 "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
 "Book4"
],
 "calculation": "automatic",
 "display_alerts": true,
 "pid": 1104,
 "screen_updating": true,
 "selection": "[Book1.xlsx]Sheet2!A1",
 "version": "16.0",
 "visible": true
 },
 {
 "books": [
 "Book2",
 "Book5"
],
 "calculation": "automatic",
 "display_alerts": true,
 "pid": 7920,
 "screen_updating": true,
 "selection": "[Book5]Sheet2!A1",
 "version": "16.0",
 "visible": true
 }
]
}

	
GET /apps/<pid>

	

Example response:

{
 "books": [
 "Book1",
 "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
 "Book4"
],
 "calculation": "automatic",
 "display_alerts": true,
 "pid": 1104,
 "screen_updating": true,
 "selection": "[Book1.xlsx]Sheet2!A1",
 "version": "16.0",
 "visible": true
}

	
GET /apps/<pid>/books

	

Example response:

{
 "books": [
 {
 "app": 1104,
 "fullname": "Book1",
 "name": "Book1",
 "names": [],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1"
]
 },
 {
 "app": 1104,
 "fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
 "name": "Book1.xlsx",
 "names": [
 "Sheet1!myname1",
 "myname2"
],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1",
 "Sheet2"
]
 },
 {
 "app": 1104,
 "fullname": "Book4",
 "name": "Book4",
 "names": [],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1"
]
 }
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>

	

Example response:

{
 "app": 1104,
 "fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
 "name": "Book1.xlsx",
 "names": [
 "Sheet1!myname1",
 "myname2"
],
 "selection": "Sheet2!A1",
 "sheets": [
 "Sheet1",
 "Sheet2"
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>/names

	

Example response:

{
 "names": [
 {
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
 },
 {
 "name": "myname2",
 "refers_to": "=Sheet1!A1"
 }
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>/names/<name>

	

Example response:

{
 "name": "myname2",
 "refers_to": "=Sheet1!A1"
}

	
GET /apps/<pid>/books/<book_name_or_ix>/names/<name>/range

	

Example response:

{
 "address": "A1",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 1,
 "current_region": "A1:B2",
 "formula": "=1+1.1",
 "formula_array": "=1+1,1",
 "height": 14.25,
 "last_cell": "A1",
 "left": 0.0,
 "name": "myname2",
 "number_format": "General",
 "row": 1,
 "row_height": 14.3,
 "shape": [
 1,
 1
],
 "size": 1,
 "top": 0.0,
 "value": 2.1,
 "width": 51.0
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets

	

Example response:

{
 "sheets": [
 {
 "charts": [
 "Chart 1"
],
 "name": "Sheet1",
 "names": [
 "Sheet1!myname1"
],
 "pictures": [
 "Picture 3"
],
 "shapes": [
 "Chart 1",
 "Picture 3"
],
 "used_range": "A1:B2"
 },
 {
 "charts": [],
 "name": "Sheet2",
 "names": [],
 "pictures": [],
 "shapes": [],
 "used_range": "A1"
 }
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

	

Example response:

{
 "charts": [
 "Chart 1"
],
 "name": "Sheet1",
 "names": [
 "Sheet1!myname1"
],
 "pictures": [
 "Picture 3"
],
 "shapes": [
 "Chart 1",
 "Picture 3"
],
 "used_range": "A1:B2"
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

	

Example response:

{
 "charts": [
 {
 "chart_type": "line",
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "width": 355.0
 }
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

	

Example response:

{
 "chart_type": "line",
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "width": 355.0
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

	

Example response:

{
 "names": [
 {
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
 }
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

	

Example response:

{
 "name": "Sheet1!myname1",
 "refers_to": "=Sheet1!B2:C3"
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/range

	

Example response:

{
 "address": "B2:C3",
 "color": null,
 "column": 2,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "",
 ""
],
 [
 "",
 ""
]
],
 "formula_array": "",
 "height": 28.5,
 "last_cell": "C3",
 "left": 51.0,
 "name": "Sheet1!myname1",
 "number_format": "General",
 "row": 2,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 14.25,
 "value": [
 [
 null,
 null
],
 [
 null,
 null
]
],
 "width": 102.0
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

	

Example response:

{
 "pictures": [
 {
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "width": 100.0
 }
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/<picture_name_or_ix>

	

Example response:

{
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "width": 100.0
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

	

Example response:

{
 "address": "A1:B2",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "=1+1.1",
 "a string"
],
 [
 "43395.0064583333",
 ""
]
],
 "formula_array": null,
 "height": 28.5,
 "last_cell": "B2",
 "left": 0.0,
 "name": null,
 "number_format": null,
 "row": 1,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 0.0,
 "value": [
 [
 2.1,
 "a string"
],
 [
 "Mon, 22 Oct 2018 00:09:18 GMT",
 null
]
],
 "width": 102.0
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

	

Example response:

{
 "address": "A1:B2",
 "color": null,
 "column": 1,
 "column_width": 8.47,
 "count": 4,
 "current_region": "A1:B2",
 "formula": [
 [
 "=1+1.1",
 "a string"
],
 [
 "43395.0064583333",
 ""
]
],
 "formula_array": null,
 "height": 28.5,
 "last_cell": "B2",
 "left": 0.0,
 "name": null,
 "number_format": null,
 "row": 1,
 "row_height": 14.3,
 "shape": [
 2,
 2
],
 "size": 4,
 "top": 0.0,
 "value": [
 [
 2.1,
 "a string"
],
 [
 "Mon, 22 Oct 2018 00:09:18 GMT",
 null
]
],
 "width": 102.0
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

	

Example response:

{
 "shapes": [
 {
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "type": "chart",
 "width": 355.0
 },
 {
 "height": 100.0,
 "left": 0.0,
 "name": "Picture 3",
 "top": 0.0,
 "type": "picture",
 "width": 100.0
 }
]
}

	
GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

	

Example response:

{
 "height": 211.0,
 "left": 0.0,
 "name": "Chart 1",
 "top": 0.0,
 "type": "chart",
 "width": 355.0
}

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	activate() (xlwings.App method)

 	(xlwings.Book method)

 	(xlwings.Shape method)

 	(xlwings.Sheet method)

 	active (xlwings.main.Apps property)

 	(xlwings.main.Books property)

 	(xlwings.main.Sheets property)

 	add() (xlwings.main.Apps method)

 	(xlwings.main.Books method)

 	(xlwings.main.Charts method)

 	(xlwings.main.Names method)

 	(xlwings.main.Pictures method)

 	(xlwings.main.Sheets method)

 	(xlwings.main.Tables method)

 	add_hyperlink() (xlwings.Range method)

 	address (xlwings.Range property)

 	api (xlwings.App property)

 	(xlwings.Book property)

 	(xlwings.Chart property)

 	(xlwings.main.Characters property)

 	(xlwings.main.Charts property)

 	(xlwings.main.Font property)

 	(xlwings.main.Names property)

 	(xlwings.main.Note property)

 	(xlwings.main.PageSetup property)

 	(xlwings.main.Pictures property)

 	(xlwings.main.Shapes property)

 	(xlwings.main.Table property)

 	(xlwings.Name property)

 	(xlwings.Picture property)

 	(xlwings.Range property)

 	(xlwings.Shape property)

 	(xlwings.Sheet property)

 	
 	App (class in xlwings)

 	app (xlwings.Book property)

 	Apps (class in xlwings.main)

 	autofit() (xlwings.Range method)

 	(xlwings.RangeColumns method)

 	(xlwings.RangeRows method)

 	(xlwings.Sheet method)

B

 	
 	bold (xlwings.main.Font property)

 	Book (class in xlwings)

 	
 	book (xlwings.Sheet property)

 	Books (class in xlwings.main)

 	books (xlwings.App property)

C

 	
 	calculate() (xlwings.App method)

 	calculation (xlwings.App property)

 	caller() (xlwings.Book class method)

 	cells (xlwings.Sheet property)

 	Characters (class in xlwings.main)

 	Chart (class in xlwings)

 	chart_type (xlwings.Chart property)

 	Charts (class in xlwings.main)

 	charts (xlwings.Sheet property)

 	clear() (xlwings.Range method)

 	(xlwings.Sheet method)

 	clear_contents() (xlwings.Range method)

 	(xlwings.Sheet method)

 	clear_formats() (xlwings.Range method)

 	(xlwings.Sheet method)

 	close() (xlwings.Book method)

 	color (xlwings.main.Font property)

 	(xlwings.Range property)

 	
 	column (xlwings.Range property)

 	column_width (xlwings.Range property)

 	columns (xlwings.Range property)

 	copy() (xlwings.Range method)

 	(xlwings.Sheet method)

 	copy_picture() (xlwings.Range method)

 	count (xlwings.main.Apps property)

 	(xlwings.main.Charts property)

 	(xlwings.main.Names property)

 	(xlwings.main.Pictures property)

 	(xlwings.main.Shapes property)

 	(xlwings.Range property)

 	(xlwings.RangeColumns property)

 	(xlwings.RangeRows property)

 	current_region (xlwings.Range property)

 	cut_copy_mode (xlwings.App property)

D

 	
 	data_body_range (xlwings.main.Table property)

 	delete() (xlwings.Chart method)

 	(xlwings.main.Note method)

 	(xlwings.Name method)

 	(xlwings.Picture method)

 	(xlwings.Range method)

 	(xlwings.Shape method)

 	(xlwings.Sheet method)

 	
 	display_alerts (xlwings.App property)

 	display_name (xlwings.main.Table property)

E

 	
 	enable_events (xlwings.App property)

 	
 	end() (xlwings.Range method)

 	expand() (xlwings.Range method)

F

 	
 	Font (class in xlwings.main)

 	font (xlwings.main.Characters property)

 	formula (xlwings.Range property)

 	
 	formula2 (xlwings.Range property)

 	formula_array (xlwings.Range property)

 	fullname (xlwings.Book property)

G

 	
 	get_address() (xlwings.Range method)

H

 	
 	has_array (xlwings.Range property)

 	header_row_range (xlwings.main.Table property)

 	height (xlwings.Chart property)

 	(xlwings.Picture property)

 	(xlwings.Range property)

 	(xlwings.Shape property)

 	
 	hwnd (xlwings.App property)

 	hyperlink (xlwings.Range property)

I

 	
 	Image (class in xlwings.pro.reports)

 	index (xlwings.Sheet property)

 	insert() (xlwings.Range method)

 	
 	insert_row_range (xlwings.main.Table property)

 	interactive (xlwings.App property)

 	italic (xlwings.main.Font property)

J

 	
 	json() (xlwings.Book method)

K

 	
 	keys() (xlwings.main.Apps method)

 	
 	kill() (xlwings.App method)

L

 	
 	last_cell (xlwings.Range property)

 	left (xlwings.Chart property)

 	(xlwings.Picture property)

 	(xlwings.Range property)

 	(xlwings.Shape property)

 	
 	load() (in module xlwings)

 	lock_aspect_ratio (xlwings.Picture property)

M

 	
 	macro() (xlwings.App method)

 	(xlwings.Book method)

 	Markdown (class in xlwings.pro)

 	(class in xlwings.pro.reports)

 	MarkdownStyle (class in xlwings.pro)

 	(class in xlwings.pro.reports)

 	
 	merge() (xlwings.Range method)

 	merge_area (xlwings.Range property)

 	merge_cells (xlwings.Range property)

 	
 module

 	xlwings

 	xlwings.pro.reports

N

 	
 	Name (class in xlwings)

 	name (xlwings.Book property)

 	(xlwings.Chart property)

 	(xlwings.main.Font property)

 	(xlwings.main.Table property)

 	(xlwings.Name property)

 	(xlwings.Picture property)

 	(xlwings.Range property)

 	(xlwings.Shape property)

 	(xlwings.Sheet property)

 	
 	Names (class in xlwings.main)

 	names (xlwings.Book property)

 	(xlwings.Sheet property)

 	Note (class in xlwings.main)

 	note (xlwings.Range property)

 	number_format (xlwings.Range property)

O

 	
 	offset() (xlwings.Range method)

 	
 	open() (xlwings.main.Books method)

 	options() (xlwings.Range method)

P

 	
 	page_setup (xlwings.Sheet property)

 	PageSetup (class in xlwings.main)

 	parent (xlwings.Chart property)

 	(xlwings.main.Table property)

 	(xlwings.Picture property)

 	(xlwings.Shape property)

 	
 	paste() (xlwings.Range method)

 	Picture (class in xlwings)

 	Pictures (class in xlwings.main)

 	pictures (xlwings.Sheet property)

 	pid (xlwings.App property)

 	print_area (xlwings.main.PageSetup property)

 	properties() (xlwings.App method)

Q

 	
 	quit() (xlwings.App method)

R

 	
 	Range (class in xlwings)

 	range (xlwings.main.Table property)

 	range() (xlwings.App method)

 	(xlwings.Sheet method)

 	RangeColumns (class in xlwings)

 	RangeRows (class in xlwings)

 	raw_value (xlwings.Range property)

 	refers_to (xlwings.Name property)

 	refers_to_range (xlwings.Name property)

 	
 	render_template() (in module xlwings.pro.reports)

 	(xlwings.App method)

 	(xlwings.Book method)

 	(xlwings.Sheet method)

 	resize() (xlwings.main.Table method)

 	(xlwings.Range method)

 	row (xlwings.Range property)

 	row_height (xlwings.Range property)

 	rows (xlwings.Range property)

S

 	
 	save() (xlwings.Book method)

 	scale_height() (xlwings.Shape method)

 	scale_width() (xlwings.Shape method)

 	screen_updating (xlwings.App property)

 	select() (xlwings.Range method)

 	(xlwings.Sheet method)

 	selection (xlwings.App property)

 	(xlwings.Book property)

 	set_mock_caller() (xlwings.Book method)

 	set_source_data() (xlwings.Chart method)

 	Shape (class in xlwings)

 	shape (xlwings.Range property)

 	Shapes (class in xlwings.main)

 	shapes (xlwings.Sheet property)

 	
 	Sheet (class in xlwings)

 	sheet (xlwings.Range property)

 	Sheets (class in xlwings.main)

 	sheets (xlwings.Book property)

 	show_autofilter (xlwings.main.Table property)

 	show_headers (xlwings.main.Table property)

 	show_table_style_column_stripes (xlwings.main.Table property)

 	show_table_style_first_column (xlwings.main.Table property)

 	show_table_style_last_column (xlwings.main.Table property)

 	show_table_style_row_stripes (xlwings.main.Table property)

 	show_totals (xlwings.main.Table property)

 	size (xlwings.main.Font property)

 	(xlwings.Range property)

 	startup_path (xlwings.App property)

 	status_bar (xlwings.App property)

T

 	
 	Table (class in xlwings.main)

 	table (xlwings.Range property)

 	table_style (xlwings.main.Table property)

 	Tables (class in xlwings.main)

 	tables (xlwings.Sheet property)

 	text (xlwings.main.Characters property)

 	(xlwings.main.Note property)

 	(xlwings.Shape property)

 	to_pdf() (xlwings.Book method)

 	(xlwings.Chart method)

 	(xlwings.Range method)

 	(xlwings.Sheet method)

 	
 	to_png() (xlwings.Chart method)

 	(xlwings.Range method)

 	top (xlwings.Chart property)

 	(xlwings.Picture property)

 	(xlwings.Range property)

 	(xlwings.Shape property)

 	totals_row_range (xlwings.main.Table property)

 	type (xlwings.Shape property)

U

 	
 	unmerge() (xlwings.Range method)

 	update() (xlwings.main.Table method)

 	(xlwings.Picture method)

 	
 	used_range (xlwings.Sheet property)

V

 	
 	value (xlwings.Range property)

 	version (xlwings.App property)

 	
 	view() (in module xlwings)

 	visible (xlwings.App property)

 	(xlwings.Sheet property)

W

 	
 	width (xlwings.Chart property)

 	(xlwings.Picture property)

 	(xlwings.Range property)

 	(xlwings.Shape property)

 	
 	wrap_text (xlwings.Range property)

X

 	
 	
 xlwings

 	module

 	xlwings.arg() (in module xlwings)

 	xlwings.func() (in module xlwings)

 	
 	
 xlwings.pro.reports

 	module

 	xlwings.ret() (in module xlwings)

 	xlwings.sub() (in module xlwings)

 _images/xw_view.png
00@ hutosae QG T~ Jupyter Untitled

Home Insert Draw Q

File Edit View Insert Cell Kernel Widgets Help Trusted
Al - fx index

+ < @ B 424 ¥ PRuin B C » code v E

A B © D
.
2 0 0 5]
3 1 1 6 .
3 2 2 7 In [1]: import pandas as pd
5 3 3 8 from xlwings import view
6 4 4 9
; In [2]: df = pd.DataFrame(data={'one': [0, 1, 2, 3, 4],
'two': [5, 6, 7, 8, 91})

2 af
10
il out[2]:
12

one two
13
14 0 0 5
15
16 1 1 6
17

2 7

18 2
19 3 3 8
20
21 4 4 9
22
23

In [3]: view(df)

Logout

| Python 3 O

_images/xlwings_conf_sheet.png
A

API_KEY
EXCLUDE

B © D Ei F
4bd5b65497e41f7a85006fdf23a1fb0e73353ffd7b1cS
Sheet1, xlwings.conf

Sheetl sdwings.conf

_images/xw_load.png
osave @ orr " Jupyter Untitled @ Logon

Home Insert Draw Q Tellme |2 Share (] Comments

File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O
A
Al . fx Date v
+ & D 4 & PR B C M code v =

A B G D E F G
1 IDate .IOpen High Low Close Adj Close Volume
2 1/27/20 161.149994 163.380005 160.199997 162.279999 160.578888 32078100
3 1/28/20 163.779999 165.759995 163.070007 165460007 163.725555 24899900 X .
4 1/29/20 167.839996 168.75 165.690002 168.039993 166.278503 34754500 In [1]: from xlwings import load
5 1/30/20 174.050003 174.050003 170.789993 172.779999 170.968826 51597500
6 1/31/20 172.210007 172.399994 169.580002 170.229996 168.445557 36142700 In [2]: load()
7 2/3/20 170.429993 174.5 170399994 174.380005 172552048 30149100
8 2/4/20 177.139999 180.639999 176.309998 180.119995 178.231873 36433300 out[2]:
9 2/5/20 184.029999 184.199997 178.410004 179.899994 178.014191 39186300 Open High Low Close Adj Close Volume
10 2/6/20 180.970001 183.820007 180.059998 183.630005 181.705093 27751400
1 2/7/20 182.850006 185.630005 182.479996 183.889999 181.962357 33529100 Date
12| 2/10/20 183580002 188.839996 18325 188.699997 186.721939 35844300
13| 2/11/20] 190.64954| 190.699997 183.5| 184.440002| 182.506607| 53159900 2020-01-27 161.149994 163.380005 160.199997 162.279999 160.578888 32078100.0

14 2/12/20 185.580002 185.850006 181.850006 184.710007 182.773773 47062900
15 2/13/20 183.080002 186.229996 182.869995 183.710007 181.784271 35295800

2020-01-28 163.779999 165.759995 163.070007 165.460007 163.725555 24899900.0

16| 2/14/20 18325 185.410004 182.649994 185.350006 183.407059 23149500 2020-01-20 167.839996 168.750000 165.690002 168.039993 166.278503 34754500.0
17 2/18/20 185610001 187.699997 185.5 187.229996 185267365 27792200
18| 2/19/20] 188.059908| 188 179993 | 186.470001] 187.279999| 185.622998] 29987500 2020-01-30 174.050003 174.050003 170.789993 172779999 170.968826 51597500.0
19| 2/20/20| 186.949997| 187.25| 181.100006| 184.419998| 182.985229) 36862400 2020-01-31 172210007 172.399994 169.580002 170.229996 168.445557 36142700.0
20 2/21/20 183.169998 1835 177.25 178589996 177.200607 48572600

21} 2/24/20 167.770004 174.550003 163.229996 170.889999 169.560516 68311100
22 2/25/20 174.199997 174.839996 167.649994 168.070007 166.762451 68073300

23 2/26/20 169.710007 173.259995 168.210007 170.169998 168.8461 56206100 2021-01-21 224.699997 226.300003 222.419998 224.970001 224.970001 30749600.0
L 2/27/20] 163320007 167.029999, 157979996 | 158.179993, 156.949387] 93174500 2021-01-22 227.080002 230.070007 225.800003 225.949997 225.949997 30172700.0
25 2/28/20 152.410004 163.710007 152 162.009995 160.749588 97073600
26 3/2/70 165308888 172.818888 167308898 172.783883 1714457724 71030800 2021-01-25 229.119995 229.779999 224220001 229.529999 229.529999 33152100.0
27 3/3/20 173.800003 175 162.259995 164.509995 163.230148 71677000
28 3/4/20 168.490005 170.699997 165.619995 170.550003 169.223145 49814400 2021-01-26 231.860001 234.179993 230.080002 232.330002 232.330002 48699200.0
29 3/5/20 166.050003 170.869995 165.690002 166.270004 164.97644 47817300
30 3/6/20 162.610001 163.110001 156 161.570007 160.313034 72821100 2021-01-27 238.000000 240.440002 230.740005 238.979996 238.979996 28153959.0
31! 3/9/20 151 157.75 150 150.619995 149.448196 70419300

32 3/10/20 158.160004 161.029999 152.580002 160.919998 159.668076 65354400 254 rows x 6 columns

nav.xhtml

 Table of Contents

 		
 xlwings - Make Excel Fly!

_images/array_formula.png
e |{=add_one(A1:82)}

_images/1d_ranges.png
B

_images/addin_version.png
File Home Insert Page Layout Formulas Data Review View Developer xlwings

Interpreter: pythonw fx UDF Modules: Log File:
PYTHONPATH: | [] Debug UDFs [] RunPython: Use UDF Server
mport
Functions O Restart UDF Server Version: 0.11.4

Python User Defined Functions (UDFs) Advanced

_images/custom_addin_vba_properties.png
t| Microsoft Visual Basic for Applications - myproject
& File Edit View Insert Format Debug Run

~d »om
Project - MyAddin &
=] =

= & MyAddin (myproject.xlam)
=3 Microsoft Excel Objects
1Sheet? (xlwings.conf)
kbook

>

4% Modulel
L RibbonMyAddin
L lwings

Class Modules

v
— e PN

Properties - ThisWorkbook X
ThisWorkbook Workbook |
Alphabetic ‘Categorized

(Name) ThisWorkbook ~
AccuracyVersion 0

AutoSaveOn False

AutoUpdateFrequency 0
ChangeHistoryDuration 0
ChartDataPointTrack False

CheckCompatibility False
ConflictResolution 1 - xlUserResolution
Date1904 False

DisplayDrawingObjects -4104 - xIDisplayShapes
DisplayInkComments True
DoNotPromptForConvert False

EnableAutoRecover True
EncryptionProvider

EnvelopeVisible False
Final False
ForceFullCalculation False

HighlightChangesOnScree False
nactivel i e isil e

_images/custom_ribbon_addin.png
Book1 - Excel O Search

|

AutoSave

&l D

File Home Insert Page Layout Formulas Data Review View Developer Help MyAddin
Run
My Group
Al - fx
A B < 13 3 F €] H | J K
)

_images/chart_type.png
My Chart

seriest ||

two

16
17 |

_images/dict_converter.png

_images/double_sum.png
fe | =double_sum(1, 2)

K3

_images/debugging_error.png
Error =]

y Traceback (most recent calllast):

\DEV\hwings\ examples\fibonaccifibonacci.py’, line 31, in
«l fibonacci

seq = fibonace(n)

NameEror: global name ‘fibonacc s not defined

Press Ctrl+C to copy this message to the clipboard.

o

_images/df_converter.png
myfunction(A1:05)}

=

5

13

B:

@ ssmoa

@ cTaw®

~ oo~

e

_images/embedded_code1.png
AutoSave @0 @& H © v O D s Remb.

Home Insert Draw Q Tell me what you want to do & Share (] Comments

G10 - fx v

1 |import xlwings as xw
2 import utils

3]

4 def main():

5 wb = xw.Book.caller()
6 wb.sheets[@]["A1"].value = utils.get_random_number()
7 wb.sheets[@]["A2"].value = utils.get_random_number()
8

9

10]

11

Sheet1 random_numbers.py utils.py +
T B E] = e+ 100%

_images/dynamic_array1.png
Home Insert Page Layout Formulas Data Review

B4 ~ fx =dynamic_array(B2,C2)

| C D E
rows: columns:
5 2

2.01156647] -0.0985618

-0.2152179 -0.7541961
0.37168657 -0.1978662
-1.0643897 1.37592295
0.5272535 -0.0508628

_images/dynamic_array2.png
Home Insert Page Layout Formulas Data Review View xlwings

B4 ~ fx =dynamic_array(B2,C2)

A ‘ B | C D E F
rows: columns:
2 5

-0.6788379| -1.0009999 -0.6342434 -0.9362773 1.02582914
-2.1803953 0.18511092 0.3121721 0.20600051 0.3799863

_images/excel_table_template.png
A B
Title <frame>

Some static text.

_images/frame_report.png
Table 3

1 Table 1

11

n ©

14 15

13

7 |Table 2

o

Table 4

10
11
12
13

12

15

11

10
13

14

_images/embedded_code2.png
AutoSave @ oFF /ﬁ\ H o 0 O = ?gemb...

Home Insert Draw Q Tell me what you want to do & Share (] Comments
F8 s f v
A B G D
1 |import random
2
3 |def get_random_number():
4 return random.random()
5]
6
v
8
9
10
11
4 > Sheet1 random_numbers.py utils.py
ﬂ‘ [l m - e — 4 100%

_images/excel_table_report.png
)mumm&ww»—-l

A

Title

col 0 col 1 col 2
test test test
test test test
test test test

Some static text.

_images/gh_edit_requirements.png
2 lines (1 sloc) 22 Bytes Raw Blame [

xlwings [pro]l==0.20.8

_images/gh_installer_download.png
Draft a new release

12.0

©1.20
Frumsteln released this 3 days 2go
-O-7321e85 ‘ Vs ag
e added more deps

®

v~ Assets 4

@ installer.sh 1.67 KB

@ xlwings-runtime-1.2.0-x64.exe | ¢——————— 83.1MB

[2) Source code (zip)

[2) Source code (tar.gz)

_images/frame_template.png
A B F G
1 Table 1 ‘\<frame> Table 3 ‘\<frame>
2 [S
3]
4
5 |Table 2 Table 4
6
i

_images/gh_create_release.png
<> Code () Issues 1% Pull requests (») Actions [M1] Projects () Security

Releases Tags
Draft a new release

_images/gh_publish_release.png
@ ¥ Target: main ~

or create a new tag on publish

Release title

Write Preview

Describe this release

Attach files by dragging & dropping, selecting or pasting them.

\]/ Attach binaries by dropping them here or selecting them.

This is a pre-release
We'll point out that this release is identified as non-production ready.

Publish release Save draft

_images/gh_releases.png
No releases published
Create a new release

_static/plus.png

_static/minus.png

_images/markdown2.png
N =

Title

Text bold and italic

Q A first bullet
Q A second bullet

Another Title

This paragraph has a line break.

| Another line.

Title

Text bold and italic

@ Afirst bullet
@ Asecond bullet

Another Title

This paragraph has a line break.
Another line.

_images/markdown_template.png
{{ myplaceholder }}

el

{{ myplaceholder }}

_images/mac_ribbon.png
Home Insert Page Layout Formulas Data Review View Developer xlwings

Interpreter: python Log File:

PYTHONPATH: Version: 0.11.4

Python Advanced

_images/markdown1.png
Title
Text bold and italic

o A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.

Title

Text bold and italic

¢ Afirst bullet
¢ Asecond bullet

Another Title

This paragraph has a line break.
Another line.

_images/mpl_udf.png
=myplot(B1)

5

Plotted with n=5.0

4.0 T T

©

D

351

3.0

251

2.0

15

101

05}

15

2.0

25

3.0

35

4.0

_images/myreport.png
A

MyTitle
My DataFrame
one two

1

_images/matplotlib.png
////

&

_images/mpl_basic.png

_images/mytemplate.png
i
2
3

n noS

A
{{ title }}

My DataFrame
)

_static/file.png

_static/favicon.png

_images/mac_error.png
Error

Traceback (most recent call last)
File *<string>", line 1, in <module>
File */Users/Felix/Desktop/ fibonacci.py’, line 31, in
x_fibonacc
Seq = fibonacc(n)
NameError: global name fibonacc' is not defined

o

_images/reports_chart2.png
69 = BV -

y_ A B G D
8 courni B a1 Koz L1
2 |North 1 2
3 South 3 4
4
3

_images/reports_chart3.png
M33

<>

fx

North i 2

South 3 4J

N -

45

WK NO U AW

35

3
25
2
15
L
0

North South

B R R R R R R R
©NOU S WN PR O
-

19 mQl mQ2

_images/plotly.png
AutoSave D
Home Insert Draw Page Layout Formulas Data Review View Developer xlw
036 v fx
A © D E F G H J
il
2
3]
4 8 species
5 ® setosa
. . . N
6 7.5 L . errs‘m‘olor
7 e ® virginica
. . .
8 7 e
9 o 6¥8
. : . .
0/ £ s e
11 g‘ e . o
12 %' 6 (] = H .
13 <3 eee N ° .
u| R sEsit :
5.5 LI) .
15 . 3 H .
16 >
17 5 . O— + (3 .o =
18 | s H
se e |
19 4.5 . . %
20
21 2 2.5 3 3.5 4 4.5
;: sepal_width
24
25
26
27

N
o

)
)

_images/reports_chart1.png
F6

<«

nA WN R

North
South

Q1

_images/reports_df_filters.png
O 0N U WN

R R R R R R
Ny W NG O

A

{{df }} 1
2
3
4
5
6
{{ df | noheader }} 7
8
9
10
11
12
{{ df | sortdesc(1) | columns(O, None, 1) }} 13
14
15
16
(G I I R 17
3 template report + 4

one

one

B C
two three
1 4 7
2 5 8
3 6 9
1 4 7
2 5 8
3 6 9
two
3 6
2 5
1 4

template report +

_images/reports_pdf_layout.png
template.xlsx

| B | F G |

S}

‘ml\“ m‘m‘.z; w

[Mon

{{ summary_text }}

monthly_layout.pdf

report.pdf

Monthly Report May 21 E{I‘a XlWingS

Lorem ipsum dolor

Consectetur adipiscing elit. Praesent odio justo, luctus eget enim eu, vulputate pellentesque mi.
Maecenas lacinia_dictum lorem, a laoreet sapien. Morbi eu tristique elit. Maccenas nec magna
aliquet, mollis risus vestibulum, ultrices nibh. Cras vitae libero lobortis, rutrum metus vitae,
vestibulum elit. Mauris hendrerit, augue vitae rhoncus porttitor, ante nisi vulputate sapien,
pretium posuere purus quam eget lorem. Phasellus bibendum arcu vel orci evismod, nec
consectetur leo faucibus. Morbi at leo nec nunc tristique laoreet eget nec metus. Nulla blandit
erat vitae purus semper convalls. Mauris et viverra fels, eu malesuada ipsum. Nullam ac iaculis
dui. Nunc et lorem arcu.

Quisque elementum purus in ligula elementum

Non porta nis! consectetur. Fusce orci felis, mollis vitae ex id, gravida tempor est. Morbi dui ex,
aliquet et gravida sit amet, commodo ac lacus. Nulla auctor rutrum tortor vel pulvinar. Ut
vestibulum nulla lorem, et varius erat imperdiet consectetur. Nullam fringila eleifend neque, non
convallis lectus tristique eu. Sed nunc metus, dapibus nec quam nec, consectetur ultricies odio.
Fusce placerat consectetur posuere. Etiam gravida aliquet elic, id fermentum leo bibendum nec.
Phasellus bibendum nunc et ipsum feugiat, sit amet fermentum orci fringila. Donec matis ipsum
ac orci aliquam sagittis.

uam erat volutpat. Curabitur sit amet facil h.

Fusce faucibus velit justo, et efficitur sapien molls nec. Duis dictum vitae est quis condimentum.
Pellentesque scelerisque nis! et tempor pulvinar. Pellentesque suscipit quam sit amet tellus mollis
porttitor. Phasellus ut euismod lectus. Etiam in ante sit amet sem varius scelerisque non e
sapien. Pellentesque velic augue, ornare non ultrices porttitor, gravida imperdiet quam. Etiam
suscipit nunc at mollis bibendum. Donec vel massa ac metus malesuada ornare. Maecenas et purus
ullamcorper, gravida mauris vitae, dictum libero. Nulla horeet vl ligula sit amet accumsan.
Acnean varius hendrerit ultrices. Quisque iaculis consequat sem, vel rutrum ligula incerdum non.
Etiam sodales nisl dui, vel interdum elit ultrices at.

Aenean aliquet vel sapien ac rutrum. Vivamus sit amet purus sollicitudin

viverra justo ac, posuere diam. Suspendisse sagitts, clit nec rhoncus condimentum, velit est
volutpat nulla, sed eleifend neque erat eu leo. Nunc varius ligula ut purus fringilla bibendum.
Praesent sed tristique nunc, § dign massa. Morbi pretium pulvinar blandit. Phasellus fa
vulputate sodales. Nullam inferdum sapien eget velit tristique, a imperdiet ipsum laoreet. Donec
Iaoreet metus sit amet commodo lacinia. Fusce eleifend sem id risus dictum, quis ultrices lorem
lacinia. In non purus tortor.

Curabitur diam purus, vulputate ut mattis a, accumsan commodo justo

Duis id nisi sapien. Duis pellentesque lorem consectetur leo vestibulum viverra. Aliquam rutrum
urna a tempus malesuada. Integer arcu lacus, euismod nec aliquet vitae, tempor ut sem. Nullam eu
finibus est. Sed quis maximus orci. Cras sit amet rhoncus felis. Ut sed faucibus metus, eget luctus
metus. Nullam sed erat sed nulla varius iaculis ut ut ligula. Vestibulum quis tristique nunc. Donec
ac nunc velit.

_images/reports_chart4.png
D

© NV A WN

L
s WN RO

16

12

08

0.6

04

0.2

Dummy

mColumn2

> template + |

_images/reports_chart5.png
N56 s fx
A B © D =

il Columnl R4 Q1 A Q2 hd Q3 v

2 North 1000 4000 7000

3 South 2000 5000 8000

4 |West 3000 6000 9000,

5]

6

7 | 10000

8 | 9000

9 | 8000
10 | 7000
11| 6000
12 | so00
13 | 4000
14 | 3000
15| 2000 I
16 | 1000
17 0 - I
18 North South West
19 mQl mQ2 =Q3
20
21
22
22

4 > template report +

_images/pandas_series.png
11
23

11
23

_images/sheet_rendering2.png
A Demo!

template

report

_images/sql.png
fx | =sql(A14,A1:D11,G1:H8)

id

H
email

Mariam@Alt

Shenita@Truelove

Evelyn@Braddy

Rogello@Mote

Solomon@Okamura

Latashia@Alire

W O U [W|N |-

Roselee@Tarwater

Al6 N
A B C D E
1 id first_name |last_name |age
2 1|Mariam Alt 12
B 2|Shenita Truelove 55
4 3|Evelyn Braddy 30
5 4|Shery Sam 35
6 5|Rogello Mote 88
7 6|Solomon |Okamura 33
8 7|Jessica Buelow 10
) 8|Latashia |Alire 19
10 9|Roselee Tarwater 28
il 10|Kiera Saulsbury 55
12
13
14 |SELECT a.id, a.first_name, a.last_name, b.email FROM a INNER JOIN b ON a.id = b.id
15
16 |id _ﬁrst_name last_name email
1177 1 Mariam Alt Mariam@Alt
18 2 Shenita Truelove Shenita@Truelove
19 3 Evelyn Braddy Evelyn@Braddy
20 5 Rogello Mote Rogello@Mote
21 6 Solomon Okamura Solomon@Okamura
22 8 Latashia Alire Latashia@Alire
23 9 Roselee Tarwater Roselee@Tarwater

_images/shape_text_template.png
1o LA WN R

The temperature today is {{ temperature }} degrees celsius.

_images/sheet_rendering1.png
Y0 N O U A WN R

A
{{ title }}

{{ table }}

template

+

_images/workbook_config.png
o U W N

A B

Interpreter pythonw
PYTHONPATH

UDF Modules

Debug UDFs FALSE
Log File

Use UDF Server FALSE

_images/udf_debugging.png
NN
BRBRNRE

NN

=]
=]

9
S P
Mo

R ERE TR

At e

& Debugger [B] Console +*) 3 y

%

_images/vba_reference.png
References - VBAProject

Available References: OK

isual Basic For Applications ~ Cancel
rosoft Excel 16.0 Object Library
LE Automation
icrosoft Office 16.0 Object Library Browse...
[IMicrosoft Forms 2.0 Object Library -
[_IRef Edit Control +
[_ISolver
Priority
[AccessibilityCplAdmin 1.0 Type Library Help
|| Acrobat Access 3.0 Type Library .
[AcroBrokerLib
[_Active DS Type Library
|| ActiveMovie control type library
| AdHocReportinaExcelClientLib

< >

_images/series_conv.png
A [

date series name
o1/01/01
02/03/01
03/01/01
04/01/01
05/01/01
08/01/01

[
o1/01/01
02/03/01
03/01/01
04/01/01
05/01/01
08/01/01

_images/shape_text_report.png
o N ;S O

_images/ribbon.png
File Home Insert Page Layout Formulas Data Review View Developer Help xlwings

[> Interpreter: Conda Path:]SC UDF Modules: RunPython: Use UDF Server
PYTHONPATH: Conda Env: Debug UDFs Show Console

Run Import

main Functions “** Restart UDF Server Version: dev

Python Conda User Defined Functions (UDFs) Advanced

