
xlwings - Make Excel Fly!
Release dev

Zoomer Analytics LLC

Aug 08, 2022

GETTING STARTED

1 Video course 1

2 Installation 3
2.1 Prerequisites . 3
2.2 Installation . 3
2.3 Add-in . 4
2.4 Dependencies . 4
2.5 How to activate xlwings PRO . 4
2.6 Optional Dependencies . 4
2.7 Update . 5
2.8 Uninstall . 5

3 Quickstart 7
3.1 1. Interacting with Excel from a Jupyter notebook . 7
3.2 2. Scripting: Automate/interact with Excel from Python 7
3.3 3. Macros: Call Python from Excel . 8
3.4 4. UDFs: User Defined Functions (Windows only) . 9

4 Connect to a Book 11
4.1 Python to Excel . 11
4.2 Excel to Python (RunPython) . 12
4.3 User Defined Functions (UDFs) . 12

5 Syntax Overview 13
5.1 Active Objects . 13
5.2 Full qualification . 14
5.3 App context manager . 14
5.4 Range indexing/slicing . 14
5.5 Range Shortcuts . 14
5.6 Object Hierarchy . 15

6 Data Structures Tutorial 17
6.1 Single Cells . 17
6.2 Lists . 18
6.3 Range expanding . 19
6.4 NumPy arrays . 19

i

6.5 Pandas DataFrames . 20
6.6 Pandas Series . 20
6.7 Chunking: Read/Write big DataFrames etc. 21

7 Add-in & Settings 23
7.1 Run main . 23
7.2 Installation . 24
7.3 User Settings . 24
7.4 Making use of Environment Variables . 25
7.5 User Config: Ribbon/Config File . 25
7.6 Workbook Directory Config: Config file . 26
7.7 Workbook Config: xlwings.conf Sheet . 26
7.8 Alternative: Standalone VBA module . 27

8 RunPython 29
8.1 xlwings add-in . 29
8.2 Call Python with “RunPython” . 29
8.3 Function Arguments and Return Values . 30

9 User Defined Functions (UDFs) 31
9.1 One-time Excel preparations . 31
9.2 Workbook preparation . 31
9.3 A simple UDF . 32
9.4 Array formulas: Get efficient . 33
9.5 Array formulas with NumPy and Pandas . 34
9.6 @xw.arg and @xw.ret decorators . 34
9.7 Dynamic Array Formulas . 35
9.8 Docstrings . 37
9.9 The “caller” argument . 37
9.10 The “vba” keyword . 37
9.11 Macros . 38
9.12 Call UDFs from VBA . 38
9.13 Asynchronous UDFs . 39

10 Matplotlib & Plotly Charts 41
10.1 Matplotlib . 41
10.2 Plotly static charts . 45

11 Jupyter Notebooks: Interact with Excel 47
11.1 The view function . 47
11.2 The load function . 48

12 Command Line Client (CLI) 49

13 Deployment 53
13.1 Zip files . 53
13.2 RunFrozenPython . 53

14 OneDrive and SharePoint 55

ii

14.1 OneDrive (Personal) . 55
14.2 OneDrive for Business . 56
14.3 SharePoint (Online and On-Premises) . 56
14.4 Implementation Details & Limitations . 57

15 Troubleshooting 59
15.1 Issue: dll not found . 59
15.2 Issue: Files that are saved on OneDrive or SharePoint cause an error to pop up 59

16 Converters and Options 61
16.1 Default Converter . 62
16.2 Built-in Converters . 65
16.3 Custom Converter . 69

17 Debugging 73
17.1 RunPython . 74
17.2 UDF debug server . 74

18 Extensions 77
18.1 In-Excel SQL . 77

19 Custom Add-ins 79
19.1 Quickstart . 79
19.2 Changing the Ribbon menu . 81
19.3 Importing UDFs . 81
19.4 Configuration . 81
19.5 Installation . 81
19.6 Renaming your add-in . 82
19.7 Deployment . 82

20 Threading and Multiprocessing 83
20.1 Threading . 83
20.2 Multiprocessing . 84

21 Missing Features 87
21.1 Example: Workaround to use VBA’s Range.WrapText 87

22 xlwings with other Office Apps 89
22.1 How To . 89
22.2 Config . 90

23 xlwings PRO Overview 91
23.1 PRO Features . 92

24 Remote Interpreter 93
24.1 Why is this useful? . 93
24.2 Prerequisites . 94
24.3 Introduction . 95
24.4 Local Development with Desktop Excel . 95

iii

24.5 Cloud-based development with Gitpod . 96
24.6 Local Development with Google Sheets or Excel on the web 98
24.7 Configuration . 101
24.8 Production Deployment . 104
24.9 Triggers . 104
24.10 Limitations . 105
24.11 Roadmap . 105

25 xlwings Reports 107
25.1 Quickstart . 108
25.2 DataFrames . 110
25.3 Excel Tables . 114
25.4 Excel Charts . 116
25.5 Images . 119
25.6 Matplotlib and Plotly Plots . 122
25.7 Text . 123
25.8 Date and Time . 126
25.9 Number Format . 126
25.10 Frames: Multi-column Layout . 126
25.11 PDF Layout . 128

26 Markdown Formatting 131

27 Releasing xlwings Tools 135
27.1 Step 1: One-Click Installer . 135
27.2 Step 2: Release Command (CLI) . 138
27.3 Updating a Release . 139
27.4 Embedded Code Explained . 140

28 Permissioning of Code Execution 143
28.1 Prerequisites . 143
28.2 Configuration . 144
28.3 GET request . 144
28.4 POST request . 145
28.5 Implementation Details & Limitations . 146

29 Python API 147
29.1 Top-level functions . 147
29.2 Object model . 148
29.3 UDF decorators . 196
29.4 Reports . 198

30 REST API 201
30.1 Quickstart . 201
30.2 Run the server . 203
30.3 Indexing . 203
30.4 Range Options . 203
30.5 Endpoint overview . 203
30.6 Endpoint details . 204

iv

Index 233

v

vi

CHAPTER

ONE

VIDEO COURSE

Those who prefer a didactically structured video course over this documentation should have a look at our
video course:

https://training.xlwings.org/p/xlwings

It’s also a great way to support the ongoing development of xlwings :)

1

https://training.xlwings.org/p/xlwings

xlwings - Make Excel Fly!, Release dev

2 Chapter 1. Video course

CHAPTER

TWO

INSTALLATION

2.1 Prerequisites

• Traditionally, xlwings requires an installation of Excel and therefore only works on Windows and
macOS. Note that macOS currently does not support UDFs.

• Since v0.26.0, xlwings can be installed on Linux servers in connection with Google Sheets or Excel
on the web, see Remote Interpreter.

• xlwings requires at least Python 3.7.

Here are previous versions of xlwings that support older versions of Python:

• Python 3.6: 0.25.3

• Python 3.5: 0.19.5

• Python 2.7: 0.16.6

2.2 Installation

xlwings comes pre-installed with

• Anaconda (Windows and macOS)

• WinPython (Windows only) Make sure not to take the dot version as this only contains Python.

If you are new to Python or have trouble installing xlwings, one of these distributions is highly recommended.
Otherwise, you can also install it with pip:

pip install xlwings

or conda:

conda install xlwings

Note that the official conda package might be a few releases behind. You can, however, use the conda-forge
channel (replace install with upgrade if xlwings is already installed):

3

https://www.anaconda.com/products/individual
https://winpython.github.io

xlwings - Make Excel Fly!, Release dev

conda install -c conda-forge xlwings

2.3 Add-in

To install the add-in, run the following command:

xlwings addin install

To call Excel from Python, you don’t need an add-in. Also, you can use a single file VBA module (standalone
workbook) instead of the add-in. For more details, see Add-in & Settings.

Note: The add-in needs to be the same version as the Python package. Make sure to re-install the add-in
after upgrading the xlwings package. Make sure to close Ecxel before installing/upgrading the add-in.

Note: When you are on macOS and are using the VBA standalone module instead of the add-in, you need
to run $ xlwings runpython install once.

2.4 Dependencies

• Windows: pywin32

• Mac: psutil, appscript

The dependencies are automatically installed via conda or pip. If you would like to install xlwings
without dependencies, you can run pip install xlwings --no-deps or set the environment variable
XLWINGS_NO_DEPS=1 before running pip install xlwings.

2.5 How to activate xlwings PRO

See xlwings PRO.

2.6 Optional Dependencies

• NumPy

• pandas

• Matplotlib

• Pillow

4 Chapter 2. Installation

xlwings - Make Excel Fly!, Release dev

• cryptography (for xlwings.pro)

• Jinja2 (for xlwings.pro.reports)

• requests (for permissioning)

These packages are not required but highly recommended as they play very nicely with xlwings. They are
all pre-installed with Anaconda. With pip, you can install xlwings with all optional dependencies as follows:

pip install "xlwings[all]"

2.7 Update

To update to the latest xlwings version, run the following in a command prompt:

pip install --upgrade xlwings

or:

conda update -c conda-forge xlwings

Make sure to keep your version of the Excel add-in in sync with your Python package by running the following
(make sure to close Excel first):

xlwings addin install

2.8 Uninstall

To uninstall xlwings completely, first uninstall the add-in, then uninstall the xlwings package using the same
method (pip or conda) that you used for installing it:

xlwings addin remove

Then

pip uninstall xlwings

or:

conda remove xlwings

Finally, manually remove the .xlwings directory in your home folder if it exists.

2.7. Update 5

xlwings - Make Excel Fly!, Release dev

6 Chapter 2. Installation

CHAPTER

THREE

QUICKSTART

This guide assumes you have xlwings already installed. If that’s not the case, head over to Installation.

3.1 1. Interacting with Excel from a Jupyter notebook

If you’re just interested in getting a pandas DataFrame in and out of your Jupyter notebook, you can use the
view and load functions, see Jupyter Notebooks: Interact with Excel.

3.2 2. Scripting: Automate/interact with Excel from Python

Establish a connection to a workbook:

>>> import xlwings as xw
>>> wb = xw.Book() # this will create a new workbook
>>> wb = xw.Book('FileName.xlsx') # connect to a file that is open or in the␣
→˓current working directory
>>> wb = xw.Book(r'C:\path\to\file.xlsx') # on Windows: use raw strings to␣
→˓escape backslashes

If you have the same file open in two instances of Excel, you need to fully qualify it and include the app
instance. You will find your app instance key (the PID) via xw.apps.keys():

>>> xw.apps[10559].books['FileName.xlsx']

Instantiate a sheet object:

>>> sheet = wb.sheets['Sheet1']

Reading/writing values to/from ranges is as easy as:

>>> sheet.range('A1').value = 'Foo 1'
>>> sheet.range('A1').value
'Foo 1'

There are many convenience features available, e.g. Range expanding:

7

xlwings - Make Excel Fly!, Release dev

>>> sheet.range('A1').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]
>>> sheet.range('A1').expand().value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Powerful converters handle most data types of interest, including Numpy arrays and Pandas DataFrames in
both directions:

>>> import pandas as pd
>>> df = pd.DataFrame([[1,2], [3,4]], columns=['a', 'b'])
>>> sheet.range('A1').value = df
>>> sheet.range('A1').options(pd.DataFrame, expand='table').value

a b
0.0 1.0 2.0
1.0 3.0 4.0

Matplotlib figures can be shown as pictures in Excel:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
[<matplotlib.lines.Line2D at 0x1071706a0>]
>>> sheet.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Workbook4]Sheet1>>

3.3 3. Macros: Call Python from Excel

You can call Python functions either by clicking the Run button (new in v0.16) in the add-in or from VBA
using the RunPython function:

The Run button expects a function called main in a Python module with the same name as your workbook.
The great thing about that approach is that you don’t need your workbooks to be macro-enabled, you can
save it as xlsx.

If you want to call any Python function no matter in what module it lives or what name it has, use RunPython:

Sub HelloWorld()
RunPython "import hello; hello.world()"

End Sub

Note: Per default, RunPython expects hello.py in the same directory as the Excel file with the same name,
but you can change both of these things: if your Python file is an a different folder, add that folder to the
PYTHONPATH in the config. If the file has a different name, change the RunPython command accordingly.

Refer to the calling Excel book by using xw.Book.caller():

8 Chapter 3. Quickstart

xlwings - Make Excel Fly!, Release dev

hello.py
import numpy as np
import xlwings as xw

def world():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 'Hello World!'

To make this run, you’ll need to have the xlwings add-in installed or have the workbooks setup in the stan-
dalone mode. The easiest way to get everything set up is to use the xlwings command line client from either
a command prompt on Windows or a terminal on Mac: xlwings quickstart myproject.

For details about the addin, see Add-in & Settings.

3.4 4. UDFs: User Defined Functions (Windows only)

Writing a UDF in Python is as easy as:

import xlwings as xw

@xw.func
def hello(name):

return f'Hello {name}'

Converters can be used with UDFs, too. Again a Pandas DataFrame example:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame)
def correl2(x):

x arrives as DataFrame
return x.corr()

Import this function into Excel by clicking the import button of the xlwings add-in: for a step-by-step tutorial,
see User Defined Functions (UDFs).

3.4. 4. UDFs: User Defined Functions (Windows only) 9

xlwings - Make Excel Fly!, Release dev

10 Chapter 3. Quickstart

CHAPTER

FOUR

CONNECT TO A BOOK

When reading/writing data to the active sheet, you don’t need a book object:

>>> import xlwings as xw
>>> xw.Range('A1').value = 'something'

4.1 Python to Excel

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances and
returns an error, should the same book be open in multiple instances. To connect to a book in the active app
instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or something like xw.apps[10559] for existing apps, get␣
→˓the available PIDs via xw.apps.keys()
>>> app.books['Book1']

Note that you usually should use App as a context manager as this will make sure that the Excel instance is
closed and cleaned up again properly:

with xw.App() as app:
book = app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()

Unsaved book xw.Book('Book1') xw.books['Book1']

Book by
(full)name

xw.Book(r'C:/path/to/file.
xlsx')

xw.books.open(r'C:/path/to/file.
xlsx')

Note: When specifying file paths on Windows, you should either use raw strings by putting an r in front of
the string or use double back-slashes like so: C:\\path\\to\\file.xlsx.

11

xlwings - Make Excel Fly!, Release dev

4.2 Excel to Python (RunPython)

To reference the calling book when using RunPython in VBA, use xw.Book.caller(), see Call Python
with “RunPython”. Check out the section about Debugging to see how you can call a script from both
sides, Python and Excel, without the need to constantly change between xw.Book.caller() and one of the
methods explained above.

4.3 User Defined Functions (UDFs)

Unlike RunPython, UDFs don’t need a call to xw.Book.caller(), see User Defined Functions (UDFs).
You’ll usually use the caller argument which returns the xlwings range object from where you call the
function.

12 Chapter 4. Connect to a Book

CHAPTER

FIVE

SYNTAX OVERVIEW

The xlwings object model is very similar to the one used by VBA.

All code samples below depend on the following import:

>>> import xlwings as xw

5.1 Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sheet = xw.sheets.active # in active book
>>> sheet = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

A Range can be instantiated with A1 notation, a tuple of Excel’s 1-based indices, a named range or two Range
objects:

xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))
xw.Range((1,1), (3,3))
xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

13

xlwings - Make Excel Fly!, Release dev

5.2 Full qualification

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based
indexing/slicing. As an example, the following expressions all reference the same range:

xw.apps[763].books[0].sheets[0].range('A1')
xw.apps(10559).books(1).sheets(1).range('A1')
xw.apps[763].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(10559).books('Book1').sheets('Sheet1').range('A1')

Note that the apps keys are different for you as they are the process IDs (PID). You can get the list of your
PIDs via xw.apps.keys().

5.3 App context manager

If you want to open a new Excel instance via App(), you usually should use App as a context manager as this
will make sure that the Excel instance is closed and cleaned up again properly:

with xw.App() as app:
book = app.books['Book1']

5.4 Range indexing/slicing

Range objects support indexing and slicing, a few examples:

>>> rng = xw.Book().sheets[0].range('A1:D5')
>>> rng[0, 0]
<Range [Workbook1]Sheet1!A1>
>>> rng[1]
<Range [Workbook1]Sheet1!B1>
>>> rng[:, 3:]
<Range [Workbook1]Sheet1!D1:D5>
>>> rng[1:3, 1:3]
<Range [Workbook1]Sheet1!B2:C3>

5.5 Range Shortcuts

Sheet objects offer a shortcut for range objects by using index/slice notation on the sheet object. This evaluates
to either sheet.range or sheet.cells depending on whether you pass a string or indices/slices:

>>> sheet = xw.Book().sheets['Sheet1']
>>> sheet['A1']

(continues on next page)

14 Chapter 5. Syntax Overview

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

<Range [Book1]Sheet1!A1>
>>> sheet['A1:B5']
<Range [Book1]Sheet1!A1:B5>
>>> sheet[0, 1]
<Range [Book1]Sheet1!B1>
>>> sheet[:10, :10]
<Range [Book1]Sheet1!A1:J10>

5.6 Object Hierarchy

The following shows an example of the object hierarchy, i.e. how to get from an app to a range object and all
the way back:

>>> rng = xw.apps[10559].books[0].sheets[0].range('A1')
>>> rng.sheet.book.app
<Excel App 10559>

5.6. Object Hierarchy 15

xlwings - Make Excel Fly!, Release dev

16 Chapter 5. Syntax Overview

CHAPTER

SIX

DATA STRUCTURES TUTORIAL

This tutorial gives you a quick introduction to the most common use cases and default behaviour of xlwings
when reading and writing values. For an in-depth documentation of how to control the behavior using the
options method, have a look at Converters and Options.

All code samples below depend on the following import:

>>> import xlwings as xw

6.1 Single Cells

Single cells are by default returned either as float, unicode, None or datetime objects, depending on
whether the cell contains a number, a string, is empty or represents a date:

>>> import datetime as dt
>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = 1
>>> sheet.range('A1').value
1.0
>>> sheet.range('A2').value = 'Hello'
>>> sheet.range('A2').value
'Hello'
>>> sheet.range('A3').value is None
True
>>> sheet.range('A4').value = dt.datetime(2000, 1, 1)
>>> sheet.range('A4').value
datetime.datetime(2000, 1, 1, 0, 0)

17

xlwings - Make Excel Fly!, Release dev

6.2 Lists

• 1d lists: Ranges that represent rows or columns in Excel are returned as simple lists, which means that
once they are in Python, you’ve lost the information about the orientation. If that is an issue, the next
point shows you how to preserve this info:

>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = [[1],[2],[3],[4],[5]] # Column orientation␣
→˓(nested list)
>>> sheet.range('A1:A5').value
[1.0, 2.0, 3.0, 4.0, 5.0]
>>> sheet.range('A1').value = [1, 2, 3, 4, 5]
>>> sheet.range('A1:E1').value
[1.0, 2.0, 3.0, 4.0, 5.0]

To force a single cell to arrive as list, use:

>>> sheet.range('A1').options(ndim=1).value
[1.0]

Note: To write a list in column orientation to Excel, use transpose: sheet.range('A1').
options(transpose=True).value = [1,2,3,4]

• 2d lists: If the row or column orientation has to be preserved, set ndim in the Range options. This will
return the Ranges as nested lists (“2d lists”):

>>> sheet.range('A1:A5').options(ndim=2).value
[[1.0], [2.0], [3.0], [4.0], [5.0]]
>>> sheet.range('A1:E1').options(ndim=2).value
[[1.0, 2.0, 3.0, 4.0, 5.0]]

• 2 dimensional Ranges are automatically returned as nested lists. When assigning (nested) lists to a
Range in Excel, it’s enough to just specify the top left cell as target address. This sample also makes
use of index notation to read the values back into Python:

>>> sheet.range('A10').value = [['Foo 1', 'Foo 2', 'Foo 3'], [10, 20, 30]]
>>> sheet.range((10,1),(11,3)).value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Note: Try to minimize the number of interactions with Excel. It is always more efficient to
do sheet.range('A1').value = [[1,2],[3,4]] than sheet.range('A1').value = [1, 2] and
sheet.range('A2').value = [3, 4].

18 Chapter 6. Data Structures Tutorial

xlwings - Make Excel Fly!, Release dev

6.3 Range expanding

You can get the dimensions of Excel Ranges dynamically through either the method expand or through the
expand keyword in the options method. While expand gives back an expanded Range object, options are
only evaluated when accessing the values of a Range. The difference is best explained with an example:

>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sheet.range('A1').expand('table') # or just .expand()
>>> rng2 = sheet.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sheet.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

'table' expands to 'down' and 'right', the other available options which can be used for column or row
only expansion, respectively.

Note: Using expand() together with a named Range as top left cell gives you a flexible setup in Excel: You
can move around the table and change its size without having to adjust your code, e.g. by using something
like sheet.range('NamedRange').expand().value.

6.4 NumPy arrays

NumPy arrays work similar to nested lists. However, empty cells are represented by nan instead of None. If
you want to read in a Range as array, set convert=np.array in the options method:

>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> sheet.range('A1').value = np.eye(3)
>>> sheet.range('A1').options(np.array, expand='table').value
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

6.3. Range expanding 19

xlwings - Make Excel Fly!, Release dev

6.5 Pandas DataFrames

>>> sheet = xw.Book().sheets[0]
>>> df = pd.DataFrame([[1.1, 2.2], [3.3, None]], columns=['one', 'two'])
>>> df

one two
0 1.1 2.2
1 3.3 NaN
>>> sheet.range('A1').value = df
>>> sheet.range('A1:C3').options(pd.DataFrame).value

one two
0 1.1 2.2
1 3.3 NaN
options: work for reading and writing
>>> sheet.range('A5').options(index=False).value = df
>>> sheet.range('A9').options(index=False, header=False).value = df

6.6 Pandas Series

>>> import pandas as pd
>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.], name='myseries')
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64
>>> sheet.range('A1').value = s
>>> sheet.range('A1:B7').options(pd.Series).value
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64

Note: You only need to specify the top left cell when writing a list, a NumPy array or a Pandas DataFrame
to Excel, e.g.: sheet.range('A1').value = np.eye(10)

20 Chapter 6. Data Structures Tutorial

xlwings - Make Excel Fly!, Release dev

6.7 Chunking: Read/Write big DataFrames etc.

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a
memory error. The ideal chunksize will depend on your system and size of the array, so you will have to
try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

6.7. Chunking: Read/Write big DataFrames etc. 21

xlwings - Make Excel Fly!, Release dev

22 Chapter 6. Data Structures Tutorial

CHAPTER

SEVEN

ADD-IN & SETTINGS

The xlwings add-in is the preferred way to be able to use the Run main button, RunPython or UDFs. Note
that you don’t need an add-in if you just want to manipulate Excel by running a Python script.

Note: The ribbon of the add-in is compatible with Excel >= 2007 on Windows and >= 2016 on Mac. On
Mac, all UDF related functionality is not available.

Note: The add-in is password protected with the password xlwings. For debugging or to add new exten-
sions, you need to unprotect it. Alternatively, you can also install the add-in via xlwings addin install
--unprotected.

7.1 Run main

New in version 0.16.0.

The Run main button is the easiest way to run your Python code: It runs a function called main in a Python
module that has the same name as your workbook. This allows you to save your workbook as xlsx without
enabling macros. The xlwings quickstart command will create a workbook that will automatically work
with the Run button.

23

xlwings - Make Excel Fly!, Release dev

7.2 Installation

To install the add-in, use the command line client:

xlwings addin install

Technically, this copies the add-in from Python’s installation directory to Excel’s XLSTART folder. Then,
to use RunPython or UDFs in a workbook, you need to set a reference to xlwings in the VBA editor, see
screenshot (Windows: Tools > References..., Mac: it’s on the lower left corner of the VBA editor).
Note that when you create a workbook via xlwings quickstart, the reference should already be set.

7.3 User Settings

When you install the add-in for the first time, it will get auto-configured and therefore, a quickstart project
should work out of the box. For fine-tuning, here are the available settings:

• Interpreter: This is the path to the Python interpreter. This works also with virtual or conda envs
on Mac. If you use conda envs on Windows, then leave this empty and use Conda Path and Conda
Env below instead. Examples: "C:\Python39\pythonw.exe" or "/usr/local/bin/python3.
9". Note that in the settings, this is stored as Interpreter_Win or Interpreter_Mac, respectively,
see below!

• PYTHONPATH: If the source file of your code is not found, add the path to its directory here.

• Conda Path: If you are on Windows and use Anaconda or Miniconda, then type here the path to
your installation, e.g. C:\Users\Username\Miniconda3 or %USERPROFILE%\Anaconda. NOTE
that you need at least conda 4.6! You also need to set Conda Env, see next point.

24 Chapter 7. Add-in & Settings

xlwings - Make Excel Fly!, Release dev

• Conda Env: If you are on Windows and use Anaconda or Miniconda, type here the name of your
conda env, e.g. base for the base installation or myenv for a conda env with the name myenv.

• UDF Modules: Names of Python modules (without .py extension) from which the UDFs are being im-
ported. Separate multiple modules by “;”. Example: UDF_MODULES = "common_udfs;myproject"
The default imports a file in the same directory as the Excel spreadsheet with the same name but ending
in .py.

• Debug UDFs: Check this box if you want to run the xlwings COM server manually for debugging, see
Debugging.

• RunPython: Use UDF Server: Uses the same COM Server for RunPython as for UDFs. This will
be faster, as the interpreter doesn’t shut down after each call.

• Restart UDF Server: This restarts the UDF Server/Python interpreter.

• Show Console: Check the box in the ribbon or set the config to TRUE if you want the command prompt
to pop up. This currently only works on Windows.

• ADD_WORKBOOK_TO_PYTHONPATH: Uncheck this box to not automatically add the directory of
your workbook to the PYTHONPATH. This can be helpful if you experience issues with
OneDrive/SharePoint: uncheck this box and provide the path where your source file is manually via
the PYTHONPATH setting.

7.3.1 Anaconda/Miniconda

If you use Anaconda or Miniconda on Windows, you will need to set your Conda Path and Conda Env
settings, as you will otherwise get errors when using NumPy etc. In return, leave Interpreter empty.

7.4 Making use of Environment Variables

With environment variables, you can set dynamic paths e.g. to your interpreter or PYTHONPATH:

• On Windows, you can use all environment variables like so: %USERPROFILE%\Anaconda.

• On macOS, the following special variables are supported: $HOME, $APPLICATIONS, $DOCUMENTS,
$DESKTOP.

7.5 User Config: Ribbon/Config File

The settings in the xlwings Ribbon are stored in a config file that can also be manipulated externally. The
location is

• Windows: .xlwings\xlwings.conf in your home folder, that is usually C:\Users\<username>

• macOS: ~/Library/Containers/com.microsoft.Excel/Data/xlwings.conf

The format is as follows (currently the keys are required to be all caps) - note the OS specific Interpreter
settings!

7.4. Making use of Environment Variables 25

xlwings - Make Excel Fly!, Release dev

"INTERPRETER_WIN","C:\path\to\python.exe"
"INTERPRETER_MAC","/path/to/python"
"PYTHONPATH",""
"ADD_WORKBOOK_TO_PYTHONPATH",""
"CONDA PATH",""
"CONDA ENV",""
"UDF MODULES",""
"DEBUG UDFS",""
"USE UDF SERVER",""
"SHOW CONSOLE",""
"ONEDRIVE_CONSUMER_WIN",""
"ONEDRIVE_CONSUMER_WIN",""
"ONEDRIVE_COMMERCIAL_WIN",""
"ONEDRIVE_COMMERCIAL_MAC",""
"SHAREPOINT_WIN",""
"SHAREPOINT_MAC",""

Note: The ONEDRIVE_WIN/_MAC setting has to be edited directly in the file, there is currently no possibility
to edit it via the ribbon. Usually, it is only required if you are either on macOS or if your environment
variables on Windows are not correctly set or if you have a private and corporate location and don’t want to
go with the default one. ONEDRIVE_WIN/_MAC has to point to the root folder of your local OneDrive folder.

7.6 Workbook Directory Config: Config file

The global settings of the Ribbon/Config file can be overridden for one or more workbooks by creating a
xlwings.conf file in the workbook’s directory.

Note: Workbook directory config files are not supported if your workbook is stored on SharePoint or
OneDrive.

7.7 Workbook Config: xlwings.conf Sheet

Workbook specific settings will override global (Ribbon) and workbook directory config files: Workbook
specific settings are set by listing the config key/value pairs in a sheet with the name xlwings.conf. When
you create a new project with xlwings quickstart, it’ll already have such a sheet but you need to rename
it to xlwings.conf to make it active.

26 Chapter 7. Add-in & Settings

xlwings - Make Excel Fly!, Release dev

7.8 Alternative: Standalone VBA module

Sometimes, it might be useful to run xlwings code without having to install an add-in first. To do so,
you need to use the standalone option when creating a new project: xlwings quickstart myproject
--standalone.

This will add the content of the add-in as a single VBA module so you don’t need to set a reference to the
add-in anymore. It will also include Dictionary.cls as this is required on macOS. It will still read in the
settings from your xlwings.conf if you don’t override them by using a sheet with the name xlwings.conf.

7.8. Alternative: Standalone VBA module 27

xlwings - Make Excel Fly!, Release dev

28 Chapter 7. Add-in & Settings

CHAPTER

EIGHT

RUNPYTHON

8.1 xlwings add-in

To get access to Run main (new in v0.16) button or the RunPython VBA function, you’ll need the xlwings
addin (or VBA module), see Add-in & Settings.

For new projects, the easiest way to get started is by using the command line client with the quickstart
command, see Command Line Client (CLI) for details:

$ xlwings quickstart myproject

8.2 Call Python with “RunPython”

In the VBA Editor (Alt-F11), write the code below into a VBA module. xlwings quickstart automat-
ically adds a new module with a sample call. If you rather want to start from scratch, you can add a new
module via Insert > Module.

Sub HelloWorld()
RunPython "import hello; hello.world()"

End Sub

This calls the following code in hello.py:

hello.py
import numpy as np
import xlwings as xw

def world():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 'Hello World!'

You can then attach HelloWorld to a button or run it directly in the VBA Editor by hitting F5.

Note: Place xw.Book.caller() within the function that is being called from Excel and not outside as
global variable. Otherwise it prevents Excel from shutting down properly upon exiting and leaves you with

29

xlwings - Make Excel Fly!, Release dev

a zombie process when you use Use UDF Server = True.

8.3 Function Arguments and Return Values

While it’s technically possible to include arguments in the function call within RunPython, it’s not very
convenient. Also, RunPython does not allow you to return values. To overcome these issues, use UDFs, see
User Defined Functions (UDFs) - however, this is currently limited to Windows only.

30 Chapter 8. RunPython

CHAPTER

NINE

USER DEFINED FUNCTIONS (UDFS)

This tutorial gets you quickly started on how to write User Defined Functions.

Note:

• UDFs are currently only available on Windows.

• For details of how to control the behaviour of the arguments and return values, have a look at Converters
and Options.

• For a comprehensive overview of the available decorators and their options, check out the correspond-
ing API docs: UDF decorators.

9.1 One-time Excel preparations

1) Enable Trust access to the VBA project object model under File > Options > Trust
Center > Trust Center Settings > Macro Settings. You only need to do this once. Also,
this is only required for importing the functions, i.e. end users won’t need to bother about this.

2) Install the add-in via command prompt: xlwings addin install (see Add-in & Settings).

9.2 Workbook preparation

The easiest way to start a new project is to run xlwings quickstart myproject on a command prompt
(see Command Line Client (CLI)). This automatically adds the xlwings reference to the generated workbook.

31

xlwings - Make Excel Fly!, Release dev

9.3 A simple UDF

The default addin settings expect a Python source file in the way it is created by quickstart:

• in the same directory as the Excel file

• with the same name as the Excel file, but with a .py ending instead of .xlsm.

Alternatively, you can point to a specific module via UDF Modules in the xlwings ribbon.

Let’s assume you have a Workbook myproject.xlsm, then you would write the following code in
myproject.py:

import xlwings as xw

@xw.func
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

• Now click on Import Python UDFs in the xlwings tab to pick up the changes made to myproject.
py.

• Enter the formula =double_sum(1, 2) into a cell and you will see the correct result:

• The docstring (in triple-quotes) will be shown as function description in Excel.

Note:

• You only need to re-import your functions if you change the function arguments or the function name.

• Code changes in the actual functions are picked up automatically (i.e. at the next calculation of the
formula, e.g. triggered by Ctrl-Alt-F9), but changes in imported modules are not. This is the very
behaviour of how Python imports work. If you want to make sure everything is in a fresh state, click
Restart UDF Server.

• The @xw.func decorator is only used by xlwings when the function is being imported into Excel. It
tells xlwings for which functions it should create a VBA wrapper function, otherwise it has no effect
on how the functions behave in Python.

32 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.4 Array formulas: Get efficient

Calling one big array formula in Excel is much more efficient than calling many single-cell formulas, so it’s
generally a good idea to use them, especially if you hit performance problems.

You can pass an Excel Range as a function argument, as opposed to a single cell and it will show up in Python
as list of lists.

For example, you can write the following function to add 1 to every cell in a Range:

@xw.func
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

To use this formula in Excel,

• Click on Import Python UDFs again

• Fill in the values in the range A1:B2

• Select the range D1:E2

• Type in the formula =add_one(A1:B2)

• Press Ctrl+Shift+Enter to create an array formula. If you did everything correctly, you’ll see the
formula surrounded by curly braces as in this screenshot:

9.4.1 Number of array dimensions: ndim

The above formula has the issue that it expects a “two dimensional” input, e.g. a nested list of the form [[1,
2], [3, 4]]. Therefore, if you would apply the formula to a single cell, you would get the following error:
TypeError: 'float' object is not iterable.

To force Excel to always give you a two-dimensional array, no matter whether the argument is a single cell,
a column/row or a two-dimensional Range, you can extend the above formula like this:

@xw.func
@xw.arg('data', ndim=2)
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

9.4. Array formulas: Get efficient 33

xlwings - Make Excel Fly!, Release dev

9.5 Array formulas with NumPy and Pandas

Often, you’ll want to use NumPy arrays or Pandas DataFrames in your UDF, as this unlocks the full power
of Python’s ecosystem for scientific computing.

To define a formula for matrix multiplication using numpy arrays, you would define the following function:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
@xw.arg('y', np.array, ndim=2)
def matrix_mult(x, y):

return x @ y

Note: If you are not on Python >= 3.5 with NumPy >= 1.10, use x.dot(y) instead of x @ y.

A great example of how you can put Pandas at work is the creation of an array-based CORREL formula.
Excel’s version of CORREL only works on 2 datasets and is cumbersome to use if you want to quickly get the
correlation matrix of a few time-series, for example. Pandas makes the creation of an array-based CORREL2
formula basically a one-liner:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame, index=False, header=False)
@xw.ret(index=False, header=False)
def CORREL2(x):

"""Like CORREL, but as array formula for more than 2 data sets"""
return x.corr()

9.6 @xw.arg and @xw.ret decorators

These decorators are to UDFs what the options method is to Range objects: they allow you to apply con-
verters and their options to function arguments (@xw.arg) and to the return value (@xw.ret). For example,
to convert the argument x into a pandas DataFrame and suppress the index when returning it, you would do
the following:

@xw.func
@xw.arg('x', pd.DataFrame)
@xw.ret(index=False)
def myfunction(x):

(continues on next page)

34 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

x is a DataFrame, do something with it
return x

For further details see the Converters and Options documentation.

9.7 Dynamic Array Formulas

Note: If your version of Excel supports the new native dynamic arrays, then you don’t have to do anything
special, and you shouldn’t use the expand decorator! To check if your version of Excel supports it, see if you
have the =UNIQUE() formula available. Native dynamic arrays were introduced in Office 365 Insider Fast at
the end of September 2018.

As seen above, to use Excel’s array formulas, you need to specify their dimensions up front by selecting the
result array first, then entering the formula and finally hitting Ctrl-Shift-Enter. In practice, it often turns
out to be a cumbersome process, especially when working with dynamic arrays such as time series data.
Since v0.10, xlwings offers dynamic UDF expansion:

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):

return np.random.randn(int(r), int(c))

Note:

• Expanding array formulas will overwrite cells without prompting

• Pre v0.15.0 doesn’t allow to have volatile functions as arguments, e.g. you cannot use functions like
=TODAY() as arguments. Starting with v0.15.0, you can use volatile functions as input, but the UDF
will be called more than 1x.

• Dynamic Arrays have been refactored with v0.15.0 to be proper legacy arrays: To edit a dynamic array
with xlwings >= v0.15.0, you need to hit Ctrl-Shift-Enter while in the top left cell. Note that you
don’t have to do that when you enter the formula for the first time.

9.7. Dynamic Array Formulas 35

xlwings - Make Excel Fly!, Release dev

36 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.8 Docstrings

The following sample shows how to include docstrings both for the function and for the arguments x and y
that then show up in the function wizard in Excel:

import xlwings as xw

@xw.func
@xw.arg('x', doc='This is x.')
@xw.arg('y', doc='This is y.')
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

9.9 The “caller” argument

You often need to know which cell called the UDF. For this, xlwings offers the reserved argument caller
which returns the calling cell as xlwings range object:

@xw.func
def get_caller_address(caller):

caller will not be exposed in Excel, so use it like so:
=get_caller_address()
return caller.address

Note that caller will not be exposed in Excel but will be provided by xlwings behind the scenes.

9.10 The “vba” keyword

By using the vba keyword, you can get access to any Excel VBA object in the form of a pywin32 object. For
example, if you wanted to pass the sheet object in the form of its CodeName, you can do it as follows:

@xw.func
@xw.arg('sheet1', vba='Sheet1')
def get_name(sheet1):

call this function in Excel with:
=get_name()
return sheet1.Name

Note that vba arguments are not exposed in the UDF but automatically provided by xlwings.

9.8. Docstrings 37

xlwings - Make Excel Fly!, Release dev

9.11 Macros

On Windows, as an alternative to calling macros via RunPython, you can also use the @xw.sub decorator:

import xlwings as xw

@xw.sub
def my_macro():

"""Writes the name of the Workbook into Range("A1") of Sheet 1"""
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = wb.name

After clicking on Import Python UDFs, you can then use this macro by executing it via Alt + F8 or by
binding it e.g. to a button. To do the latter, make sure you have the Developer tab selected under File >
Options > Customize Ribbon. Then, under the Developer tab, you can insert a button via Insert >
Form Controls. After drawing the button, you will be prompted to assign a macro to it and you can select
my_macro.

9.12 Call UDFs from VBA

Imported functions can also be used from VBA. For example, for a function returning a 2d array:

Sub MySub()

Dim arr() As Variant
Dim i As Long, j As Long

arr = my_imported_function(...)

For j = LBound(arr, 2) To UBound(arr, 2)
For i = LBound(arr, 1) To UBound(arr, 1)

Debug.Print "(" & i & "," & j & ")", arr(i, j)
Next i

Next j

End Sub

38 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.13 Asynchronous UDFs

Note: This is an experimental feature

New in version v0.14.0.

xlwings offers an easy way to write asynchronous functions in Excel. Asynchronous functions return imme-
diately with #N/A waiting.... While the function is waiting for its return value, you can use Excel to do
other stuff and whenever the return value is available, the cell value will be updated.

The only available mode is currently async_mode='threading', meaning that it’s useful for I/O-bound
tasks, for example when you fetch data from an API over the web.

You make a function asynchronous simply by giving it the respective argument in the function decorator. In
this example, the time consuming I/O-bound task is simulated by using time.sleep:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):

time.sleep(5) # long running tasks
return a

You can use this function like any other xlwings function, simply by putting =myfunction("abcd") into a
cell (after you have imported the function, of course).

Note that xlwings doesn’t use the native asynchronous functions that were introduced with Excel 2010, so
xlwings asynchronous functions are supported with any version of Excel.

9.13. Asynchronous UDFs 39

xlwings - Make Excel Fly!, Release dev

40 Chapter 9. User Defined Functions (UDFs)

CHAPTER

TEN

MATPLOTLIB & PLOTLY CHARTS

10.1 Matplotlib

Using pictures.add(), it is easy to paste a Matplotlib plot as picture in Excel.

10.1.1 Getting started

The easiest sample boils down to:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

sheet = xw.Book().sheets[0]
sheet.pictures.add(fig, name='MyPlot', update=True)

Note: If you set update=True, you can resize and position the plot on Excel: subsequent calls to
pictures.add() with the same name ('MyPlot') will update the picture without changing its position
or size.

10.1.2 Full integration with Excel

Calling the above code with RunPython and binding it e.g. to a button is straightforward and works cross-
platform.

However, on Windows you can make things feel even more integrated by setting up a UDF along the following
lines:

@xw.func
def myplot(n, caller):

fig = plt.figure()
(continues on next page)

41

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

plt.plot(range(int(n)))
caller.sheet.pictures.add(fig, name='MyPlot', update=True)
return 'Plotted with n={}'.format(n)

If you import this function and call it from cell B2, then the plot gets automatically updated when cell B1
changes:

10.1.3 Properties

Size, position and other properties can either be set as arguments within pictures.add(), or by manipu-
lating the picture object that is returned, see xlwings.Picture().

For example:

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True,

left=sht.range('B5').left, top=sht.range('B5').top)

or:

>>> plot = sht.pictures.add(fig, name='MyPlot', update=True)
>>> plot.height /= 2
>>> plot.width /= 2

42 Chapter 10. Matplotlib & Plotly Charts

xlwings - Make Excel Fly!, Release dev

10.1. Matplotlib 43

xlwings - Make Excel Fly!, Release dev

10.1.4 Getting a Matplotlib figure

Here are a few examples of how you get a matplotlib figure object:

• via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

or:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4, 5])
fig = plt.gcf()

• via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

• via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

Note: When working with Google Sheets, you can use a maximum of 1 million pixels per picture. Total
pixels is a function of figure size and dpi: (width in inches * dpi) * (height in inches * dpi). For example, fig
= plt.figure(figsize=(6, 4)) with 200 dpi (default dpi when using pictures.add()) will result in
(6 * 200) * (4 * 200) = 960,000 px. To change the dpi, provide export_options: pictures.add(fig,
export_options={"bbox_inches": "tight", "dpi": 300}). Existing figure size can be checked
via fig.get_size_inches(). pandas also accepts figsize like so: ax = df.plot(figsize=(3, 3)).
Note that "bbox_inches": "tight" crops the image and therefore will reduce the number of pixels in
a non-deterministic way. export_options will be passed to figure.figsave() when using Matplotlib
and to figure.write_image() when using Plotly.

44 Chapter 10. Matplotlib & Plotly Charts

xlwings - Make Excel Fly!, Release dev

10.2 Plotly static charts

10.2.1 Prerequisites

In addition to plotly, you will need kaleido, psutil, and requests. The easiest way to get it is via pip:

$ pip install kaleido psutil requests

or conda:

$ conda install -c conda-forge python-kaleido psutil requests

See also: https://plotly.com/python/static-image-export/

10.2.2 How to use

It works the same as with Matplotlib, however, rendering a Plotly chart takes slightly longer. Here is a sample:

import xlwings as xw
import plotly.express as px

Plotly chart
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")

Add it to Excel
wb = xw.Book()
wb.sheets[0].pictures.add(fig, name='IrisScatterPlot', update=True)

10.2. Plotly static charts 45

https://plotly.com/python/static-image-export/

xlwings - Make Excel Fly!, Release dev

46 Chapter 10. Matplotlib & Plotly Charts

CHAPTER

ELEVEN

JUPYTER NOTEBOOKS: INTERACT WITH EXCEL

When you work with Jupyter notebooks, you may use Excel as an interactive data viewer or scratchpad from
where you can load DataFrames. The two convenience functions view and load make this really easy.

Note: The view and load functions should exclusively be used for interactive work. If you write scripts,
use the xlwings API as introduced under Quickstart and Syntax Overview.

11.1 The view function

The view function accepts pretty much any object of interest, whether that’s a number, a string, a nested
list or a NumPy array or a pandas DataFrame. By default, it writes the data into an Excel table in a new
workbook. If you wanted to reuse the same workbook, provide a sheet object, e.g. view(df, sheet=xw.
sheets.active), for further options see view.

47

xlwings - Make Excel Fly!, Release dev

Changed in version 0.22.0: Earlier versions were not formatting the output as Excel table

11.2 The load function

To load in a range in an Excel sheet as pandas DataFrame, use the load function. If you only select one cell,
it will auto-expand to cover the whole range. If, however, you select a specific range that is bigger than one
cell, it will load in only the selected cells. If the data in Excel does not have an index or header, set them to
False like this: xw.load(index=False), see also load .

New in version 0.22.0.

48 Chapter 11. Jupyter Notebooks: Interact with Excel

CHAPTER

TWELVE

COMMAND LINE CLIENT (CLI)

xlwings comes with a command line client. On Windows, type the commands into a Command Prompt or
Anaconda Prompt, on Mac, type them into a Terminal. To get an overview of all commands, simply type
xlwings and hit Enter:

addin Run "xlwings addin install" to install the Excel add-
in (will be copied to the XLSTART folder). Instead of
"install" you can also use "update", "remove" or
"status". Note that this command may take a while. You
can install your custom add-in by providing the name
or path via the --file/-f flag, e.g. "xlwings add-in
install -f custom.xlam or copy all Excel files in a
directory to the XLSTART folder by providing the path
via the --dir flag."
(New in 0.6.0, the --dir flag was added in 0.24.8)

quickstart Run "xlwings quickstart myproject" to create a folder
called "myproject" in the current directory with an
Excel file and a Python file, ready to be used. Use
the "--standalone" flag to embed all VBA code in the
Excel file and make it work without the xlwings add-
in. Use "--fastapi" for creating a project that uses a
remote Python interpreter. Use "--addin --ribbon" to
create a template for a custom ribbon addin. Leave
away the "--ribbon" if you don't want a ribbon tab.

runpython macOS only: run "xlwings runpython install" if you
want to enable the RunPython calls without installing
the add-in. This will create the following file:
~/Library/Application
Scripts/com.microsoft.Excel/xlwings.applescript
(new in 0.7.0)

restapi Use "xlwings restapi run" to run the xlwings REST API
via Flask dev server. Accepts "--host" and "--port" as
optional arguments.

license xlwings PRO: Use "xlwings license update -k KEY" where
"KEY" is your personal (trial) license key. This will
update ~/.xlwings/xlwings.conf with the LICENSE_KEY

(continues on next page)

49

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

entry. If you have a paid license, you can run
"xlwings license deploy" to create a deploy key. This
is not available for trial keys.

config Run "xlwings config create" to create the user config
file (~/.xlwings/xlwings.conf) which is where the
settings from the Ribbon add-in are stored. It will
configure the Python interpreter that you are running
this command with. To reset your configuration, run
this with the "--force" flag which will overwrite your
current configuration.
(New in 0.19.5)

code Run "xlwings code embed" to embed all Python modules
of the workbook's dir in your active Excel file. Use
the "--file" flag to only import a single file by
providing its path. Requires xlwings PRO.
(Changed in 0.23.4)

permission "xlwings permission cwd" prints a JSON string that can
be used to permission the execution of all modules in
the current working directory via GET request.
"xlwings permission book" does the same for code that
is embedded in the active workbook.
(New in 0.23.4)

release Run "xlwings release" to configure your active
workbook to work with a one-click installer for easy
deployment. Requires xlwings PRO.
(New in 0.23.4)

copy Run "xlwings copy os" to copy the xlwings Office
Scripts module. Run "xlwings copy gs" to copy the
xlwings Google Apps Script module.
(New in 0.26.0)

vba This functionality allows you to easily write VBA code
in an external editor: run "xlwings vba edit" to
update the VBA modules of the active workbook from
their local exports everytime you hit save. If you run
this the first time, the modules will be exported from
Excel into your current working directory. To
overwrite the local version of the modules with those
from Excel, run "xlwings vba export". To overwrite the
VBA modules in Excel with their local versions, run
"xlwings vba import". The "--file/-f" flag allows you
to specify a file path instead of using the active
Workbook. Requires "Trust access to the VBA project
object model" enabled. NOTE: Whenever you change
something in the VBA editor (such as the layout of a
form or the properties of a module), you have to run
"xlwings vba export".

(continues on next page)

50 Chapter 12. Command Line Client (CLI)

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

(New in 0.26.3, changed in 0.27.0)

51

xlwings - Make Excel Fly!, Release dev

52 Chapter 12. Command Line Client (CLI)

CHAPTER

THIRTEEN

DEPLOYMENT

13.1 Zip files

New in version 0.15.2.

To make it easier to distribute, you can zip up your Python code into a zip file. If you use UDFs, this will
disable the automatic code reload, so this is a feature meant for distribution, not development. In practice,
this means that when your code is inside a zip file, you’ll have to click on re-import to get any changes.

If you name your zip file like your Excel file (but with .zip extension) and place it in the same folder as your
Excel workbook, xlwings will automatically find it (similar to how it works with a single python file).

If you want to use a different directory, make sure to add it to the PYTHONPATH in your config (Ribbon or
config file):

PYTHONPATH, "C:\path\to\myproject.zip"

13.2 RunFrozenPython

Changed in version 0.15.2.

You can use a freezer like PyInstaller, cx_Freeze, py2exe etc. to freeze your Python module into an executable
so that the recipient doesn’t have to install a full Python distribution.

Note:

• This does not work with UDFs.

• Currently only available on Windows, but support for Mac should be easy to add.

• You need at least 0.15.2 to support arguments whereas the syntax changed in 0.15.6

Use it as follows:

Sub MySample()
RunFrozenPython "C:\path\to\dist\myproject\myproject.exe", "arg1 arg2"

End Sub

53

xlwings - Make Excel Fly!, Release dev

54 Chapter 13. Deployment

CHAPTER

FOURTEEN

ONEDRIVE AND SHAREPOINT

Since v0.27.4, xlwings works with locally synced files on OneDrive, OneDrive for Business, and Share-
Point. Some constellations will work out-of-the-box, while others require you to edit the configuration via
the xlwings.conf file (see User Config) or the workbook’s xlwings.conf sheet (see Workbook Config).

Note: This documentation is for OneDrive and SharePoint files that are synced to a local folder. This
means that both, the Excel and Python file, need to show the green check mark in the File Explorer/Finder
as status—a cloud icon will not work. If, in turn, you are looking for the documentation to run xlwings with
Excel on the web, see Remote Interpreter.

An easy workaround if you run into issues is to:

• Disable the ADD_WORKBOOK_TO_PYTHONPATH setting (either via the checkbox on the Ribbon or via
the settings in the xlwings.conf sheet).

• Add the directory of your Python source file to the PYTHONPATH—again, either via Ribbon or
xlwings.conf sheet.

If you are using the PRO version, you could instead also embed your code to get around these issues.

For a bit more flexibility, follow the solutions below.

14.1 OneDrive (Personal)

Default setups work out-of-the-box on Windows and macOS. If you get an error message, add the following
setting with the correct path to the local root directory of your OneDrive. If possible, make use of environment
variables (as shown in the examples) so the configuration will work across different users with the same setup:

• Windows (Example):

ONEDRIVE_CONSUMER_WIN %USERPROFILE%\OneDrive

• macOS (Example):

55

xlwings - Make Excel Fly!, Release dev

ONEDRIVE_CONSUMER_MAC $HOME/OneDrive

14.2 OneDrive for Business

• Windows: Default setups work out-of-the-box. If you get an error message, add the following setting
with the correct path to the local root directory of your OneDrive for Business. If possible, make use
of environment variables (as shown in the examples) so the configuration will work across different
users with the same setup:

ONEDRIVE_COMMERCIAL_WIN %USERPROFILE%\OneDrive - My Company LLC

• macOS: macOS always requires the following setting with the correct path to the local root directory of
your OneDrive for Business. If possible, make use of environment variables (as shown in the examples)
so the configuration will work across different users with the same setup:

ONEDRIVE_COMMERCIAL_MAC $HOME/OneDrive - My Company LLC

14.3 SharePoint (Online and On-Premises)

On Windows, the location of the local root folder of SharePoint can sometimes be derived from the OneDrive
environment variables. Most of the time though, you’ll have to provide the following setting (on macOS this
is a must):

• Windows:

SHAREPOINT_WIN %USERPROFILE%\My Company LLC

• macOS:

SHAREPOINT_MAC $HOME/My Company LLC

56 Chapter 14. OneDrive and SharePoint

xlwings - Make Excel Fly!, Release dev

14.4 Implementation Details & Limitations

A lot of the xlwings functionality depends on the workbook’s FullName property (via VBA/COM) that
returns the local path of the file unless it is saved on OneDrive, OneDrive for Business or SharePoint with
AutoSave enabled. In this case, it returns a URL instead.

URLs for OneDrive and OneDrive for Business can be translated fairly straight forward to the local equiv-
alent. You will need to know the root directory of the local drive though: on Windows, these are usually
provided via environment variables for OneDrive. On macOS they don’t exist, which is the reason why you
need to provide the root directory for OneDrive. On Windows, the root directory for SharePoint can some-
times be derived from the env vars, too, but this is not guaranteed. On macOS, you’ll need to provide it
always anyway.

SharePoint, unfortunately, allows you to map the drives locally in any way you want and there’s no way to
reliably get the local path for these files. On Windows, xlwings first checks the registry for the mapping. If
this doesn’t work, xlwings checks if the local path is mapped by using the defaults and if the file can’t be
found, it checks all existing local files on SharePoint. If it finds one with the same name, it’ll use this. If,
however, it finds more than one with the same name, you will get an error message. In this case, you can
either rename the file to something unique across all the locally synced SharePoint files or you can change the
SHAREPOINT_WIN/MAC setting to not stop at the root folder but include additional folders. As an example,
assume you have the following file structure on your local SharePoint:

My Company LLC/
sitename1/

myfile.xlsx
sitename2 - Documents/

myfile.xlsx

In this case, you could either rename one of the files, or you could add a path that goes beyond the root folder
(preferably under the xlwings.conf sheet):

SHAREPOINT_WIN %USERPROFILE%/My Company LLC/sitename2 - Documents

14.4. Implementation Details & Limitations 57

xlwings - Make Excel Fly!, Release dev

58 Chapter 14. OneDrive and SharePoint

CHAPTER

FIFTEEN

TROUBLESHOOTING

15.1 Issue: dll not found

Solution:

1) xlwings32-<version>.dll and xlwings64-<version>.dll are both in the same directory as
your python.exe. If not, something went wrong with your installation. Reinstall it with pip or
conda, see Installation.

2) Check your Interpreter in the add-in or config sheet. If it is empty, then you need to be
able to open a windows command prompt and type python to start an interactive Python session.
If you get the error 'python' is not recognized as an internal or external command,
operable program or batch file., then you have two options: Either add the path of where your
python.exe lives to your Windows path (see https://www.computerhope.com/issues/ch000549.htm)
or set the full path to your interpreter in the add-in or your config sheet, e.g. C:\Users\MyUser\
anaconda\pythonw.exe

15.2 Issue: Files that are saved on OneDrive or SharePoint cause an
error to pop up

Solution:

See the dedicated page about how to configure OneDrive and Sharepoint: OneDrive and SharePoint.

59

https://www.computerhope.com/issues/ch000549.htm

xlwings - Make Excel Fly!, Release dev

60 Chapter 15. Troubleshooting

CHAPTER

SIXTEEN

CONVERTERS AND OPTIONS

Introduced with v0.7.0, converters define how Excel ranges and their values are converted both during read-
ing and writing operations. They also provide a consistent experience across xlwings.Range objects and
User Defined Functions (UDFs).

Converters are explicitly set in the options method when manipulating Range objects or in the @xw.arg
and @xw.ret decorators when using UDFs. If no converter is specified, the default converter is applied when
reading. When writing, xlwings will automatically apply the correct converter (if available) according to the
object’s type that is being written to Excel. If no converter is found for that type, it falls back to the default
converter.

All code samples below depend on the following import:

>>> import xlwings as xw

Syntax:

xw.Range UDFs
read-
ing

xw.Range.options(convert=None, **kwargs).
value

@arg('x', convert=None,
**kwargs)

writ-
ing

xw.Range.options(convert=None, **kwargs).
value = myvalue

@ret(convert=None,
**kwargs)

Note: Keyword arguments (kwargs) may refer to the specific converter or the default converter. For exam-
ple, to set the numbers option in the default converter and the index option in the DataFrame converter, you
would write:

xw.Range('A1:C3').options(pd.DataFrame, index=False, numbers=int).value

61

xlwings - Make Excel Fly!, Release dev

16.1 Default Converter

If no options are set, the following conversions are performed:

• single cells are read in as floats in case the Excel cell holds a number, as unicode in case it holds
text, as datetime if it contains a date and as None in case it is empty.

• columns/rows are read in as lists, e.g. [None, 1.0, 'a string']

• 2d cell ranges are read in as list of lists, e.g. [[None, 1.0, 'a string'], [None, 2.0,
'another string']]

The following options can be set:

• ndim

Force the value to have either 1 or 2 dimensions regardless of the shape of the range:

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1, 2], [3, 4]]
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(ndim=1).value
[1.0]
>>> sht.range('A1').options(ndim=2).value
[[1.0]]
>>> sht.range('A1:A2').value
[1.0 3.0]
>>> sht.range('A1:A2').options(ndim=2).value
[[1.0], [3.0]]

• numbers

By default cells with numbers are read as float, but you can change it to int:

>>> sht.range('A1').value = 1
>>> sht.range('A1').value
1.0
>>> sht.range('A1').options(numbers=int).value
1

Alternatively, you can specify any other function or type which takes a single float argument.

Using this on UDFs looks like this:

@xw.func
@xw.arg('x', numbers=int)
def myfunction(x):

all numbers in x arrive as int
return x

62 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

Note: Excel always stores numbers internally as floats, which is the reason why the int converter
rounds numbers first before turning them into integers. Otherwise it could happen that e.g. 5 might be
returned as 4 in case it is represented as a floating point number that is slightly smaller than 5. Should
you require Python’s original int in your converter, use raw int instead.

• dates

By default cells with dates are read as datetime.datetime, but you can change it to datetime.
date:

– Range:

>>> import datetime as dt
>>> sht.range('A1').options(dates=dt.date).value

– UDFs: @xw.arg('x', dates=dt.date)

Alternatively, you can specify any other function or type which takes the same keyword arguments as
datetime.datetime, for example:

>>> my_date_handler = lambda year, month, day, **kwargs: "%04i-%02i-%02i" %␣
→˓(year, month, day)
>>> sht.range('A1').options(dates=my_date_handler).value
'2017-02-20'

• empty

Empty cells are converted per default into None, you can change this as follows:

– Range: >>> sht.range('A1').options(empty='NA').value

– UDFs: @xw.arg('x', empty='NA')

• transpose

This works for reading and writing and allows us to e.g. write a list in column orientation to Excel:

– Range: sht.range('A1').options(transpose=True).value = [1, 2, 3]

– UDFs:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):

x will be returned unchanged as transposed both when reading and␣
→˓writing
return x

• expand

This works the same as the Range properties table, vertical and horizontal but is only evaluated
when getting the values of a Range:

16.1. Default Converter 63

xlwings - Make Excel Fly!, Release dev

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [[1,2], [3,4]]
>>> rng1 = sht.range('A1').expand()
>>> rng2 = sht.range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sht.range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

Note: The expand method is only available on Range objects as UDFs only allow to manipulate the
calling cells.

• chunksize

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout
or a memory error. The ideal chunksize will depend on your system and size of the array, so you will
have to try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

64 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

16.2 Built-in Converters

xlwings offers several built-in converters that perform type conversion to dictionaries, NumPy arrays, Pan-
das Series and DataFrames. These build on top of the default converter, so in most cases the options de-
scribed above can be used in this context, too (unless they are meaningless, for example the ndim in the case
of a dictionary).

It is also possible to write and register a custom converter for additional types, see below.

The samples below can be used with both xlwings.Range objects and UDFs even though only one version
may be shown.

16.2.1 Dictionary converter

The dictionary converter turns two Excel columns into a dictionary. If the data is in row orientation, use
transpose:

>>> sht = xw.sheets.active
>>> sht.range('A1:B2').options(dict).value
{'a': 1.0, 'b': 2.0}
>>> sht.range('A4:B5').options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

Note: instead of dict, you can also use OrderedDict from collections.

16.2.2 Numpy array converter

options: dtype=None, copy=True, order=None, ndim=None

The first 3 options behave the same as when using np.array() directly. Also, ndimworks the same as shown
above for lists (under default converter) and hence returns either numpy scalars, 1d arrays or 2d arrays.

Example:

>>> import numpy as np
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').options(transpose=True).value = np.array([1, 2, 3])
>>> sht.range('A1:A3').options(np.array, ndim=2).value
array([[1.],

[2.],
[3.]])

16.2. Built-in Converters 65

xlwings - Make Excel Fly!, Release dev

16.2.3 Pandas Series converter

options: dtype=None, copy=False, index=1, header=True

The first 2 options behave the same as when using pd.Series() directly. ndim doesn’t have an effect on
Pandas series as they are always expected and returned in column orientation.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.
When writing, include or exclude the index by setting it to True or False.

header: Boolean

When reading, set it to False if Excel doesn’t show either index or series names.
When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

>>> sht = xw.Book().sheets[0]
>>> s = sht.range('A1').options(pd.Series, expand='table').value
>>> s
date
2001-01-01 1
2001-01-02 2
2001-01-03 3
2001-01-04 4
2001-01-05 5
2001-01-06 6
Name: series name, dtype: float64
>>> sht.range('D1', header=False).value = s

66 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

16.2.4 Pandas DataFrame converter

options: dtype=None, copy=False, index=1, header=1

The first 2 options behave the same as when using pd.DataFrame() directly. ndim doesn’t have an effect
on Pandas DataFrames as they are automatically read in with ndim=2.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.
When writing, include or exclude the index by setting it to True or False.

header: int or Boolean

When reading, it expects the number of column headers shown in Excel.
When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

>>> sht = xw.Book().sheets[0]
>>> df = sht.range('A1:D5').options(pd.DataFrame, header=2).value
>>> df

(continues on next page)

16.2. Built-in Converters 67

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

a b
c d e

ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> sht.range('A1').value = df

Writing back and changing some of the options, e.g. getting rid of the index:
>>> sht.range('B7').options(index=False).value = df

The same sample for UDF (starting in Range('A13') on screenshot) looks like this:

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):
x is a DataFrame, do something with it
return x

16.2.5 xw.Range and ‘raw’ converters

Technically speaking, these are “no-converters”.

• If you need access to the xlwings.Range object directly, you can do:

@xw.func
@xw.arg('x', 'range')
def myfunction(x):
return x.formula

This returns x as xlwings.Range object, i.e. without applying any converters or options.

• The raw converter delivers the values unchanged from the underlying libraries (pywin32 on Windows
and appscript on Mac), i.e. no sanitizing/cross-platform harmonizing of values are being made.
This might be useful in a few cases for efficiency reasons. E.g:

>>> sht.range('A1:B2').value
[[1.0, 'text'], [datetime.datetime(2016, 2, 1, 0, 0), None]]

>>> sht.range('A1:B2').options('raw').value # or sht.range('A1:B2').raw_value
((1.0, 'text'), (pywintypes.datetime(2016, 2, 1, 0, 0, tzinfo=TimeZoneInfo(
→˓'GMT Standard Time', True)), None))

68 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

16.3 Custom Converter

Here are the steps to implement your own converter:

• Inherit from xlwings.conversion.Converter

• Implement both a read_value and write_value method as static- or classmethod:

– In read_value, value is what the base converter returns: hence, if no base has been specified
it arrives in the format of the default converter.

– In write_value, value is the original object being written to Excel. It must be returned in the
format that the base converter expects. Again, if no base has been specified, this is the default
converter.

The options dictionary will contain all keyword arguments specified in the xw.Range.options
method, e.g. when calling xw.Range('A1').options(myoption='some value') or as specified
in the @arg and @ret decorator when using UDFs. Here is the basic structure:

from xlwings.conversion import Converter

class MyConverter(Converter):

@staticmethod
def read_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

@staticmethod
def write_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

• Optional: set a base converter (base expects a class name) to build on top of an existing converter,
e.g. for the built-in ones: DictCoverter, NumpyArrayConverter, PandasDataFrameConverter,
PandasSeriesConverter

• Optional: register the converter: you can (a) register a type so that your converter becomes the default
for this type during write operations and/or (b) you can register an alias that will allow you to explicitly
call your converter by name instead of just by class name

The following examples should make it much easier to follow - it defines a DataFrame converter that extends
the built-in DataFrame converter to add support for dropping nan’s:

from xlwings.conversion import Converter, PandasDataFrameConverter

class DataFrameDropna(Converter):

(continues on next page)

16.3. Custom Converter 69

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

base = PandasDataFrameConverter

@staticmethod
def read_value(builtin_df, options):

dropna = options.get('dropna', False) # set default to False
if dropna:

converted_df = builtin_df.dropna()
else:

converted_df = builtin_df
This will arrive in Python when using the DataFrameDropna converter␣

→˓for reading
return converted_df

@staticmethod
def write_value(df, options):

dropna = options.get('dropna', False)
if dropna:

converted_df = df.dropna()
else:

converted_df = df
This will be passed to the built-in PandasDataFrameConverter when␣

→˓writing
return converted_df

Now let’s see how the different converters can be applied:

Fire up a Workbook and create a sample DataFrame
sht = xw.Book().sheets[0]
df = pd.DataFrame([[1.,10.],[2.,np.nan], [3., 30.]])

• Default converter for DataFrames:

Write
sht.range('A1').value = df

Read
sht.range('A1:C4').options(pd.DataFrame).value

• DataFrameDropna converter:

Write
sht.range('A7').options(DataFrameDropna, dropna=True).value = df

Read
sht.range('A1:C4').options(DataFrameDropna, dropna=True).value

• Register an alias (optional):

70 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

DataFrameDropna.register('df_dropna')

Write
sht.range('A12').options('df_dropna', dropna=True).value = df

Read
sht.range('A1:C4').options('df_dropna', dropna=True).value

• Register DataFrameDropna as default converter for DataFrames (optional):

DataFrameDropna.register(pd.DataFrame)

Write
sht.range('A13').options(dropna=True).value = df

Read
sht.range('A1:C4').options(pd.DataFrame, dropna=True).value

These samples all work the same with UDFs, e.g.:

@xw.func
@arg('x', DataFrameDropna, dropna=True)
@ret(DataFrameDropna, dropna=True)
def myfunction(x):

...
return x

Note: Python objects run through multiple stages of a transformation pipeline when they are being written
to Excel. The same holds true in the other direction, when Excel/COM objects are being read into Python.

Pipelines are internally defined by Accessor classes. A Converter is just a special Accessor which converts
to/from a particular type by adding an extra stage to the pipeline of the default Accessor. For example, the
PandasDataFrameConverter defines how a list of lists (as delivered by the default Accessor) should be
turned into a Pandas DataFrame.

The Converter class provides basic scaffolding to make the task of writing a new Converter easier. If you
need more control you can subclass Accessor directly, but this part requires more work and is currently
undocumented.

16.3. Custom Converter 71

xlwings - Make Excel Fly!, Release dev

72 Chapter 16. Converters and Options

CHAPTER

SEVENTEEN

DEBUGGING

Since xlwings runs in every Python environment, you can use your preferred way of debugging.

• RunPython: When calling Python through RunPython, you can set a mock_caller to make it easy
to switch back and forth between calling the function from Excel and Python.

• UDFs: For debugging User Defined Functions, xlwings offers a convenient debugging server

To begin with, Excel will show Python errors in a Message Box:

Note: On Mac, if the import of a module/package fails before xlwings is imported, the popup will not be
shown and the StatusBar will not be reset. However, the error will still be logged in the log file (/Users/
<User>/Library/Containers/com.microsoft.Excel/Data/xlwings.log).

73

xlwings - Make Excel Fly!, Release dev

17.1 RunPython

Consider the following sample code of your Python source code my_module.py:

my_module.py
import os
import xlwings as xw

def my_macro():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 1

if __name__ == '__main__':
Expects the Excel file next to this source file, adjust accordingly.
xw.Book('myfile.xlsm').set_mock_caller()
my_macro()

my_macro() can now easily be run from Python for debugging and from Excel via RunPython without
having to change the source code:

Sub my_macro()
RunPython "import my_module; my_module.my_macro()"

End Sub

17.2 UDF debug server

Windows only: To debug UDFs, just check the Debug UDFs in the Add-in & Settings, at the top of the xlwings
VBA module. Then add the following lines at the end of your Python source file and run it. Depending on
which IDE you use, you might need to run the code in “debug” mode (e.g. in case you’re using PyCharm or
PyDev):

if __name__ == '__main__':
xw.serve()

When you recalculate the Sheet (Ctrl-Alt-F9), the code will stop at breakpoints or output any print calls
that you may have.

The following screenshot shows the code stopped at a breakpoint in the community version of PyCharm:

Note: When running the debug server from a command prompt, there is currently no gracious way to
terminate it, but closing the command prompt will kill it.

74 Chapter 17. Debugging

xlwings - Make Excel Fly!, Release dev

17.2. UDF debug server 75

xlwings - Make Excel Fly!, Release dev

76 Chapter 17. Debugging

CHAPTER

EIGHTEEN

EXTENSIONS

It’s easy to extend the xlwings add-in with own code like UDFs or RunPython macros, so that they can be
deployed without end users having to import or write the functions themselves. Just add another VBA module
to the xlwings addin with the respective code.

UDF extensions can be used from every workbook without having to set a reference.

18.1 In-Excel SQL

The xlwings addin comes with a built-in extension that adds in-Excel SQL syntax (sqlite dialect):

=sql(SQL Statement, table a, table b, ...)

As this extension uses UDFs, it’s only available on Windows right now.

77

xlwings - Make Excel Fly!, Release dev

78 Chapter 18. Extensions

CHAPTER

NINETEEN

CUSTOM ADD-INS

New in version 0.22.0.

Custom add-ins work on Windows and macOS and are white-labeled xlwings add-ins that include all your
RunPython functions and UDFs (as usual, UDFs work on Windows only). You can build add-ins with and
without an Excel ribbon.

The useful thing about add-in is that UDFs and RunPython calls will be available in all workbooks right out
of the box without having to add any references via the VBA editor’s Tools > References.... You can
also work with standard xlsx files rather than xlsm files. This tutorial assumes you’re familiar with how
xlwings and its configuration works.

19.1 Quickstart

Start by running the following command on a command line (to create an add-in without a ribbon, you would
leave away the --ribbon flag):

$ xlwings quickstart myproject --addin --ribbon

This will create the familiar quickstart folder with a Python file and an Excel file, but this time, the Excel file
is in the xlam format.

• Double-click the Excel add-in to open it in Excel

• Add a new empty workbook (Ctrl+N on Windows or Command+N on macOS)

You should see a new ribbon tab called MyAddin like this:

The add-in and VBA project are currently always called myaddin, no matter what name you chose in the
quickstart command. We’ll see towards the end of this tutorial how we can change that, but for now we’ll
stick to it.

Compared to the xlwings add-in, the custom add-in offers an additional level of configuration: the configura-
tion sheet of the add-in itself which is the easiest way to configure simple add-ins with a static configuration.

Let’s open the VBA editor by clicking on Alt+F11 (Windows) or Option+F11 (macOS). In our project,
select ThisWorkbook, then change the Property IsAddin from True to False, see the following screenshot:

This will make the sheet _myaddin.conf visible (again, we’ll see how to change the name of myaddin at
the end of this tutorial):

79

xlwings - Make Excel Fly!, Release dev

80 Chapter 19. Custom Add-ins

xlwings - Make Excel Fly!, Release dev

• Activate the sheet config by renaming it from _myaddin.conf to myaddin.conf

• Set your Interpreter_Win/_Mac or Conda settings (you may want to take them over from the xl-
wings settings for now)

Once done, switch back to the VBA editor, select ThisWorkbook again, and change IsAddin back to True
before you save your add-in from the VBA editor. Switch back to Excel and click the Run button under the My
Addin ribbon tab and if you’ve configured the Python interpreter correctly, it will print Hello xlwings!
into cell A1 of the active workbook.

19.2 Changing the Ribbon menu

To change the buttons and items in the ribbon menu or the Backstage View, download and install the Office
RibbonX Editor. While it is only available for Windows, the created ribbons will also work on macOS. Open
your add-in with it so you can change the XML code that defines your buttons etc. You will find a good
tutorial here. The callback function for the demo Run button is in the RibbonMyAddin VBA module that
you’ll find in the VBA editor.

19.3 Importing UDFs

To import your UDFs into the custom add-in, run the ImportPythonUDFsToAddin Sub towards the end
of the xlwings module (click into the Sub and hit F5). Remember, you only have to do this whenever you
change the function name, argument or decorator, so your end users won’t have to deal with this.

If you are only deploying UDFs via your add-in, you probably don’t need a Ribbon menu and can leave away
the --ribbon flag in the quickstart command.

19.4 Configuration

As mentioned before, configuration works the same as with xlwings, so you could have your users override
the default configuration we did above by adding a myaddin.conf sheet on their workbook or you could use
the myaddin.conf file in the user’s home directory. For details see Add-in & Settings.

19.5 Installation

If you want to permanently install your add-in, you can do so by using the xlwings CLI:

$ xlwings addin install --file C:\path\to\your\myproject.xlam

This, however, means that you will need to adjust the PYTHONPATH for it to find your Python code (or move
your Python code to somewhere where Python looks for it—more about that below under deployment). The
command will copy your add-in to the XLSTART folder, a special folder from where Excel will open all files
everytime you start it.

19.2. Changing the Ribbon menu 81

https://github.com/fernandreu/office-ribbonx-editor/releases
https://github.com/fernandreu/office-ribbonx-editor/releases
https://www.rondebruin.nl/win/s2/win001.htm

xlwings - Make Excel Fly!, Release dev

19.6 Renaming your add-in

Admittedly, this part is a bit cumbersome for now. Let’s assume, we would like to rename the addin from
MyAddin to Demo:

• In the xlwings VBA module, change Public Const PROJECT_NAME As String = "myaddin"
to Public Const PROJECT_NAME As String = "demo". You’ll find this line at the top, right after
the Declare statements.

• If you rely on the myaddin.conf sheet for your configuration, rename it to demo.conf

• Right-click the VBA project, select MyAddin Properties... and rename the Project Name from
MyAddin to Demo.

• If you use the ribbon, you want to rename the RibbonMyAddin VBA module to RibbonDemo. To do
this, select the module in the VBA editor, then rename it in the Properties window. If you don’t see
the Properties window, hit F4.

• Open the add-in in the Office RibbonX Editor (see above) and replace all occurrences of MyAddin
with Demo in the XML code.

And finally, you may want to rename your myproject.xlam file in the Windows explorer, but I assume you
have already run the quickstart command with the correct name, so this won’t be necessary.

19.7 Deployment

By far the easiest way to deploy your add-in to your end-users is to build an installer via the xlwings PRO
offering. This will take care of everything and your end users literally just need to double-click the installer
and they are all set (no existing Python installation required and no manual installation of the add-in or
adjusting of settings required).

If you want it the free (but hard) way, you either need to build an installer yourself or you need your users to
install Python and the add-in and take care of placing the Python code in the correct directory. This normally
involves tweaking the following settings, for example in the myaddin.conf sheet:

• Interpreter_Win/_Mac: if your end-users have a working version of Python, you can use environ-
ment variables to dynamically resolve to the correct path. For example, if they have Anaconda installed
in the default location, you could use the following configuration:

Conda Path: %USERPROFILE%\anaconda3
Conda Env: base
Interpreter_Mac: $HOME/opt/anaconda3/bin/python

• PYTHONPATH: since you can’t have your Python source code in the XLSTART folder next to the add-in,
you’ll need to adjust the PYTHONPATH setting and add the folder to where the Python code will be.
You could point this to a shared drive or again make use of environment variables so the users can
place the file into a folder called MyAddin in their home directory, for example. However, you can also
place your Python code where Python looks for it, for example by placing them in the site-packages
directory of the Python distribution—an easy way to achieve this is to build a Python package that you
can install via pip.

82 Chapter 19. Custom Add-ins

CHAPTER

TWENTY

THREADING AND MULTIPROCESSING

New in version 0.13.0.

20.1 Threading

While xlwings is not technically thread safe, it’s still easy to use it in threads as long as you have at least
v0.13.0 and stick to a simple rule: Do not pass xlwings objects to threads. This rule isn’t a requirement on
macOS, but it’s still recommended if you want your programs to be cross-platform.

Consider the following example that will NOT work:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

rng = q.get()
rng.value = rng.address
print(rng.address)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)
t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
THIS DOESN'T WORK - passing xlwings objects to threads will fail!

(continues on next page)

83

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

rng = xw.Book('Book1.xlsx').sheets[0].range(cell)
q.put(rng)

q.join()

To make it work, you simply have to fully qualify the cell reference in the thread instead of passing a Book
object:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

cell_ = q.get()
xw.Book('Book1.xlsx').sheets[0].range(cell_).value = cell_
print(cell_)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)
t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
q.put(cell)

q.join()

20.2 Multiprocessing

Note: Multiprocessing is only supported on Windows!

The same rules apply to multiprocessing as for threading, here’s a working example:

from multiprocessing import Pool
import xlwings as xw

(continues on next page)

84 Chapter 20. Threading and Multiprocessing

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

def write_to_workbook(cell):
xw.Book('Book1.xlsx').sheets[0].range(cell).value = cell
print(cell)

if __name__ == '__main__':
with Pool(4) as p:

p.map(write_to_workbook,
['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

20.2. Multiprocessing 85

xlwings - Make Excel Fly!, Release dev

86 Chapter 20. Threading and Multiprocessing

CHAPTER

TWENTYONE

MISSING FEATURES

If you’re missing a feature in xlwings, do the following:

1) Most importantly, open an issue on GitHub. Adding functionality should be user driven, so only if you
tell us about what you’re missing, it’s eventually going to find its way into the library. By the way, we
also appreciate pull requests!

2) Workaround: in essence, xlwings is just a smart wrapper around pywin32 on Windows and appscript
on Mac. You can access the underlying objects by calling the api property:

>>> sheet = xw.Book().sheets[0]
>>> sheet.api
<COMObject <unknown>> # Windows/pywin32
app(pid=2319).workbooks['Workbook1'].worksheets[1] # Mac/appscript

This works accordingly for the other objects like sheet.range('A1').api etc.

The underlying objects will offer you pretty much everything you can do with VBA, using the syntax
of pywin32 (which pretty much feels like VBA) and appscript (which doesn’t feel like VBA). But apart
from looking ugly, keep in mind that it makes your code platform specific (!), i.e. even if you go
for option 2), you should still follow option 1) and open an issue so the feature finds it’s way into the
library (cross-platform and with a Pythonic syntax).

21.1 Example: Workaround to use VBA’s Range.WrapText

Windows
sheet.range('A1').api.WrapText = True

Mac
sheet.range('A1').api.wrap_text.set(True)

87

https://github.com/xlwings/xlwings/issues
https://github.com/mhammond/pywin32/
http://appscript.sourceforge.net/

xlwings - Make Excel Fly!, Release dev

88 Chapter 21. Missing Features

CHAPTER

TWENTYTWO

XLWINGS WITH OTHER OFFICE APPS

xlwings can also be used to call Python functions from VBA within Office apps other than Excel (like Out-
look, Access etc.).

Note: This is an experimental feature and may be removed in the future. Currently, this functionality is only
available on Windows for UDFs. The RunPython functionality is currently not supported.

22.1 How To

1) As usual, write your Python function and import it into Excel (see User Defined Functions (UDFs)).

2) Press Alt-F11 to get into the VBA editor, then right-click on the xlwings_udfs VBA module and
select Export File.... Save the xlwings_udfs.bas file somewhere.

3) Switch into the other Office app, e.g. Microsoft Access and click again Alt-F11 to get into the VBA
editor. Right-click on the VBA Project and Import File..., then select the file that you exported in
the previous step. Once imported, replace the app name in the first line to the one that you are using,
i.e. Microsoft Access or Microsoft Outlook etc. so that the first line then reads: #Const App
= "Microsoft Access"

4) Now import the standalone xlwings VBA module (xlwings.bas). You can find it in your xlwings
installation folder. To know where that is, do:

>>> import xlwings as xw
>>> xlwings.__path__

And finally do the same as in the previous step and replace the App name in the first line with the name
of the corresponding app that you are using. You are now able to call the Python function from VBA.

89

xlwings - Make Excel Fly!, Release dev

22.2 Config

The other Office apps will use the same global config file as you are editing via the Excel ribbon add-in.
When it makes sense, you’ll be able to use the directory config file (e.g. you can put it next to your Access
or Word file) or you can hardcode the path to the config file in the VBA standalone module, e.g. in the
function GetDirectoryConfigFilePath (e.g. suggested when using Outlook that doesn’t really have the
same concept of files like the other Office apps). NOTE: For Office apps without file concept, you need
to make sure that the PYTHONPATH points to the directory with the Python source file. For details on the
different config options, see Config.

90 Chapter 22. xlwings with other Office Apps

CHAPTER

TWENTYTHREE

XLWINGS PRO OVERVIEW

xlwings PRO is source-available and dual-licensed under one of the following licenses:

• PolyForm Noncommercial License 1.0.0 (noncommercial use is free)

• xlwings PRO License (commercial use requires a paid plan)

License Key

To use xlwings PRO, you need to install a license key on a Terminal/Command Prompt like so:

xlwings license update -k YOUR_LICENSE_KEY

Make sure to replace LICENSE_KEY with your personal key (see below). This will store the license key in
your xlwings.conf file (see User Config: Ribbon/Config File for where this is on your system). Instead
of running this command, you can also store the license key as an environment variable with the name
XLWINGS_LICENSE_KEY.

License key for noncommercial purpose:

• To use xlwings PRO for free in a noncommercial context, use the following license key:
noncommercial (Note that you need at least xlwings 0.26.0).

License key for commercial purpose:

• To try xlwings PRO for free in a commercial context, request a trial license key: https://www.xlwings.
org/trial

• To use xlwings PRO in a commercial context beyond the trial, you need to enroll in a paid plan (they
include additional services like support and the ability to create one-click installers): https://www.
xlwings.org/pricing

xlwings PRO licenses are developer licenses, are verified offline (i.e., no telemetry/license server involved)
and allow royalty-free deployments to unlimited internal and external end-users and servers for a hassle-free
management. Deployments use deploy keys that don’t expire but instead are bound to a specific version of
xlwings.

xlwings PRO functionality requires additionally the cryptography package, which comes preinstalled with
Anaconda and WinPython. Otherwise, install it via pip or Conda. With pip, you can also run pip install
"xlwings[pro]": this will take care of the extra dependencies for xlwings PRO.

91

https://en.wikipedia.org/wiki/Source-available_software
https://polyformproject.org/licenses/noncommercial/1.0.0
https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt
https://www.xlwings.org/pricing
https://www.xlwings.org/trial
https://www.xlwings.org/trial
https://www.xlwings.org/pricing
https://www.xlwings.org/pricing

xlwings - Make Excel Fly!, Release dev

23.1 PRO Features

• Remote Interpreter: Work with Google Sheets and Excel on the web and a remote Python interpreter.

• Embedded code: Store your Python source code directly in Excel for easy deployment.

• xlwings Reports: A template-based reporting mechanism, allowing business users to change the layout
of the report without having to touch the Python code.

• Markdown Formatting: Support for Markdown formatting of text in cells and shapes like e.g., text
boxes.

• Permissioning of Code Execution: Control which users can run which Python modules via xlwings.

Paid plans come with additional services like:

• One-click Installer: Easily build your own Python installer including all dependencies—your end users
don’t need to know anything about Python

• On-demand video course

• Direct Support

Check out the paid plans for more details!

92 Chapter 23. xlwings PRO Overview

https://training.xlwings.org/p/xlwings
https://www.xlwings.org/pricing

CHAPTER

TWENTYFOUR

REMOTE INTERPRETER

This feature requires xlwings PRO and at least v0.27.0.

Instead of installing Python on each end-user’s machine, you can work with a remote Python interpreter.
This works the same as a web application, but uses your spreadsheet as the frontend instead of a web page
in a browser. A remote interpreter doesn’t just work with the Desktop versions of Excel on Windows and
macOS but additionally supports Google Sheets and Excel on the web for a full cloud experience. The remote
interpreter runs everywhere where Python runs, including Linux, Docker and WSL (Windows Subsystem for
Linux) and can by run locally or deployed to a (serverless) cloud service or an on-premise server.

Important: This feature currently only covers parts of the RunPython API (UDFs are not yet supported).
See also Limitations and Roadmap.

24.1 Why is this useful?

Having to install a local installation of Python with the correct dependencies is the number one friction when
using xlwings. Most excitingly though, the remote interpreter adds support for the web-based spreadsheets:
Google Sheets and Excel on the web.

To automate Office on the web, you have to use Office Scripts (i.e., TypeScript, a typed superset of JavaScript)
and for Google Sheets, you have to use Apps Script (i.e., JavaScript). If you don’t feel like learning JavaScript,
xlwings allows you to write Python code instead. But even if you are comfortable with JavaScript, you
are very limited in what you can do, as both Office Scripts and Apps Script are primarily designed to au-
tomate simple spreadsheet tasks such as inserting a new sheet or formatting cells rather than performing
data-intensive tasks. They also make it very hard/impossible to use external JavaScript libraries and run in
environments with minimal resources.

Note: From here on, when I refer to the xlwings JavaScript module, I mean either the xlwings Apps Script
module if you use Google Sheets or the xlwings Office Scripts module if you use Excel on the web.

On the other hand, xlwings with a remote Python interpreter brings you these advantages:

• Work with the whole Python ecosystem: including pandas, machine learning libraries, database
packages, web scraping, boto (for AWS S3), etc. This makes xlwings a great alternative for Power

93

xlwings - Make Excel Fly!, Release dev

Query, which isn’t currently available for Excel on the web or Google Sheets.

• Leverage your existing development workflow: use your favorite IDE/editor (local or cloud-based)
with full Git support, allowing you to easily track changes, collaborate and perform code reviews. You
can also write unit tests using pytest.

• Remain in control of your data and code: except for the data you expose in Excel or Google Sheets,
everything stays on your server. This can include database passwords and other sensitive info such as
customer data. There’s also no need to give the Python code to end-users: the whole business logic
with your secret sauce is protected on your own infrastructure.

• Choose the right machine for the job: whether that means using a GPU, a ton of CPU cores, lots of
memory, or a gigantic hard disc. As long as Python runs on it, you can go from serverless functions
as offered by the big cloud vendors all the way to a self-managed Kubernetes cluster under your desk
(see Production Deployment).

• Headache-free deployment and maintenance: there’s only one location (usually a Linux server)
where your Python code lives and you can automate the whole deployment process with continuous
integration pipelines like GitHub actions etc.

• Cross-platform: xlwings with a remote interpreter works with Google Sheets, Excel on the web and
the Desktop apps of Excel on Windows and macOS.

24.2 Prerequisites

Excel Desktop

• At least xlwings 0.27.0

• Either the xlwings add-in installed or a workbook that has been set up in standalone mode

Google Sheets

• At least xlwings 0.27.0

• New sheets: no special requirements.

• Older sheets: make sure that Chrome V8 runtime is enabled under Extensions > Apps Script >
Project Settings > Enable Chrome V8 runtime.

Excel on the web

• At least xlwings 0.27.0

• You need access to Excel on the web with the Automate tab enabled, i.e., access to Office Scripts.
Note that Office Scripts currently requires OneDrive for Business or SharePoint (it’s not available on
the free office.com), see also Office Scripts Requirements.

• The fetch command in Office Scripts must not be disabled by your Microsoft 365 administrator.

94 Chapter 24. Remote Interpreter

https://docs.microsoft.com/en-gb/office/dev/scripts/overview/excel#requirements

xlwings - Make Excel Fly!, Release dev

24.3 Introduction

Working with a remote Python interpreter consists of two parts:

• Backend: the Python part

• Frontend: the xlwings JavaScript module (for Google Sheets/Excel on the web) or the VBA code in
the form of the add-in or standalone modules (Desktop Excel)

The backend exposes your Python functions by using a Python web framework. In more detail, you need
to handle a POST request along these lines (the sample shows an excerpt that uses FastAPI as the web
framework, but it works accordingly with any other web framework like Django or Flask):

@app.post("/hello")
def hello(data: dict = Body(...)):

Instantiate a Book object with the deserialized request body
book = xw.Book(json=data)

Use xlwings as usual
book.sheets[0].value = 'Hello xlwings!'

Pass the following back as the response
return book.json()

• For Desktop Excel, you can run the web server locally and call the respective function from VBA right
away (given that you have the add-in installed).

• For the cloud-based spreadsheets, you have to run this on a web server that can be reached from Google
Sheets or Excel on the web, and you have to paste the xlwings JavaScript module into the respective
editor. How this all works, will be shown in detail under Cloud-based development with Gitpod.

The next section shows you how you can play around with the remote interpreter on your local desktop before
we’ll dive into developing against the cloud-based spreadsheets.

24.4 Local Development with Desktop Excel

The easiest way to try things out is to run the web server locally against your Desktop version of Excel. We’re
going to use FastAPI as our web framework. While you can use any web framework you like, no quickstart
command exists for these yet, so you’d have to set up the boilerplate yourself.

Start by running the following command on a Terminal/Command Prompt. Feel free to replace demo with
another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with the following files:

app.py
demo.xlsm

(continues on next page)

24.3. Introduction 95

https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

main.py
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via pip
install -r requirements.txt. In app.py, you’ll find the FastAPI boilerplate code and in main.py,
you’ll find the hello function that is exposed under the /hello endpoint.

To run this server locally, run python main.py in your Terminal/Command Prompt or use your code edi-
tor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using watchgod
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, so let’s open demo.xlsm, press Alt+F11 to open the VBA editor, and in
Module1, place your cursor somewhere inside the following function:

Sub SampleRemoteCall()
RunRemotePython "http://127.0.0.1:8000/hello", apiKey:="DEVELOPMENT"

End Sub

Then hit F5 to run the function—you should see Hello xlwings! in cell A1 of the first sheet. To move this
to production, you need to deploy the backend to a server, set a unique API key and adjust the url/apiKey
in the RunRemotePython function accordingly, see Production Deployment.

The next sections, however, show you how you can make this work with the Google Sheets and Excel on the
web.

24.5 Cloud-based development with Gitpod

Using Gitpod is the easiest solution if you’d like to develop against either Google Sheets or Excel on the web

If you want to have a development environment up and running in less than 5 minutes (even if you’re new to
web development), simply click the Open in Gitpod button to open a sample project in Gitpod (Gitpod is
a cloud-based development environment with a generous free tier):

Opening the project in Gitpod will require you to sign in with your GitHub account. A few moments later,
you should see an online version of VS Code. In the Terminal, it will ask you to paste the xlwings license key
(get a free trial key if you want to try this out in a commercial context or use the noncommercial license key
if your usage qualifies as noncommercial). Note that your browser will ask you for permission to paste. Once
you confirm your license key by hitting Enter, the server will automatically start with everything properly
configured. You can then open the app directory and look at the main.py file, where you’ll see the hello

96 Chapter 24. Remote Interpreter

https://github.com/xlwings/xlwings-web-fastapi
https://www.gitpod.io
https://gitpod.io/#https://github.com/xlwings/xlwings-web-fastapi
https://www.xlwings.org/trial
https://polyformproject.org/licenses/noncommercial/1.0.0

xlwings - Make Excel Fly!, Release dev

function. This is the function we’re going to call from Google Sheets/Excel on the web in just a moment.
The other file in this directory, app.py contains all the FastAPI boilerplate code. Let’s leave this alone for a
moment and look at the js folder instead. Open the file according to your platform:

Google Sheets

xlwings_google.js

Excel on the web

xlwings_excel.ts

Copy all the code, then switch to Google Sheets or Excel on the web, respectively, and continue as follows:

Google Sheets

Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.
gs with a function stub. Replace this function stub with the copied code from xlwings_google.js and
click on the Save icon. Then hit the Run button (the hello function should be automatically selected in the
dropdown to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions
it needs. Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets,
click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle
will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select
Assign Script and write hello in the text box, then hit OK.

Excel on the web

In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a
function stub. Replace this function stub with the copied code from xlwings_excel.ts. Make sure to click
on Save script before clicking on Run: the script will run the hello function and write Hello xlwings!
into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select
+ Add button.

Any changes you make to the hello function in app/main.py in Gitpod are automatically saved and
reloaded by the web server and will be reflected the next time you run the script from Google Sheets or
Excel on the web.

To test out yahoo, the other function of the sample project, replace hello with yahoo in the runPython
function in the xlwings JavaScript module.

24.5. Cloud-based development with Gitpod 97

https://github.com/xlwings/xlwings-web-fastapi

xlwings - Make Excel Fly!, Release dev

Note: While Excel on the web requires you to create a separate script with a function called main for each
Python function, Google Sheets allows you to add multiple functions with any name.

Please note that clicking the Gitpod button gets you up and running quickly, but if you want to save your
changes (i.e., commit them to Git), you should first fork the project on GitHub to your own account and open
it by prepending https://gitpod.io/# to your GitHub URL instead of clicking the button (this works
with GitLab and Bitbucket too). Or continue with the next section, which shows you how you can start a
project from scratch on your local machine.

An alternative for Gitpod is GitHub Codespaces, but unlike Gitpod, GitHub Codespaces only works with
GitHub, has no free tier, and may not be available yet on your account.

24.6 Local Development with Google Sheets or Excel on the web

This section walks you through a local development workflow as an alternative to using Gitpod/GitHub
Codespaces. What’s making this a little harder than using a preconfigured online IDE like Gitpod is the fact
that we need to expose our local web server to the internet for easy development.

As before, we’re going to use FastAPI as our web framework. While you can use any web framework you
like, no quickstart command exists for these yet, so you’d have to set up the boilerplate yourself. Let’s start
with the server before turning our attention to the client side (i.e, Google Sheets or Excel on the web).

24.6.1 Part I: xlwings Server

Start a new quickstart project by running the following command on a Terminal/Command Prompt. Feel free
to replace demo with another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with a few files. Since we’re using an online spread-
sheet instead of the Desktop Excel, you can delete demo.xlsm, which should leave you with the following
files:

main.py
app.py
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via pip
install -r requirements.txt. In app.py, you’ll find the FastAPI boilerplate code and in main.py,
you’ll find the hello function that is exposed under the /hello endpoint.

The application expects you to set the environment variable XLWINGS_API_KEY to a unique key in or-
der to protect your application from unauthorized access. You should choose a strong random key, for
example by running the following on a Terminal/Command Prompt: python -c "import secrets;
print(secrets.token_hex(32))". If you don’t set an environment variable, it will use DEVELOPMENT
as the API key (only use this for quick tests and never for production!).

98 Chapter 24. Remote Interpreter

https://github.com/features/codespaces
https://fastapi.tiangolo.com/

xlwings - Make Excel Fly!, Release dev

To run this server locally, run python main.py in your Terminal/Command Prompt or use your code edi-
tor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using watchgod
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, however, to enable it to communicate with Google Sheets or Excel on
the web, you need to expose the port used by your local server (port 8000 in your example) securely to the
internet. There are many free and paid services available to help you do this. One of the more popular ones
is ngrok whose free version will do the trick (for a list of ngrok alternatives, see Awesome Tunneling):

• ngrok Installation

• ngrok Tutorial

For the sake of this tutorial, let’s assume you’ve installed ngrok, in which case you would run the following
on your Terminal/Command Prompt to expose your local server to the public internet:

$ ngrok http 8000

Note that the number of the port (8000) has to correspond to the port that is configured on your local devel-
opment server as specified at the bottom of main.py. ngrok will print something along these lines:

ngrok by @inconshreveable ␣
→˓ (Ctrl+C to quit)

Session Status online
Account name@domain.com (Plan: Free)
Version 2.3.40
Region United States (us)
Web Interface http://127.0.0.1:4040
Forwarding http://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.
→˓ngrok.io -> http://localhost:8000
Forwarding https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.
→˓ngrok.io -> http://localhost:8000

To configure the xlwings client in the next step, we’ll need the https version of the Forwarding address that
ngrok prints, i.e., https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io.

Note: When you’re not actively developing, you should stop your ngrok session by hitting Ctrl-C in the
Terminal/Command Prompt.

24.6. Local Development with Google Sheets or Excel on the web 99

https://ngrok.com/
https://github.com/anderspitman/awesome-tunneling
https://ngrok.com/download
https://ngrok.com/docs

xlwings - Make Excel Fly!, Release dev

24.6.2 Part II: xlwings Client

Now it’s time to switch to Google Sheets or Excel on the web! To paste the xlwings JavaScript module,
follow these 3 steps:

1. Copy the xlwings JavaScript module: On a Terminal/Command Prompt on your local machine, run
the following command:

Google Sheets

$ xlwings copy gs

Excel on the web

$ xlwings copy os

This will copy the correct xlwings JavaScript module to the clipboard so we can paste it in the next
step.

2. Paste the xlwings JavaScript module

Google Sheets

Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.gs
with a function stub. Replace this function stub with the copied code from the previous step and click on the
Save icon. Then hit the Run button (the hello function should be automatically selected in the dropdown
to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions it needs.
Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets,
click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle
will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select
Assign Script and write hello in the text box, then hit OK.

Excel on the web

In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a
function stub. Replace this function stub with the copied code from the previous step. Make sure to click on
Save script before clicking on Run: the script will run the hello function and write Hello xlwings!
into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select
+ Add button.

3. Configuration: The final step is to configure the xlwings JavaScript module properly, see the next
section Configuration.

100 Chapter 24. Remote Interpreter

xlwings - Make Excel Fly!, Release dev

24.7 Configuration

xlwings can be configured in two ways:

• Via arguments in the runPython (Google Sheets or Excel on the web) or RunRemotePython (Desktop
Excel) function, respectively.

• Via xlwings.conf sheet (in this case, the keys are UPPER_CASE with underscore instead of camel-
Case, see the screenshot below).

If you provide a value via config sheet and via function argument, the function argument wins. Let’s see
what the available settings are:

• url (required): This is the full URL of your function. In the above example un-
der Local Development with Google Sheets or Excel on the web, this would be https://
xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello, i.e., the ngrok URL with the
/hello endpoint appended.

• apiKey (optional): While this is technically optional, it is usually required by the backend. It has to
correspond to whatever you set the XLWINGS_API_KEY environment variable on your server and will
protect your functions from unauthorized access. It’s good practice to keep your sensitive keys such as
the apiKey out of your source code (the JavaScript/VBA module), but putting it in the xlwings.conf
sheet may only be marginally better. Excel on the web, however, doesn’t currently provide you with
a better way of handling this. Google Sheets, on the other hand, allows you to work with Properties
Service to keep the API key out of both the JavaScript code and the xlwings.conf sheet.

Note: The API key is chosen by you to protect your application and has nothing to do with the xlwings
license key!

• headers (optional): A dictionary (VBA) or object literal (JS) with name/value pairs. If you set the
Authorization header, apiKey will be ignored.

• exclude (optional): By default, xlwings sends over the complete content of the whole workbook to
the server. If you have sheets with big amounts of data, this can make the calls slow or you could even
hit a timeout. If your backend doesn’t need the content of certain sheets, you can exclude them from
being sent over via this setting. Currently, you can only exclude entire sheets as comma-delimited
string like so: "Sheet1, Sheet2".

• include (optional): It’s the counterpart to exclude and allows you to submit the names of the sheets
that you want to send to the server. Like exclude, include accepts a comma-delimited string, e.g.,
"Sheet1,Sheet2".

24.7. Configuration 101

https://developers.google.com/apps-script/guides/properties
https://developers.google.com/apps-script/guides/properties

xlwings - Make Excel Fly!, Release dev

24.7.1 Configuration Examples: Function Arguments

Excel Desktop

Using only required arguments:

Sub Hello()
RunRemotePython "http://127.0.0.1:8000/hello", apiKey:="YOUR_UNIQUE_API_KEY"

End Sub

Additionally providing the exclude parameter to exclude the content of the xlwings.conf and Sheet1
sheets:

Sub Hello()
RunRemotePython "http://127.0.0.1:8000/hello", apiKey:="YOUR_UNIQUE_API_KEY",

→˓ exclude:="xlwings.conf, Sheet1"
End Sub

Google Sheets

Using only required arguments:

function hello() {
runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello", {
apiKey: "YOUR_UNIQUE_API_KEY",

});
}

Additionally providing the exclude parameter to exclude the content of the xlwings.conf and Sheet1
sheets as well as a custom header:

function hello() {
runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello", {
apiKey: "YOUR_UNIQUE_API_KEY",
exclude: "xlwings.conf, Sheet1",
headers: { MyHeader: "my value" },

});
}

102 Chapter 24. Remote Interpreter

xlwings - Make Excel Fly!, Release dev

Excel on the web

Using only required arguments:

async function main(workbook: ExcelScript.Workbook) {
await runPython(
workbook,
"https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",
{ apiKey: "YOUR_UNIQUE_API_KEY" }

);
}

Additionally providing the exclude parameter to exclude the content of the xlwings.conf and Sheet1
sheets as well as a custom header:

async function main(workbook: ExcelScript.Workbook) {
await runPython(
workbook,
"https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",
{

apiKey: "YOUR_UNIQUE_API_KEY",
exclude: "xlwings.conf, Sheet1",
headers: { MyHeader: "my value" },

}
);

}

24.7.2 Configuration Examples: xlwings.conf sheet

Create a sheet called xlwings.conf and fill in key/value pairs like so:

24.7. Configuration 103

xlwings - Make Excel Fly!, Release dev

24.8 Production Deployment

The xlwings web server can be built with any web framework and can therefore be deployed using any
solution capable of running a Python backend or function. Here is a list for inspiration (non-exhaustive):

• Fully-managed services: Heroku, render, Fly.io, etc.

• Interactive environments: PythonAnywhere, Anvil, etc.

• Serverless functions: AWS Lambda, Azure Functions, Google Cloud Functions, Vercel, etc.

• Virtual Machines: DigitalOcean (referral link), vultr (referral link), Linode, AWS EC2, Microsoft
Azure VM, Google Cloud Compute Engine, etc.

• Corporate servers: Anything will work (including Kubernetes) as long as the respective endpoints
can be accessed from your spreadsheet app.

Important: For production deployment, always make sure to set a unique and random API key, see Con-
figuration.

If you’d like to deploy the sample project to production in less than 5 minutes, you can do so by clicking the
button below, which will deploy it to Heroku’s free tier. Note, however, that on the free plan, the backend
will “sleep” after 30 minutes of inactivity, which means that it will take a few moments the next time you call
it until it is up and running again. The XLWINGS_API_KEY is auto-generated and you can look it up under
your app’s Settings > Config Vars > Reveal Config Vars once the app is deployed. To get the URL,
you’ll need to append /hello to the app’s URL that you’ll find in your dashboard.

24.9 Triggers

Google Sheets

For Google Sheets, you can take advantage of the integrated Triggers (accessible from the menu on the left-
hand side of the Apps Script editor). You can trigger your xlwings functions on a schedule or by an event,
such as opening or editing a sheet.

Excel on the web

Normally, you would use Power Automate to achieve similar things as with Google Sheets Triggers, but
unfortunately, Power Automate can’t run Office Scripts that contain a fetch command like xlwings does, so
for the time being, you can only trigger xlwings calls manually on Excel on the web. Alternatively, you can
open your Excel file with Google Sheets and leverage the Triggers that Google Sheets offers. This, however,
requires you to store your Excel file on Google Drive.

104 Chapter 24. Remote Interpreter

https://www.heroku.com
https://www.render.com
https://www.fly.io
https://www.pythonanywhere.com
https://www.anvil.works
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://vercel.com
https://m.do.co/c/ed671b0a5a9b
https://www.vultr.com/?ref=7155223
https://www.linode.com/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute
https://github.com/xlwings/xlwings-web-fastapi
https://heroku.com/deploy?template=https://github.com/xlwings/xlwings-web-fastapi/tree/main

xlwings - Make Excel Fly!, Release dev

24.10 Limitations

• Currently, only a subset of the xlwings API is covered, mainly the Range and Sheet classes with a focus
on reading and writing values and sending pictures (including Matplotlib plots). This, however, in-
cludes full support for type conversion including pandas DataFrames, NumPy arrays, datetime objects,
etc.

• You are moving within the web’s request/response cycle, meaning that values that you write to a range
will only be written back to Google Sheets/Excel once the function call returns. Put differently, you’ll
get the state of the sheets at the moment the call was initiated, but you can’t read from a cell you’ve
just written to until the next call.

• You will need to use the same xlwings version for the Python package and the JavaScript module,
otherwise, the server will raise an error.

• Currently, custom functions (a.k.a. user-defined functions or UDFs) are not supported.

• For users with no experience in web development, this documentation may not be quite good enough
just yet.

Platform-specific limitations:

Google Sheets

• Quotas for Google Services apply.

Excel on the web

• xlwings relies on the fetch command in Office Scripts that cannot be used via Power Automate and
that can be disabled by your Microsoft 365 administrator.

• While Excel on the web feels generally slow, it seems to have an extreme lag depending on where in the
world you open the browser with Excel on the web. For example, a hello world call takes ~4.5s if you
open a browser in Amsterdam/Netherlands while it takes ~8.5s if you do it Buenos Aires/Argentina.

• Platform limits with Office Scripts apply.

24.11 Roadmap

• Complete the RunPython API by adding features that currently aren’t supported yet, e.g., charts,
shapes, names collections, tables, etc.

• Add support for UDFs/custom functions.

• Improve efficiency.

24.10. Limitations 105

https://developers.google.com/apps-script/guides/services/quotas
https://docs.microsoft.com/en-us/office/dev/scripts/testing/platform-limits

xlwings - Make Excel Fly!, Release dev

106 Chapter 24. Remote Interpreter

CHAPTER

TWENTYFIVE

XLWINGS REPORTS

This feature requires xlwings PRO.

xlwings Reports is a solution for template-based Excel and PDF reporting, making the generation of pixel-
perfect factsheets really simple. xlwings Reports allows business users without Python knowledge to create
and maintain Excel templates without having to rely on a Python developer after the initial setup has been
done: xlwings Reports separates the Python code (pre- and post-processing) from the Excel template (lay-
out/formatting).

xlwings Reports supports all commonly required components:

• Text: Easily format your text via Markdown syntax.

• Tables (dynamic): Write pandas DataFrames to Excel cells and Excel tables and format them dynam-
ically based on the number of rows.

• Charts: Use your favorite charting engine: Excel charts, Matplotlib, or Plotly.

• Images: You can include both raster (e.g., png) or vector (e.g., svg) graphics, including dynamically
generated ones, e.g., QR codes or plots.

• Multi-column Layout: Split your content up into e.g. a classic two column layout by using Frames.

• Single Template: Generate reports in various languages, for various funds etc. based on a single
template.

• PDF Report: Generate PDF reports automatically and “print” the reports on PDFs in your corporate
layout for pixel-perfect results including headers, footers, backgrounds and borderless graphics.

• Easy Pre-processing: Since everything is based on Python, you can connect with literally any data
source and clean it with pandas or some other library.

• Easy Post-processing: Again, with Python you’re just a few lines of code away from sending an email
with the reports as attachment or uploading the reports to your web server, S3 bucket etc.

107

xlwings - Make Excel Fly!, Release dev

25.1 Quickstart

You can work on the sheet, book or app level:

• mysheet.render_template(**data): replaces the placeholders in mysheet

• mybook.render_template(**data): replaces the placeholders in all sheets of mybook

• myapp.render_template(template, output, **data): convenience wrapper that copies a
template book before replacing the placeholder with the values. Since this approach allows you to
work with hidden Excel instances, it is the most commonly used method for production.

Let’s go through a typical example: start by creating the following Python script report.py:

report.py
from pathlib import Path

import pandas as pd
import xlwings as xw

We'll place this file in the same directory as the Excel template
this_dir = Path(__file__).resolve().parent

data = dict(
title='MyTitle',
df=pd.DataFrame(data={'one': [1, 2], 'two': [3, 4]})

)

Change visible=False to run this in a hidden Excel instance
with xw.App(visible=True) as app:

book = app.render_template(this_dir / 'mytemplate.xlsx',
this_dir / 'myreport.xlsx',
**data)

book.to_pdf(this_dir / 'myreport.pdf')

Then create the following Excel file called mytemplate.xlsx:

Run the Python script (or run the code from a Jupyter notebook):

108 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

python report.py

This will copy the template and create the following output by replacing the variables in double curly braces
with the value from the Python variable:

If you like, you could also create a classic xlwings tool to call this script or you could design a GUI app by
using a framework like PySimpleGUI and turn it into an executable by using a freezer (e.g., PyInstaller).
This, however, is beyond the scope of this tutorial.

Note: By default, xlwings Reports overwrites existing values in templates if there is not enough free space
for your variable. If you want your rows to dynamically shift according to the height of your array, use
Frames.

Note: Unlike xlwings, xlwings Reports never writes out the index of pandas DataFrames. If you need the
index to appear in Excel, use df.reset_index(), see DataFrames.

See also render_templates (API reference).

25.1.1 Render Books and Sheets

Sometimes, it’s useful to render a single book or sheet instead of using the myapp.render_template
method. This is a workbook stored as Book1.xlsx:

Running the following code:

import xlwings as xw

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')

(continues on next page)

25.1. Quickstart 109

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

sheet.render_template(title='A Demo!', table=[[1, 2], [3, 4]])
book.to_pdf()

Copies the template sheet first and then fills it in:

See also the mysheet.render_template (API reference) and mybook.render_template (API
reference).

New in version 0.22.0.

25.2 DataFrames

To write DataFrames in a consistent manner to Excel, xlwings Reports ignores the DataFrame indices. If you
need to pass the index over to Excel, reset the index before passing in the DataFrame to render_template
or render_template: df.reset_index().

When working with pandas DataFrames, the report designer often needs to tweak the data. Thanks to filters,
they can do the most common operations directly in the template without the need to write Python code. A
filter is added to the placeholder in Excel by using the pipe character: {{ myplaceholder | myfilter
}}. You can combine multiple filters by using multiple pipe characters: they are applied from left to right,

110 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

i.e. the result from the first filter will be the input for the next filter. Let’s start with an example before listing
each filter with its details:

import xlwings as xw
import pandas as pd

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
df = pd.DataFrame({'one': [1, 2, 3], 'two': [4, 5, 6], 'three': [7, 8, 9]})
sheet.render_template(df=df)

Available filters for DataFrames:

• noheader: Hide the column headers

Example:

{{ df | noheader }}

• header: Only return the header

Example:

{{ df | header }}

• sortasc: Sort in ascending order (indices are zero-based)

Example: sort by second, then by first column:

{{ df | sortasc(1, 0) }}

• sortdesc: Sort in descending order (indices are zero-based)

25.2. DataFrames 111

xlwings - Make Excel Fly!, Release dev

Example: sort by first, then by second column in descending order:

{{ df | sortdesc(0, 1) }}

• columns: Select/reorder columns and insert empty columns (indices are zero-based)

See also: colslice

Example: introduce an empty column (None) as the second column and switch the order of the second
and third column:

{{ df | columns(0, None, 2, 1) }}

Note: Merged cells: you’ll also have to introduce empty columns if you are using merged cells in
your Excel template.

• mul, div, sum, sub: Apply an arithmetic operation (multiply, divide, sum, subtract) on a column
(indices are zero-based)

Syntax:

{{ df | operation(value, col_ix[, fill_value]) }}

fill_value is optional and determines whether empty cells are included in the operation or not. To
include empty values and thus make it behave like in Excel, set it to 0.

Example: multiply the first column by 100:

{{ df | mul(100, 0) }}

Example: multiply the first column by 100 and the second column by 2:

{{ df | mul(100, 0) | mul(2, 1) }}

Example: add 100 to the first column including empty cells:

{{ df | add(100, 0, 0) }}

• maxrows: Maximum number of rows (currently, only sum is supported as aggregation function)

If your DataFrame has 12 rows and you use maxrows(10, "Other") as filter, you’ll get a table that
shows the first 9 rows as-is and sums up the remaining 3 rows under the label Other. If your data is
unsorted, make sure to call sortasc/sortdesc first to make sure the correct rows are aggregated.

See also: aggsmall, head, tail, rowslice

Syntax:

{{ df | maxrows(number_rows, label[, label_col_ix]) }}

112 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

label_col_ix is optional: if left away, it will label the first column of the DataFrame (index is zero-
based)

Examples:

{{ df | maxrows(10, "Other") }}
{{ df | sortasc(1)| maxrows(5, "Other") }}
{{ df | maxrows(10, "Other", 1) }}

• aggsmall: Aggregate rows with values below a certain threshold (currently, only sum is supported as
aggregation function)

If the values in the specified row are below the threshold values, they will be summed up in a single
row.

See also: maxrows, head, tail, rowslice

Syntax:

{{ df | aggsmall(threshold, threshold_col_ix, label[, label_col_ix][, min_
→˓rows]) }}

label_col_ix and min_rows are optional: if label_col_ix is left away, it will label the first col-
umn of the DataFrame (indices are zero-based). min_rows has the effect that it skips rows from
aggregating if it otherwise the number of rows falls below min_rows. This prevents you from ending
up with only one row called “Other” if you only have a few rows that are all below the threshold. NOTE
that this parameter only makes sense if the data is sorted!

Examples:

{{ df | aggsmall(0.1, 2, "Other") }}
{{ df | sortasc(1) | aggsmall(0.1, 2, "Other") }}
{{ df | aggsmall(0.5, 1, "Other", 1) }}
{{ df | aggsmall(0.5, 1, "Other", 1, 10) }}

• head: Only show the top n rows

See also: maxrows, aggsmall, tail, rowslice

Example:

{{ df | head(3) }}

• tail: Only show the bottom n rows

See also: maxrows, aggsmall, head, rowslice

Example:

{{ df | tail(5) }}

• rowslice: Slice the rows

See also: maxrows, aggsmall, head, tail

25.2. DataFrames 113

xlwings - Make Excel Fly!, Release dev

Syntax:

{{ df | rowslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show rows 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is including
and the end is excluding):

{{ df | rowslice(2, 5) }}

Example: Show rows 2 to the end of the DataFrame:

{{ df | rowslice(2) }}

• colslice: Slice the columns

See also: columns

Syntax:

{{ df | colslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show columns 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is
including and the end is excluding):

{{ df | colslice(2, 5) }}

Example: Show columns 2 to the end of the DataFrame:

{{ df | colslice(2) }}

25.3 Excel Tables

Using Excel tables is the recommended way to format tables as the styling can be applied dynamically across
columns and rows. You can also use themes and apply alternating colors to rows/columns. Go to Insert >
Table and make sure that you activate My table has headers before clicking on OK. Add the placeholder
as usual on the top-left of your Excel table (note that this example makes use of Frames):

Running the following script:

from xlwings.pro.reports import render_template
import pandas as pd

nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],

columns=[f'col {i}' for i in range(ncols)])
(continues on next page)

114 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

render_template('template.xlsx', 'output.xlsx', df=df)

Will produce the following report:

Headers of Excel tables are relatively strict, e.g. you can’t have multi-line headers or merged cells. To get
around these limitations, uncheck the Header Row checkbox under Table Design and use the noheader
filter (see DataFrame filters). This will allow you to design your own headers outside of the Excel Table.

Note:

• At the moment, you can only assign pandas DataFrames to tables

25.3. Excel Tables 115

xlwings - Make Excel Fly!, Release dev

25.4 Excel Charts

To use Excel charts in your reports, follow this process:

1. Add some sample/dummy data to your Excel template:

2. If your data source is dynamic, turn it into an Excel Table (Insert > Table). Make sure you do this
before adding the chart in the next step.

3. Add your chart and style it:

4. Reduce the Excel table to a 2 x 2 range and add the placeholder in the top-left corner (in our example
{{ chart_data }}) . You can leave in some dummy data or clear the values of the Excel table:

116 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

25.4. Excel Charts 117

xlwings - Make Excel Fly!, Release dev

118 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

5. Assuming your file is called mytemplate.xlsx and your sheet template like on the previous screen-
shot, you can run the following code:

import xlwings as xw
import pandas as pd

df = pd.DataFrame(data={'Q1': [1000, 2000, 3000],
'Q2': [4000, 5000, 6000],
'Q3': [7000, 8000, 9000]},

index=['North', 'South', 'West'])

book = xw.Book("mytemplate.xlsx")
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(chart_data=df.reset_index())

This will produce the following report, with the chart source correctly adjusted:

Note: If you don’t want the source data on your report, you can place it on a separate sheet. It’s easiest
if you add and design the chart on the separate sheet, before cutting the chart and pasting it on your report
template. To prevent the data sheet from being printed when calling to_pdf, you can give it a name that
starts with # and it will be ignored. NOTE that if you start your sheet name with ##, it won’t be printed but
also not rendered!

25.5 Images

Images are inserted so that the cell with the placeholder will become the top-left corner of the image. For
example, write the following placeholder into you desired cell: {{ logo }}, then run the following code:

import xlwings as xw
from xlwings.pro.reports import Image

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(logo=Image(r'C:\path\to\logo.png'))

Note: Image also accepts a pathlib.Path object instead of a string.

If you want to use vector-based graphics, you can use svg on Windows and pdf on macOS. You can control
the appearance of your image by applying filters on your placeholder.

Available filters for Images:

25.5. Images 119

xlwings - Make Excel Fly!, Release dev

120 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

• width: Set the width in pixels (height will be scaled proportionally).

Example:

{{ logo | width(200) }}

• height: Set the height in pixels (width will be scaled proportionally).

Example:

{{ logo | height(200) }}

• width and height: Setting both width and height will distort the proportions of the image!

Example:

{{ logo | height(200) | width(200) }}

• scale: Scale your image using a factor (height and width will be scaled proportionally).

Example:

{{ logo | scale(1.2) }}

• top: Top margin. Has the effect of moving the image down (positive pixel number) or up (negative
pixel number), relative to the top border of the cell. This is very handy to fine-tune the position of
graphics object.

See also: left

Example:

{{ logo | top(5) }}

• left: Left margin. Has the effect of moving the image right (positive pixel number) or left (negative
pixel number), relative to the left border of the cell. This is very handy to fine-tune the position of
graphics object.

See also: top

Example:

{{ logo | left(5) }}

25.5. Images 121

xlwings - Make Excel Fly!, Release dev

25.6 Matplotlib and Plotly Plots

For a general introduction on how to handle Matplotlib and Plotly, see also: Matplotlib. There, you’ll also
find the prerequisites to be able to export Plotly charts as pictures.

25.6.1 Matplotlib

Write the following placeholder in the cell where you want to paste the Matplotlib plot: {{ lineplot }}.
Then run the following code to get your Matplotlib Figure object:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

25.6.2 Plotly

Plotly works practically the same:

import plotly.express as px
import xlwings as xw

fig = px.line(x=["a","b","c"], y=[1,3,2], title="A line plot")
book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

To change the appearance of the Matplotlib or Plotly plot, you can use the same filters as with images.
Additionally, you can use the following filter:

• format: allows to change the default image format from png to e.g., vector, which will export the plot
as vector graphics (svg on Windows and pdf on macOS). As an example, to make the chart smaller
and use the vector format, you would write the following placeholder:

{{ lineplot | scale(0.8) | format("vector") }}

122 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

25.7 Text

You can work with placeholders in text that lives in cells or shapes like text boxes. If you have more than just
a few words, text boxes usually make more sense as they won’t impact the row height no matter how you style
them. Using the same gird formatting across worksheets is key to getting a consistent multi-page report.

25.7.1 Simple Text without Formatting

New in version 0.21.4.

You can use any shapes like rectangles or circles, not just text boxes:

from xlwings.pro.reports import render_template

render_template('template.xlsx', 'output.xlsx', temperature=12.3)

This code turns this template:

into this report:

While this works for simple text, you will lose the formatting if you have any. To prevent that, use a Markdown
object, as explained in the next section.

If you will be printing on a PDF Layout with a dark background, you may need to change the font color to
white. This has the nasty side effect that you won’t see anything on the screen anymore. To solve that issue,
use the fontcolor filter:

• fontcolor: Change the color of the whole (!) cell or shape. The primary purpose of this filter is to
make white fonts visible in Excel. For most other colors, you can just change the color in Excel itself.

25.7. Text 123

xlwings - Make Excel Fly!, Release dev

Note that this filter changes the font of the whole cell or shape and only has an effect if there is just a
single placeholder—if you need to manipulate single words, use Markdown instead, see below. Black
and white can be used as word, otherwise use a hex notation of your desired color.

Example:

{{ mytitle | fontcolor("white") }}
{{ mytitle | fontcolor("#efefef") }}

25.7.2 Markdown Formatting

New in version 0.23.0.

You can format text in cells or shapes via Markdown syntax. Note that you can also use placeholders in the
Markdown text that will take the values from the variables you supply via the render_template method:

import xlwings as xw
from xlwings.pro import Markdown

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

{{ second_title }}

This paragraph has a line break.
Another line.
"""

The first sheet requires a shape as shown on the screenshot
sheet = xw.sheets.active
sheet.render_template(myplaceholder=Markdown(mytext),

second_title='Another Title')

This will render this template with the placeholder in a cell and a shape:

Like this (this uses the default formatting):

For more details about Markdown, especially about how to change the styling, see Markdown Formatting.

124 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

25.7. Text 125

xlwings - Make Excel Fly!, Release dev

25.8 Date and Time

If a placeholder corresponds to a Python datetime object, by default, Excel will format that cell as a date-
formatted cell. This isn’t always desired as the formatting depends on the user’s regional settings. To prevent
that, format the cell in the Text format or use a TextBox and use the datetime filter to format the date in the
desired format. The datetime filter accepts the strftime syntax—for a good reference, see e.g., strftime.org.

To control the language of month and weekday names, you’ll need to set the locale in your Python code.
For example, for German, you would use the following:

import locale
locale.setlocale(locale.LC_ALL, 'de_DE')

Example: The default formatting is December 1, 2020:

{{ mydate | datetime }}

Example: To apply a specific formatting, provide the desired format as filter argument. For example, to get
it in the 12/31/20 format:

{{ mydate | datetime("%m/%d/%y") }}

25.9 Number Format

The format filter allows you to format numbers by using the same mechanism as offered by Python’s f-
strings. For example, to format the placeholder performance=0.13 as 13.0%, you would do the following:

{{ performance | format(".1%") }}

This corresponds to the following f-string in Python: f"{performance:0.1%}". To get an introduction to
the formatting string syntax, have a look at the Python String Format Cookbook.

25.10 Frames: Multi-column Layout

Frames are vertical containers in which content is being aligned according to their height. That is, within
Frames:

• Variables do not overwrite existing cell values as they do without Frames.

• Formatting is applied dynamically, depending on the number of rows your object uses in Excel

To use Frames, insert a Note with the text <frame> into row 1 of your Excel template wherever you want a
new dynamic column to start. Frames go from one <frame> to the next <frame> or the right border of the
used range.

How Frames behave is best demonstrated with an example: The following screenshot defines two frames.
The first one goes from column A to column E and the second one goes from column F to column I, since
this is the last column that is used.

126 Chapter 25. xlwings Reports

https://strftime.org/
https://mkaz.blog/code/python-string-format-cookbook/

xlwings - Make Excel Fly!, Release dev

You can define and format DataFrames by formatting

• one header and

• one data row

If you use the noheader filter for DataFrames, you can leave the header away and format a single data row.
Alternatively, you could also use Excel Tables, as they can make formatting easier.

Running the following code:

from xlwings.pro.reports import render_template
import pandas as pd

df1 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df2 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]])

data = dict(df1=df1.reset_index(), df2=df2.reset_index())

render_template('my_template.xlsx',
'my_report.xlsx',
**data)

will generate this report:

25.10. Frames: Multi-column Layout 127

xlwings - Make Excel Fly!, Release dev

25.11 PDF Layout

Using the layout parameter in the to_pdf() command, you can “print” your Excel workbook on profession-
ally designed PDFs for pixel-perfect reports in your corporate layout including headers, footers, backgrounds
and borderless graphics:

from xlwings.pro.reports import render_template
import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

book = render_template('template.xlsx',
'report.xlsx',
month_year = 'May 21',
summary_text = '...')

book.to_pdf('report.pdf', layout='monthly_layout.pdf')

Note that the layout PDF either needs to consist of a single page (will be used for each reporting page) or will
need to have the same number of pages as the report (each report page will be printed on the corresponding
layout page).

To create your layout PDF, you can use any program capable of exporting a file in PDF format such as
PowerPoint or Word, but for the best results consider using a professional desktop publishing software such
as Adobe InDesign.

128 Chapter 25. xlwings Reports

xlwings - Make Excel Fly!, Release dev

25.11. PDF Layout 129

xlwings - Make Excel Fly!, Release dev

130 Chapter 25. xlwings Reports

CHAPTER

TWENTYSIX

MARKDOWN FORMATTING

This feature requires xlwings PRO.

New in version 0.23.0.

Markdown offers an easy and intuitive way of styling text components in your cells and shapes. For an
introduction to Markdown, see e.g., Mastering Markdown.

Markdown support is in an early stage and currently only supports:

• First-level headings

• Bold (i.e., strong)

• Italic (i.e., emphasis)

• Unordered lists

It doesn’t support nested objects yet such as 2nd-level headings, bold/italic within bullet points or nested
bullet points.

Let’s go through an example to see how everything works!

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

(continues on next page)

131

https://guides.github.com/features/mastering-markdown/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext)

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text:

But why not make things a tad more stylish? By providing a MarkdownStyle object, you can define your
style. Let’s change the previous example like this:

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Styling
(continues on next page)

132 Chapter 26. Markdown Formatting

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

style = MarkdownStyle()
style.h1.font.color = (255, 0, 0)
style.h1.font.size = 14
style.h1.font.name = 'Comic Sans MS' # No, that's not a font recommendation...
style.h1.blank_lines_after = 0
style.unordered_list.bullet_character = '\N{heavy black heart}' # Emojis are␣
→˓fun!

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext, style) # <= provide your style object here

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext, style)

Here is the output of this:

You can override all properties, i.e., you can change the emphasis from italic to a red font or anything else
you want:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

Markdown objects can also be used with template-based reporting, see xlwings Reports.

Note: macOS currently doesn’t support the formatting (bold, italic, color etc.) of Markdown text due to a
bug with AppleScript/Excel. The text will be rendered correctly though, including bullet points.

See also the API reference:

133

xlwings - Make Excel Fly!, Release dev

• Markdown class

• MarkdownStyle class

134 Chapter 26. Markdown Formatting

CHAPTER

TWENTYSEVEN

RELEASING XLWINGS TOOLS

This feature requires xlwings PRO.

xlwings PRO offers a simple way to deploy your xlwings tools to your end users without the usual hassle
that’s involved when installing and configuring Python and xlwings. End users don’t need to know anything
about Python as they only need to:

• Run an installer (one installer can power many different Excel workbooks)

• Use the Excel workbook as if it was a normal macro-enabled workbook

Advantages:

• Zero-config: The end user doesn’t have to configure anything throughout the whole process.

• No add-in required: No installation of the xlwings add-in required.

• Easy to update: If you want to deploy an update of your Python code, it’s often good enough to
distribute a new version of your workbook.

• No conflicts: The installer doesn’t touch any environment variables or registry keys and will therefore
not conflict with any existing Python installations.

• Deploy key: The release command will add a deploy key as your LICENSE_KEY. A deploy key won’t
expire and end users won’t need a paid subscription.

You as a developer need to create the one-click installer and run the xlwings release command on the
workbook. Let’s go through these two steps in detail!

There is a video walkthrough at: https://www.youtube.com/watch?v=yw36VT_n1qg

27.1 Step 1: One-Click Installer

As a subscriber of one of our paid plans, you will get access to a private GitHub repository, where you can
build your one-click installer:

1) Update your requirements.txt file with your dependencies: in your repository, start by clicking on
the requirements.txt file. This will open the following screen where you can click on the pencil
icon to edit the file (if you know your way around Git, you can also clone the repository and use your
local commit/push workflow instead):

135

https://www.youtube.com/watch?v=yw36VT_n1qg
https://www.xlwings.org/pricing

xlwings - Make Excel Fly!, Release dev

After you’re done with your edits, click on the green Commit changes button.

Note: If you are unsure about your dependencies, it’s best to work locally with a virtual or
Conda environment. In the virtual/Conda environment, only install packages that you need,
then run: pip list --format=freeze.

2) On the right-hand side of the landing page, click on Releases:

On the next screen, click on Draft a new release (note, the very first time, you will see a
green button called Create a new release instead):

This will bring up the following screen, where you’ll only have to fill in a Tag version (e.g.,
1.0.0), then click on the green button Publish release:

After 3-5 minutes (you can follow the progress under the Actions tab), you’ll find the installer
ready for download under Releases (ignore the zip and tar.gz files):

Note: The one-click installer is a normal Python installation that you can use with multiple Excel workbooks.
Hence, you don’t need to create a separate installer for each workbook as long as they all work with the same
set of dependencies as defined by the requirements.txt file.

136 Chapter 27. Releasing xlwings Tools

xlwings - Make Excel Fly!, Release dev

27.1. Step 1: One-Click Installer 137

xlwings - Make Excel Fly!, Release dev

27.2 Step 2: Release Command (CLI)

The release command is part of the xlwings CLI (command-line client) and will prepare your Excel file to
work with the one-click installer generated in the previous step. Before anything else:

• Make sure that you have enabled Trust access to the VBA project object model un-
der File > Options > Trust Center > Trust Center Settings > Macro Settings. You
only need to do this once and since this is a developer setting, your end users won’t need to bother about
this. This setting is needed so that xlwings can update the Excel file with the correct version of the
VBA code.

• Run the installer from the previous step. This will not interfere with your existing Python installation
as it won’t touch your environment variables or registry. Instead, it will only write to the following
folder: %LOCALAPPDATA%\<installer-name>.

• Make sure that your local version of xlwings corresponds to the version of xlwings in the
requirements.txt from the installer. The easiest way to double-check this is to run pip freeze
on a Command Prompt or Anaconda Prompt. If your local version of xlwings differs, install the same
version as the installer uses via: pip install xlwings==<version from installer>.

To work with the release command, you should have your workbook in the xlsm format and all the Python
modules in the same folder:

myworkbook.xlsm
mymodule_one.py
mymodule_two.py
...

You currently can’t organize your code in directories, but you can easily import mymodule_two from
mymodule_one.

Make sure that your Excel workbook is the active workbook, then run the following command on a Com-
mand/Anaconda Prompt:

138 Chapter 27. Releasing xlwings Tools

xlwings - Make Excel Fly!, Release dev

xlwings release

If this is the first time you are running this command, you will be asked a few questions. If you are shown a
[Y/n], you can hit Enter to accept the default as expressed by the capitalized letter:

• Name of your one-click installer? Type in the name of your one-click installer. If you want
to use a different Python distribution (e.g., Anaconda), you can leave this empty (but you will need to
update the xlwings.conf sheet with the Conda settings once the release command has been run).

• Embed your Python code? [Y/n] This will copy the Python code into the sheets of the Excel file.
It will respect all Python files that are in the same folder as the Excel workbook.

• Hide the config sheet? [Y/n] This will hide the xlwings.conf sheet.

• Hide the sheets with the embedded Python code? [Y/n] If you embed your Python code,
this will hide all sheets with a .py ending.

• Allow your tool to run without the xlwings add-in? [Y/n] This will remove the VBA
reference to xlwings and copy in the xlwings VBA modules so that the end users don’t need to have the
xlwings add-in installed. Note that in this case, you will need to have your RunPython calls bound to
a button as you can’t use the Ribbon’s Run main button anymore.

Whatever answers you pick, you can always change them later by editing the xlwings.conf sheet or by
deleting the xlwings.conf sheet and re-running the xlwings release command. If you go with the
defaults, you only need to provide your end users with the one-click installer and the Excel workbook, no
external Python files are required.

27.3 Updating a Release

To edit your Python code, it’s easiest to work with external Python files and not with embedded code. To
stop xlwings from using the embedded code, simply delete all sheets with a .py ending and the workbook
will again use the external Python modules. Once you are done editing the files, simply run the xlwings
release command again, which will embed the updated code. If you haven’t done any changes to your
dependencies (i.e., you haven’t upgraded a package or introduced a new one), you only need to redeploy your
Excel workbook to have the end users get the update.

If you did make changes to the requirements.txt and release a new one-click installer, you will need to
have the users install the new version of the installer first.

Note: Every time you change the xlwings version in requirements.txt of your one-click installer, make
sure to upgrade your local xlwings installatino to the same version and run xlwings release again!

27.3. Updating a Release 139

xlwings - Make Excel Fly!, Release dev

27.4 Embedded Code Explained

When you run the xlwings release command, your code will be embedded automatically (except if you
switch this behavior off). You can, however, also embed code directly: on a command line, run the following
command:

xlwings code embed

This will import all Python files from the current directory and paste them into Excel sheets of the currently
active workbook. Now, you can use RunPython as usual: RunPython "import mymodule;mymodule.
myfunction()".

Note that you can have multiple Excel sheets and import them like normal Python files. Consider this exam-
ple:

You can call the main function from VBA like so:

Sub RandomNumbers()
RunPython "import random_numbers;random_numbers.main()"

End Sub

Note:

• UDFs modules don’t have to be added to the UDF Modules explicitly when using embedded code.
However, in contrast to how it works with external files, you currently need to re-import the functions
when you change them.

140 Chapter 27. Releasing xlwings Tools

xlwings - Make Excel Fly!, Release dev

• While you can hide your sheets with your code, they will be written to a temporary directory in clear
text.

27.4. Embedded Code Explained 141

xlwings - Make Excel Fly!, Release dev

142 Chapter 27. Releasing xlwings Tools

CHAPTER

TWENTYEIGHT

PERMISSIONING OF CODE EXECUTION

This feature requires xlwings PRO.

xlwings allows you to control which Python modules are allowed to run from Excel. In order to use this
functionality, you need to run your own web server. You can choose between an HTTP POST and a GET
request for the permissioning:

• GET: This is the simpler option as you only need to host a static JSON file that you can generate via
the xlwings CLI. You can use any web server that is capable of serving static files (e.g., nginx) or use
a free external service like GitHub pages. However, every permission change requires you to update
the JSON file on the server.

• POST: This option relies on the web server to validate the incoming payload of the POST request.
While this requires custom logic on your end, you are able to connect it with any internal system (such
as a database or LDAP server) to dynamically decide whether a user should be able to run a specific
Python module through xlwings.

Before looking at both of these options in more detail, let’s go through the prerequisites and configuration.

Note: This feature does not stop users from running arbitrary Python code through Python directly. Rather,
think of it as a mechanism to prevent accidental execution of Python code from Excel via xlwings.

28.1 Prerequisites

• This functionality requires every end user to have the requests and cryptography libraries installed.
You can install them via pip:

pip install requests cryptography

or via Conda:

conda install requests cryptography

• You need to have a LICENSE_KEY in the form of a trial key, a paid license key or a deploy key.

143

https://www.xlwings.org/trial

xlwings - Make Excel Fly!, Release dev

28.2 Configuration

While xlwings offers various ways to configure your workbook (see Configuration), it will only respect the
permissioning settings in the config file in the user’s home folder (on Windows, this is %USERPROFILE%\.
xlwings\xlwings.conf):

• To prevent end users from overwriting xlwings.conf, you’ll need to make sure that the file is owned
by the Administrator while giving end users read-only permissions.

• Add the following settings while replacing the PERMISSION_CHECK_URL and
PERMISSION_CHECK_METHOD (POST or GET) with the appropriate value for your case.
PERMISSION_CHECK_AUTHORIZATION is an optional setting that allows you to send a token
with POST requests via the Authorization header:

"LICENSE_KEY","YOUR_LICENSE_OR_DEPLOY_KEY"
"PERMISSION_CHECK_ENABLED","True"
"PERMISSION_CHECK_URL","https://myurl.com"
"PERMISSION_CHECK_METHOD","POST"
"PERMISSION_CHECK_AUTHORIZATION","your_token"

28.3 GET request

You can generate the static JSON file by using the xlwings CLI:

• Print the JSON string for all Python modules in a certain folder:

cd myfolder
xlwings permission cwd

• Print the JSON string for all embedded modules of the active workbook:

xlwings permission book

Both commands will print a JSON string similar to this one:

{
"modules": [
{
"file_name": "myfile.py",
"sha256": "cea259922207049a734c88930b5c09109deb6b55f692fd0832f4e57052d85896

→˓",
"machine_names": [
"DESKTOP-QQ27RP3"

]
},
{
"file_name": "myfile2.py",

(continues on next page)

144 Chapter 28. Permissioning of Code Execution

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"sha256": "355200bb9ae00fcec1d7b660e7dd95fb3dbf246a9db397a6daa2471458a8e6cb
→˓",

"machine_names": [
"DESKTOP-QQ27RP3"

]
}

]
}

All you need to do at this point is:

• Add additional machines names e.g., "machine_names: [""DESKTOP-QQ27RP3",
"DESKTOP-XY12AS2"]. Alternatively, you can use the "*" wildcard if you want to allow the
module to be used on all end user’s computers. In case of the wildcard, it will still make sure
that the file’s content hasn’t been changed by looking at its sha256 hash. xlwings uses import
socket;socket.gethostname() as the machine name.

• Make this JSON file accessible via your web server and update the settings in the xlwings.conf file
accordingly (see above).

28.4 POST request

If you work with POST requests, xlwings will post a payload similar to the following:

{
"machine_name": "DESKTOP-QQ27RP3",
"modules": [
{
"file_name": "myfile.py",
"sha256":

→˓"cea259922207049a734c88930b5c09109deb6b55f692fd0832f4e57052d85896"
},
{
"file_name": "myfile2.py",
"sha256":

→˓"355200bb9ae00fcec1d7b660e7dd95fb3dbf246a9db397a6daa2471458a8e6cb"
}

]
}

It is now up to you to validate this request and:

• Return the HTTP status code 200 (“success”) if the user is allowed to run the code of these modules

• Return the HTTP status code 403 (“forbidden”) if the user is not allowed to run the code of these
modules

Note that xlwings only checks for HTTP status code 200, so any other status code will fail.

28.4. POST request 145

xlwings - Make Excel Fly!, Release dev

28.5 Implementation Details & Limitations

• Currently, RunPython and user-defined functions (UDFs) are supported. RunFrozenPython is not
supported.

• Permissions checks are only done when the Python module is run via Excel/xlwings, it has no effect
on Python code that is run from Python directly.

• RunPython won’t allow you to run code that uses the from x import y syntax. Use import x;x.y
instead.

• The answer of the permissioning server is cached for the duration of the Python session. For UDFs, this
means until the functions are re-imported or the Restart UDF Server button is clicked or until Excel
is restarted. The same is true if you run RunPython with the Use UDF Server option. By default,
however, RunPython starts a new Python session every time, so it will contact the server whenever
you call RunPython.

• Only top-level modules are checked, i.e. modules that are imported as UDFs or run via RunPython
call. Any modules that are imported as dependencies of these modules are not checked.

• RunPython with external Python source files depends on logic in the VBA part of xlwings. UDFs and
RunPython calls that use embedded code will only rely on Python to perform the permissioning check.

146 Chapter 28. Permissioning of Code Execution

CHAPTER

TWENTYNINE

PYTHON API

29.1 Top-level functions

xlwings.load(index=1, header=1, chunksize=5000)
Loads the selected cell(s) of the active workbook into a pandas DataFrame. If you select a single
cell that has adjacent cells, the range is auto-expanded (via current region) and turned into a pandas
DataFrame. If you don’t have pandas installed, it returns the values as nested lists.

Note: Only use this in an interactive context like e.g. a Jupyter notebook! Don’t use this in a script
as it depends on the active book.

Parameters

• index (bool or int, default 1) – Defines the number of columns on the left
that will be turned into the DataFrame’s index

• header (bool or int, default 1) – Defines the number of rows at the top
that will be turned into the DataFrame’s columns

• chunksize (int, default 5000) – Chunks the loading of big arrays.

Examples

>>> import xlwings as xw
>>> xw.load()

See also: view

Changed in version 0.23.1.

xlwings.view(obj, sheet=None, table=True, chunksize=5000)
Opens a new workbook and displays an object on its first sheet by default. If you provide a sheet object,
it will clear the sheet before displaying the object on the existing sheet.

147

xlwings - Make Excel Fly!, Release dev

Note: Only use this in an interactive context like e.g., a Jupyter notebook! Don’t use this in a script
as it depends on the active book.

Parameters

• obj (any type with built-in converter) – the object to display, e.g. num-
bers, strings, lists, numpy arrays, pandas DataFrames

• sheet (Sheet, default None) – Sheet object. If none provided, the first sheet
of a new workbook is used.

• table (bool, default True) – If your object is a pandas DataFrame, by default
it is formatted as an Excel Table

• chunksize (int, default 5000) – Chunks the loading of big arrays.

Examples

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
>>> xw.view(df)

See also: load

Changed in version 0.22.0.

29.2 Object model

29.2.1 Apps

class xlwings.main.Apps(impl)
A collection of all app objects:

>>> import xlwings as xw
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

property active

Returns the active app.

New in version 0.9.0.

add(**kwargs)
Creates a new App. The new App becomes the active one. Returns an App object.

148 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

property count

Returns the number of apps.

New in version 0.9.0.

keys()

Provides the PIDs of the Excel instances that act as keys in the Apps collection.

New in version 0.13.0.

29.2.2 App

class xlwings.App(visible=None, spec=None, add_book=True, impl=None)
An app corresponds to an Excel instance and should normally be used as context manager to make sure
that everything is properly cleaned up again and to prevent zombie processes. New Excel instances
can be fired up like so:

import xlwings as xw

with xw.App() as app:
print(app.books)

An app object is a member of the apps collection:

>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])
>>> xw.apps[1668] # get the available PIDs via xw.apps.keys()
<Excel App 1668>
>>> xw.apps.active
<Excel App 1668>

Parameters

• visible (bool, default None) – Returns or sets a boolean value that deter-
mines whether the app is visible. The default leaves the state unchanged or sets
visible=True if the object doesn’t exist yet.

• spec (str, default None) – Mac-only, use the full path to the Excel applica-
tion, e.g. /Applications/Microsoft Office 2011/Microsoft Excel or /
Applications/Microsoft Excel

On Windows, if you want to change the version of Excel that xlwings talks to, go
to Control Panel > Programs and Features and Repair the Office version
that you want as default.

Note: On Mac, while xlwings allows you to run multiple instances of Excel, it’s a feature that is not
officially supported by Excel for Mac: Unlike on Windows, Excel will not ask you to open a read-only

29.2. Object model 149

xlwings - Make Excel Fly!, Release dev

version of a file if it is already open in another instance. This means that you need to watch out yourself
so that the same file is not being overwritten from different instances.

activate(steal_focus=False)
Activates the Excel app.

Parameters
steal_focus (bool, default False) – If True, make frontmost application
and hand over focus from Python to Excel.

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

property books

A collection of all Book objects that are currently open.

New in version 0.9.0.

calculate()

Calculates all open books.

New in version 0.3.6.

property calculation

Returns or sets a calculation value that represents the calculation mode. Modes: 'manual',
'automatic', 'semiautomatic'

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.app.calculation = 'manual'

Changed in version 0.9.0.

property cut_copy_mode

Gets or sets the status of the cut or copy mode. Accepts False for setting and returns None, copy
or cut when getting the status.

New in version 0.24.0.

property display_alerts

The default value is True. Set this property to False to suppress prompts and alert messages while
code is running; when a message requires a response, Excel chooses the default response.

New in version 0.9.0.

150 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

property enable_events

True if events are enabled. Read/write boolean.

New in version 0.24.4.

property hwnd

Returns the Window handle (Windows-only).

New in version 0.9.0.

property interactive

True if Excel is in interactive mode. If you set this property to False, Excel blocks all input
from the keyboard and mouse (except input to dialog boxes that are displayed by your code).
Read/write Boolean. NOTE: Not supported on macOS.

New in version 0.24.4.

kill()

Forces the Excel app to quit by killing its process.

New in version 0.9.0.

macro(name)
Runs a Sub or Function in Excel VBA that are not part of a specific workbook but e.g. are part
of an add-in.

Parameters
name (Name of Sub or Function with or without module name,) –
e.g., 'Module1.MyMacro' or 'MyMacro'

Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

Types are supported too:

>>> import xlwings as xw
>>> app = xw.App()

(continues on next page)

29.2. Object model 151

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

However typed arrays are not supported. So the following won’t work

Function MySum(arr() as integer)
' code here

End Function

See also: Book.macro()

New in version 0.9.0.

property pid

Returns the PID of the app.

New in version 0.9.0.

properties(**kwargs)
Context manager that allows you to easily change the app’s properties temporarily. Once the code
leaves the with block, the properties are changed back to their previous state. Note: Must be used
as context manager or else will have no effect. Also, you can only use app properties that you
can both read and write.

Examples

import xlwings as xw
app = App()

Sets app.display_alerts = False
with app.properties(display_alerts=False):

do stuff

Sets app.calculation = 'manual' and app.enable_events = True
with app.properties(calculation='manual', enable_events=True):

do stuff

Makes sure the status bar is reset even if an error happens in the␣
→˓with block
with app.properties(status_bar='Calculating...'):

do stuff

New in version 0.24.4.

quit()

Quits the application without saving any workbooks.

152 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

New in version 0.3.3.

range(cell1, cell2=None)
Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

render_template(template=None, output=None, book_settings=None, **data)
This function requires xlwings PRO.

This is a convenience wrapper around mysheet.render_template

Writes the values of all key word arguments to the output file according to the template and
the variables contained in there (Jinja variable syntax). Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, pictures and Mat-
plotlib/Plotly figures.

Parameters

• template (str or path-like object) – Path to your Excel template, e.g.
r'C:\Path\to\my_template.xlsx'

• output (str or path-like object) – Path to your Report, e.g. r'C:\
Path\to\my_report.xlsx'

• book_settings (dict, default None) – A dictionary of xlwings.
Book parameters, for details see: xlwings.Book . For example:
book_settings={'update_links': False}.

• data (kwargs) – All key/value pairs that are used in the template.

Returns
wb

Return type
xlwings Book

New in version 0.24.4.

property screen_updating

Turn screen updating off to speed up your script. You won’t be able to see what the script is
doing, but it will run faster. Remember to set the screen_updating property back to True when
your script ends.

New in version 0.3.3.

property selection

Returns the selected cells as Range.

New in version 0.9.0.

property startup_path

Returns the path to XLSTART which is where the xlwings add-in gets copied to by doing xlwings
addin install.

New in version 0.19.4.

29.2. Object model 153

xlwings - Make Excel Fly!, Release dev

property status_bar

Gets or sets the value of the status bar. Returns False if Excel has control of it.

New in version 0.20.0.

property version

Returns the Excel version number object.

Examples

>>> import xlwings as xw
>>> xw.App().version
VersionNumber('15.24')
>>> xw.apps[10559].version.major
15

Changed in version 0.9.0.

property visible

Gets or sets the visibility of Excel to True or False.

New in version 0.3.3.

29.2.3 Books

class xlwings.main.Books(impl)
A collection of all book objects:

>>> import xlwings as xw
>>> xw.books # active app
Books([<Book [Book1]>, <Book [Book2]>])
>>> xw.apps[10559].books # specific app, get the PIDs via xw.apps.keys()
Books([<Book [Book1]>, <Book [Book2]>])

New in version 0.9.0.

property active

Returns the active Book.

add()

Creates a new Book. The new Book becomes the active Book. Returns a Book object.

open(fullname=None, update_links=None, read_only=None, format=None, password=None,
write_res_password=None, ignore_read_only_recommended=None, origin=None,
delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None,
local=None, corrupt_load=None, json=None)

Opens a Book if it is not open yet and returns it. If it is already open, it doesn’t raise an exception
but simply returns the Book object.

154 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

Parameters

• fullname (str or path-like object) – filename or fully qualified file-
name, e.g. r'C:\path\to\file.xlsx' or 'file.xlsm'. Without a full path,
it looks for the file in the current working directory.

• Parameters (Other) – see: xlwings.Book()

Returns
Book

Return type
Book that has been opened.

29.2.4 Book

class xlwings.Book(fullname=None, update_links=None, read_only=None, format=None,
password=None, write_res_password=None,
ignore_read_only_recommended=None, origin=None, delimiter=None,
editable=None, notify=None, converter=None, add_to_mru=None, local=None,
corrupt_load=None, impl=None, json=None)

A book object is a member of the books collection:

>>> import xlwings as xw
>>> xw.books[0]
<Book [Book1]>

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances
and returns an error, should the same book be open in multiple instances. To connect to a book in the
active app instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or xw.apps[10559] (get the PIDs via xw.apps.keys())
>>> app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()

Unsaved book xw.Book('Book1') xw.books['Book1']

Book by
(full)name

xw.Book(r'C:/path/to/file.
xlsx')

xw.books.open(r'C:/path/to/
file.xlsx')

Parameters

• fullname (str or path-like object, default None) – Full path or name
(incl. xlsx, xlsm etc.) of existing workbook or name of an unsaved workbook.
Without a full path, it looks for the file in the current working directory.

• update_links (bool, default None) – If this argument is omitted, the user
is prompted to specify how links will be updated

29.2. Object model 155

xlwings - Make Excel Fly!, Release dev

• read_only (bool, default False) – True to open workbook in read-only
mode

• format (str) – If opening a text file, this specifies the delimiter character

• password (str) – Password to open a protected workbook

• write_res_password (str) – Password to write to a write-reserved workbook

• ignore_read_only_recommended (bool, default False) – Set to True to
mute the read-only recommended message

• origin (int) – For text files only. Specifies where it originated. Use Platform
constants.

• delimiter (str) – If format argument is 6, this specifies the delimiter.

• editable (bool, default False) – This option is only for legacy Microsoft
Excel 4.0 addins.

• notify (bool, default False) – Notify the user when a file becomes avail-
able If the file cannot be opened in read/write mode.

• converter (int) – The index of the first file converter to try when opening the
file.

• add_to_mru (bool, default False) – Add this workbook to the list of re-
cently added workbooks.

• local (bool, default False) – If True, saves files against the language of
Excel, otherwise against the language of VBA. Not supported on macOS.

• corrupt_load (int, default xlNormalLoad) – Can be one of xlNormal-
Load, xlRepairFile or xlExtractData. Not supported on macOS.

• json (dict) – A JSON object as delivered by the MS Office Scripts or Google
Apps Script xlwings module but in a deserialized form, i.e., as dictionary.

New in version 0.26.0.

activate(steal_focus=False)
Activates the book.

Parameters
steal_focus (bool, default False) – If True, make frontmost window and
hand over focus from Python to Excel.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

property app

Returns an app object that represents the creator of the book.

New in version 0.9.0.

156 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

classmethod caller()

References the calling book when the Python function is called from Excel via RunPython. Pack
it into the function being called from Excel, e.g.:

import xlwings as xw

def my_macro():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 1

To be able to easily invoke such code from Python for debugging, use xw.Book.
set_mock_caller().

New in version 0.3.0.

close()

Closes the book without saving it.

New in version 0.1.1.

property fullname

Returns the name of the object, including its path on disk, as a string. Read-only String.

json()

Returns a JSON serializable object as expected by the MS Office Scripts or Google Apps
Script xlwings module. Only available with book objects that have been instantiated via xw.
Book(json=...).

New in version 0.26.0.

macro(name)
Runs a Sub or Function in Excel VBA.

Parameters

• name (Name of Sub or Function with or without module name, e.
g.,) –

• 'MyMacro' ('Module1.MyMacro' or) –

Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

29.2. Object model 157

xlwings - Make Excel Fly!, Release dev

>>> import xlwings as xw
>>> wb = xw.books.active
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3

See also: App.macro()

New in version 0.7.1.

property name

Returns the name of the book as str.

property names

Returns a names collection that represents all the names in the specified book (including all
sheet-specific names).

Changed in version 0.9.0.

render_template(**data)
This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the book with the keyword argument of the
same name.

New in version 0.25.0.

Parameters
data (kwargs) – All key/value pairs that are used in the template.

Examples

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.render_template(myvar='test')

save(path=None, password=None)
Saves the Workbook. If a path is being provided, this works like SaveAs() in Excel. If no path
is specified and if the file hasn’t been saved previously, it’s being saved in the current working
directory with the current filename. Existing files are overwritten without prompting.

Parameters

• path (str or path-like object, default None) – Full path to the work-
book

• password (str, default None) – Protection password with max. 15 charac-
ters

New in version 0.25.1.

158 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.save()
>>> wb.save(r'C:\path\to\new_file_name.xlsx')

New in version 0.3.1.

property selection

Returns the selected cells as Range.

New in version 0.9.0.

set_mock_caller()

Sets the Excel file which is used to mock xw.Book.caller() when the code is called from
Python and not from Excel via RunPython.

Examples

This code runs unchanged from Excel via RunPython and from Python␣
→˓directly
import os
import xlwings as xw

def my_macro():
sht = xw.Book.caller().sheets[0]
sht.range('A1').value = 'Hello xlwings!'

if __name__ == '__main__':
xw.Book('file.xlsm').set_mock_caller()
my_macro()

New in version 0.3.1.

property sheets

Returns a sheets collection that represents all the sheets in the book.

New in version 0.9.0.

to_pdf(path=None, include=None, exclude=None, layout=None, exclude_start_string='#',
show=False, quality='standard')

Exports the whole Excel workbook or a subset of the sheets to a PDF file. If you want to print
hidden sheets, you will need to list them explicitely under include.

Parameters

• path (str or path-like object, default None) – Path to the PDF file,
defaults to the same name as the workbook, in the same directory. For unsaved
workbooks, it defaults to the current working directory instead.

29.2. Object model 159

xlwings - Make Excel Fly!, Release dev

• include (int or str or list, default None) – Which sheets to in-
clude: provide a selection of sheets in the form of sheet indices (1-based like
in Excel) or sheet names. Can be an int/str for a single sheet or a list of int/str for
multiple sheets.

• exclude (int or str or list, default None) – Which sheets to ex-
clude: provide a selection of sheets in the form of sheet indices (1-based like
in Excel) or sheet names. Can be an int/str for a single sheet or a list of int/str for
multiple sheets.

• layout (str or path-like object, default None) – This argument re-
quires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for headers and
footers as well as borderless printing of graphics/artwork. The PDF file either
needs to have only 1 page (every report page uses the same layout) or otherwise
needs the same amount of pages as the report (each report page is printed on the
respective page in the layout PDF).

New in version 0.24.3.

• exclude_start_string (str, default '#') – Sheet names that start with this
character/string will not be printed.

New in version 0.24.4.

• show (bool, default False) – Once created, open the PDF file with the de-
fault application.

New in version 0.24.6.

• quality (str, default 'standard') – Quality of the PDF file. Can either be
'standard' or 'minimum'.

New in version 0.26.2.

Examples

>>> wb = xw.Book()
>>> wb.sheets[0]['A1'].value = 'PDF'
>>> wb.to_pdf()

See also xlwings.Sheet.to_pdf()

New in version 0.21.1.

160 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

29.2.5 PageSetup

class xlwings.main.PageSetup(impl)

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.24.2.

property print_area

Gets or sets the range address that defines the print area.

Examples

>>> mysheet.page_setup.print_area = 'A1:B3'
>>> mysheet.page_setup.print_area
'A1:B3'
>>> mysheet.page_setup.print_area = None # clear the print_area

New in version 0.24.2.

29.2.6 Sheets

class xlwings.main.Sheets(impl)
A collection of all sheet objects:

>>> import xlwings as xw
>>> xw.sheets # active book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])
>>> xw.Book('Book1').sheets # specific book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])

New in version 0.9.0.

property active

Returns the active Sheet.

add(name=None, before=None, after=None)
Creates a new Sheet and makes it the active sheet.

Parameters

• name (str, default None) – Name of the new sheet. If None, will default to
Excel’s default name.

• before (Sheet, default None) – An object that specifies the sheet before
which the new sheet is added.

• after (Sheet, default None) – An object that specifies the sheet after which
the new sheet is added.

29.2. Object model 161

xlwings - Make Excel Fly!, Release dev

29.2.7 Sheet

class xlwings.Sheet(sheet=None, impl=None)
A sheet object is a member of the sheets collection:

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets[0]
<Sheet [Book1]Sheet1>
>>> wb.sheets['Sheet1']
<Sheet [Book1]Sheet1>
>>> wb.sheets.add()
<Sheet [Book1]Sheet2>

Changed in version 0.9.0.

activate()

Activates the Sheet and returns it.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofit(axis=None)
Autofits the width of either columns, rows or both on a whole Sheet.

Parameters
axis (string, default None) –

• To autofit rows, use one of the following: rows or r

• To autofit columns, use one of the following: columns or c

• To autofit rows and columns, provide no arguments

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets['Sheet1'].autofit('c')
>>> wb.sheets['Sheet1'].autofit('r')
>>> wb.sheets['Sheet1'].autofit()

New in version 0.2.3.

property book

Returns the Book of the specified Sheet. Read-only.

162 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

property cells

Returns a Range object that represents all the cells on the Sheet (not just the cells that are currently
in use).

New in version 0.9.0.

property charts

See Charts

New in version 0.9.0.

clear()

Clears the content and formatting of the whole sheet.

clear_contents()

Clears the content of the whole sheet but leaves the formatting.

clear_formats()

Clears the format of the whole sheet but leaves the content.

New in version 0.26.2.

copy(before=None, after=None, name=None)
Copy a sheet to the current or a new Book. By default, it places the copied sheet after all existing
sheets in the current Book. Returns the copied sheet.

New in version 0.22.0.

Parameters

• before (sheet object, default None) – The sheet object before which
you want to place the sheet

• after (sheet object, default None) – The sheet object after which you
want to place the sheet, by default it is placed after all existing sheets

• name (str, default None) – The sheet name of the copy

Returns
Sheet object – The copied sheet

Return type
Sheet

Examples

Create two books and add a value to the first sheet of the first book
first_book = xw.Book()
second_book = xw.Book()
first_book.sheets[0]['A1'].value = 'some value'

Copy to same Book with the default location and name
(continues on next page)

29.2. Object model 163

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

first_book.sheets[0].copy()

Copy to same Book with custom sheet name
first_book.sheets[0].copy(name='copied')

Copy to second Book requires to use before or after
first_book.sheets[0].copy(after=second_book.sheets[0])

delete()

Deletes the Sheet.

property index

Returns the index of the Sheet (1-based as in Excel).

property name

Gets or sets the name of the Sheet.

property names

Returns a names collection that represents all the sheet-specific names (names defined with the
“SheetName!” prefix).

New in version 0.9.0.

property page_setup

Returns a PageSetup object.

New in version 0.24.2.

property pictures

See Pictures

New in version 0.9.0.

range(cell1, cell2=None)
Returns a Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

render_template(**data)
This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the sheet with the keyword argument that has
the same name. Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, PIL Image objects that
have a filename and Matplotlib figures.

New in version 0.22.0.

Parameters
data (kwargs) – All key/value pairs that are used in the template.

164 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

Examples

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.sheets[0].render_template(myvar='test')

select()

Selects the Sheet. Select only works on the active book.

New in version 0.9.0.

property shapes

See Shapes

New in version 0.9.0.

property tables

See Tables

New in version 0.21.0.

to_pdf(path=None, layout=None, show=False, quality='standard')
Exports the sheet to a PDF file.

Parameters

• path (str or path-like object, default None) – Path to the PDF file,
defaults to the name of the sheet in the same directory of the workbook. For
unsaved workbooks, it defaults to the current working directory instead.

• layout (str or path-like object, default None) – This argument re-
quires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for headers and
footers as well as borderless printing of graphics/artwork. The PDF file either
needs to have only 1 page (every report page uses the same layout) or otherwise
needs the same amount of pages as the report (each report page is printed on the
respective page in the layout PDF).

New in version 0.24.3.

• show (bool, default False) – Once created, open the PDF file with the de-
fault application.

New in version 0.24.6.

• quality (str, default 'standard') – Quality of the PDF file. Can either be
'standard' or 'minimum'.

New in version 0.26.2.

29.2. Object model 165

xlwings - Make Excel Fly!, Release dev

Examples

>>> wb = xw.Book()
>>> sheet = wb.sheets[0]
>>> sheet['A1'].value = 'PDF'
>>> sheet.to_pdf()

See also xlwings.Book.to_pdf()

New in version 0.22.3.

property used_range

Used Range of Sheet.

Returns

Return type
xw.Range

New in version 0.13.0.

property visible

Gets or sets the visibility of the Sheet (bool).

New in version 0.21.1.

29.2.8 Range

class xlwings.Range(cell1=None, cell2=None, **options)
Returns a Range object that represents a cell or a range of cells.

Parameters

• cell1 (str or tuple or Range) – Name of the range in the upper-left corner
in A1 notation or as index-tuple or as name or as xw.Range object. It can also
specify a range using the range operator (a colon), .e.g. ‘A1:B2’

• cell2 (str or tuple or Range, default None) – Name of the range in the
lower-right corner in A1 notation or as index-tuple or as name or as xw.Range
object.

Examples

Active Sheet:

import xlwings as xw
xw.Range('A1')
xw.Range('A1:C3')
xw.Range((1,1))
xw.Range((1,1), (3,3))

(continues on next page)

166 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

xw.Range('NamedRange')
xw.Range(xw.Range('A1'), xw.Range('B2'))

Specific Sheet:

xw.books['MyBook.xlsx'].sheets[0].range('A1')

add_hyperlink(address, text_to_display=None, screen_tip=None)
Adds a hyperlink to the specified Range (single Cell)

Parameters

• address (str) – The address of the hyperlink.

• text_to_display (str, default None) – The text to be displayed for the
hyperlink. Defaults to the hyperlink address.

• screen_tip (str, default None) – The screen tip to be displayed when the
mouse pointer is paused over the hyperlink. Default is set to ‘<address> - Click
once to follow. Click and hold to select this cell.’

New in version 0.3.0.

property address

Returns a string value that represents the range reference. Use get_address() to be able to
provide paramaters.

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofit()

Autofits the width and height of all cells in the range.

• To autofit only the width of the columns use xw.Range('A1:B2').columns.autofit()

• To autofit only the height of the rows use xw.Range('A1:B2').rows.autofit()

Changed in version 0.9.0.

clear()

Clears the content and the formatting of a Range.

clear_contents()

Clears the content of a Range but leaves the formatting.

clear_formats()

Clears the format of a Range but leaves the content.

New in version 0.26.2.

29.2. Object model 167

xlwings - Make Excel Fly!, Release dev

property color

Gets and sets the background color of the specified Range.

To set the color, either use an RGB tuple (0, 0, 0) or a hex string like #efefef or an Excel
color constant. To remove the background, set the color to None, see Examples.

Returns
RGB

Return type
tuple

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').color = (255, 255, 255) # or '#ffffff'
>>> xw.Range('A2').color
(255, 255, 255)
>>> xw.Range('A2').color = None
>>> xw.Range('A2').color is None
True

New in version 0.3.0.

property column

Returns the number of the first column in the in the specified range. Read-only.

Returns

Return type
Integer

New in version 0.3.5.

property column_width

Gets or sets the width, in characters, of a Range. One unit of column width is equal to the width
of one character in the Normal style. For proportional fonts, the width of the character 0 (zero)
is used.

If all columns in the Range have the same width, returns the width. If columns in the Range have
different widths, returns None.

column_width must be in the range: 0 <= column_width <= 255

Note: If the Range is outside the used range of the Worksheet, and columns in the Range have
different widths, returns the width of the first column.

Returns

Return type
float

168 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

New in version 0.4.0.

property columns

Returns a RangeColumns object that represents the columns in the specified range.

New in version 0.9.0.

copy(destination=None)
Copy a range to a destination range or clipboard.

Parameters
destination (xlwings.Range) – xlwings Range to which the specified range
will be copied. If omitted, the range is copied to the clipboard.

Returns

Return type
None

copy_picture(appearance='screen', format='picture')
Copies the range to the clipboard as picture.

Parameters

• appearance (str, default 'screen') – Either ‘screen’ or ‘printer’.

• format (str, default 'picture') – Either ‘picture’ or ‘bitmap’.

New in version 0.24.8.

property count

Returns the number of cells.

property current_region

This property returns a Range object representing a range bounded by (but not including) any
combination of blank rows and blank columns or the edges of the worksheet. It corresponds to
Ctrl-* on Windows and Shift-Ctrl-Space on Mac.

Returns

Return type
Range object

delete(shift=None)
Deletes a cell or range of cells.

Parameters
shift (str, default None) – Use left or up. If omitted, Excel decides based
on the shape of the range.

Returns

Return type
None

29.2. Object model 169

xlwings - Make Excel Fly!, Release dev

end(direction)
Returns a Range object that represents the cell at the end of the region that contains the source
range. Equivalent to pressing Ctrl+Up, Ctrl+down, Ctrl+left, or Ctrl+right.

Parameters
direction (One of 'up', 'down', 'right', 'left') –

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1:B2').value = 1
>>> xw.Range('A1').end('down')
<Range [Book1]Sheet1!A2>
>>> xw.Range('B2').end('right')
<Range [Book1]Sheet1!B2>

New in version 0.9.0.

expand(mode='table')
Expands the range according to the mode provided. Ignores empty top-left cells (unlike Range.
end()).

Parameters
mode (str, default 'table') – One of 'table' (=down and right), 'down',
'right'.

Returns

Return type
Range

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value = [[None, 1], [2, 3]]
>>> xw.Range('A1').expand().address
A1:B2
>>> xw.Range('A1').expand('right').address
A1:B1

New in version 0.9.0.

property formula

Gets or sets the formula for the given Range.

170 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

property formula2

Gets or sets the formula2 for the given Range.

property formula_array

Gets or sets an array formula for the given Range.

New in version 0.7.1.

get_address(row_absolute=True, column_absolute=True, include_sheetname=False,
external=False)

Returns the address of the range in the specified format. address can be used instead if none of
the defaults need to be changed.

Parameters

• row_absolute (bool, default True) – Set to True to return the row part of
the reference as an absolute reference.

• column_absolute (bool, default True) – Set to True to return the column
part of the reference as an absolute reference.

• include_sheetname (bool, default False) – Set to True to include the
Sheet name in the address. Ignored if external=True.

• external (bool, default False) – Set to True to return an external refer-
ence with workbook and worksheet name.

Returns

Return type
str

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range((1,1)).get_address()
'A1'
>>> xw.Range((1,1)).get_address(False, False)
'A1'
>>> xw.Range((1,1), (3,3)).get_address(True, False, True)
'Sheet1!A$1:C$3'
>>> xw.Range((1,1), (3,3)).get_address(True, False, external=True)
'[Book1]Sheet1!A$1:C$3'

New in version 0.2.3.

property has_array

True if the range is part of a legacy CSE Array formula and False otherwise.

29.2. Object model 171

xlwings - Make Excel Fly!, Release dev

property height

Returns the height, in points, of a Range. Read-only.

Returns

Return type
float

New in version 0.4.0.

property hyperlink

Returns the hyperlink address of the specified Range (single Cell only)

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').value
'www.xlwings.org'
>>> xw.Range('A1').hyperlink
'http://www.xlwings.org'

New in version 0.3.0.

insert(shift=None, copy_origin='format_from_left_or_above')
Insert a cell or range of cells into the sheet.

Parameters

• shift (str, default None) – Use right or down. If omitted, Excel decides
based on the shape of the range.

• copy_origin (str, default format_from_left_or_above) – Use
format_from_left_or_above or format_from_right_or_below. Note
that this is not supported on macOS.

Returns

Return type
None

property last_cell

Returns the bottom right cell of the specified range. Read-only.

Returns

Return type
Range

172 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> rng = xw.Range('A1:E4')
>>> rng.last_cell.row, rng.last_cell.column
(4, 5)

New in version 0.3.5.

property left

Returns the distance, in points, from the left edge of column A to the left edge of the range.
Read-only.

Returns

Return type
float

New in version 0.6.0.

merge(across=False)
Creates a merged cell from the specified Range object.

Parameters
across (bool, default False) – True to merge cells in each row of the speci-
fied Range as separate merged cells.

property merge_area

Returns a Range object that represents the merged Range containing the specified cell. If the
specified cell isn’t in a merged range, this property returns the specified cell.

property merge_cells

Returns True if the Range contains merged cells, otherwise False

property name

Sets or gets the name of a Range.

New in version 0.4.0.

property note

Returns a Note object. Before the introduction of threaded comments, a Note was called a Com-
ment.

New in version 0.24.2.

property number_format

Gets and sets the number_format of a Range.

29.2. Object model 173

xlwings - Make Excel Fly!, Release dev

Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> xw.Range('A1').number_format
'General'
>>> xw.Range('A1:C3').number_format = '0.00%'
>>> xw.Range('A1:C3').number_format
'0.00%'

New in version 0.2.3.

offset(row_offset=0, column_offset=0)
Returns a Range object that represents a Range that’s offset from the specified range.

Returns
Range object

Return type
Range

New in version 0.3.0.

options(convert=None, **options)
Allows you to set a converter and their options. Converters define how Excel Ranges and their
values are being converted both during reading and writing operations. If no explicit converter
is specified, the base converter is being applied, see Converters and Options.

Parameters
convert (object, default None) – A converter, e.g. dict, np.array, pd.
DataFrame, pd.Series, defaults to default converter

Keyword Arguments

• ndim (int, default None) – number of dimensions

• numbers (type, default None) – type of numbers, e.g. int

• dates (type, default None) – e.g. datetime.date defaults to datetime.
datetime

• empty (object, default None) – transformation of empty cells

• transpose (Boolean, default False) – transpose values

• expand (str, default None) – One of 'table', 'down', 'right'

• chunksize (int) –

Use a chunksize, e.g. 10000 to prevent timeout or memory issues when
reading or writing large amounts of data. Works with all formats, including
DataFrames, NumPy arrays, and list of lists.

=> For converter-specific options, see Converters and Options.

174 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

Returns

Return type
Range object

New in version 0.7.0.

paste(paste=None, operation=None, skip_blanks=False, transpose=False)
Pastes a range from the clipboard into the specified range.

Parameters

• paste (str, default None) – One of all_merging_conditional_formats,
all, all_except_borders, all_using_source_theme, column_widths,
comments, formats, formulas, formulas_and_number_formats,
validation, values, values_and_number_formats.

• operation (str, default None) – One of “add”, “divide”, “multiply”, “sub-
tract”.

• skip_blanks (bool, default False) – Set to True to skip over blank cells

• transpose (bool, default False) – Set to True to transpose rows and
columns.

Returns

Return type
None

property raw_value

Gets and sets the values directly as delivered from/accepted by the engine that s being used
(pywin32 or appscript) without going through any of xlwings’ data cleaning/converting. This
can be helpful if speed is an issue but naturally will be engine specific, i.e. might remove the
cross-platform compatibility.

resize(row_size=None, column_size=None)
Resizes the specified Range

Parameters

• row_size (int > 0) – The number of rows in the new range (if None, the num-
ber of rows in the range is unchanged).

• column_size (int > 0) – The number of columns in the new range (if None,
the number of columns in the range is unchanged).

Returns
Range object

Return type
Range

New in version 0.3.0.

29.2. Object model 175

xlwings - Make Excel Fly!, Release dev

property row

Returns the number of the first row in the specified range. Read-only.

Returns

Return type
Integer

New in version 0.3.5.

property row_height

Gets or sets the height, in points, of a Range. If all rows in the Range have the same height,
returns the height. If rows in the Range have different heights, returns None.

row_height must be in the range: 0 <= row_height <= 409.5

Note: If the Range is outside the used range of the Worksheet, and rows in the Range have
different heights, returns the height of the first row.

Returns

Return type
float

New in version 0.4.0.

property rows

Returns a RangeRows object that represents the rows in the specified range.

New in version 0.9.0.

select()

Selects the range. Select only works on the active book.

New in version 0.9.0.

property shape

Tuple of Range dimensions.

New in version 0.3.0.

property sheet

Returns the Sheet object to which the Range belongs.

New in version 0.9.0.

property size

Number of elements in the Range.

New in version 0.3.0.

property table

Returns a Table object if the range is part of one, otherwise None.

New in version 0.21.0.

176 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

to_pdf(path=None, layout=None, show=None, quality='standard')
Exports the range as PDF.

Parameters

• path (str or path-like, default None) – Path where you want to store
the pdf. Defaults to the address of the range in the same directory as the Excel
file if the Excel file is stored and to the current working directory otherwise.

• layout (str or path-like object, default None) – This argument re-
quires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for headers and
footers as well as borderless printing of graphics/artwork. The PDF file either
needs to have only 1 page (every report page uses the same layout) or otherwise
needs the same amount of pages as the report (each report page is printed on the
respective page in the layout PDF).

• show (bool, default False) – Once created, open the PDF file with the de-
fault application.

• quality (str, default 'standard') – Quality of the PDF file. Can either be
'standard' or 'minimum'.

New in version 0.26.2.

to_png(path=None)
Exports the range as PNG picture.

Parameters
path (str or path-like, default None) – Path where you want to store the
picture. Defaults to the name of the range in the same directory as the Excel file if
the Excel file is stored and to the current working directory otherwise.

New in version 0.24.8.

property top

Returns the distance, in points, from the top edge of row 1 to the top edge of the range. Read-only.

Returns

Return type
float

New in version 0.6.0.

unmerge()

Separates a merged area into individual cells.

property value

Gets and sets the values for the given Range. See xlwings.Range.options() about how to
set options, e.g., to transform it into a DataFrame or how to set a chunksize.

Returns
object – see xlwings.Range.options()

29.2. Object model 177

xlwings - Make Excel Fly!, Release dev

Return type
returned object depends on the converter being used,

property width

Returns the width, in points, of a Range. Read-only.

Returns

Return type
float

New in version 0.4.0.

property wrap_text

Returns True if the wrap_text property is enabled and False if it’s disabled. If not all cells have
the same value in a range, on Windows it returns None and on macOS False.

New in version 0.23.2.

29.2.9 RangeRows

class xlwings.RangeRows(rng)
Represents the rows of a range. Do not construct this class directly, use Range.rows instead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.rows) == 4 # or rng.rows.count

rng.rows[0].value = 'a'

assert rng.rows[2] == xw.Range('A3:C3')
assert rng.rows(2) == xw.Range('A2:C2')

for r in rng.rows:
print(r.address)

autofit()

Autofits the height of the rows.

property count

Returns the number of rows.

New in version 0.9.0.

178 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

29.2.10 RangeColumns

class xlwings.RangeColumns(rng)
Represents the columns of a range. Do not construct this class directly, use Range.columns instead.

Example

import xlwings as xw

rng = xw.Range('A1:C4')

assert len(rng.columns) == 3 # or rng.columns.count

rng.columns[0].value = 'a'

assert rng.columns[2] == xw.Range('C1:C4')
assert rng.columns(2) == xw.Range('B1:B4')

for c in rng.columns:
print(c.address)

autofit()

Autofits the width of the columns.

property count

Returns the number of columns.

New in version 0.9.0.

29.2.11 Shapes

class xlwings.main.Shapes(impl)
A collection of all shape objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].shapes
Shapes([<Shape 'Oval 1' in <Sheet [Book1]Sheet1>>,

<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property count

Returns the number of objects in the collection.

29.2. Object model 179

xlwings - Make Excel Fly!, Release dev

29.2.12 Shape

class xlwings.Shape(*args, **options)
The shape object is a member of the shapes collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.shapes[0] # or sht.shapes['ShapeName']
<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

activate()

Activates the shape.

New in version 0.5.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.19.2.

delete()

Deletes the shape.

New in version 0.5.0.

property height

Returns or sets the number of points that represent the height of the shape.

New in version 0.5.0.

property left

Returns or sets the number of points that represent the horizontal position of the shape.

New in version 0.5.0.

property name

Returns or sets the name of the shape.

New in version 0.5.0.

property parent

Returns the parent of the shape.

New in version 0.9.0.

scale_height(factor, relative_to_original_size=False, scale='scale_from_top_left')

factor
[float] For example 1.5 to scale it up to 150%

relative_to_original_size
[bool, optional] If False, it scales relative to current height (default). For True must be a
picture or OLE object.

180 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

scale
[str, optional] One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

New in version 0.19.2.

scale_width(factor, relative_to_original_size=False, scale='scale_from_top_left')

factor
[float] For example 1.5 to scale it up to 150%

relative_to_original_size
[bool, optional] If False, it scales relative to current width (default). For True must be a
picture or OLE object.

scale
[str, optional] One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

New in version 0.19.2.

property text

Returns or sets the text of a shape.

New in version 0.21.4.

property top

Returns or sets the number of points that represent the vertical position of the shape.

New in version 0.5.0.

property type

Returns the type of the shape.

New in version 0.9.0.

property width

Returns or sets the number of points that represent the width of the shape.

New in version 0.5.0.

29.2.13 Charts

class xlwings.main.Charts(impl)
A collection of all chart objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].charts
Charts([<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>,

<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

29.2. Object model 181

xlwings - Make Excel Fly!, Release dev

add(left=0, top=0, width=355, height=211)
Creates a new chart on the specified sheet.

Parameters

• left (float, default 0) – left position in points

• top (float, default 0) – top position in points

• width (float, default 355) – width in points

• height (float, default 211) – height in points

Returns

Return type
Chart

Examples

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [['Foo1', 'Foo2'], [1, 2]]
>>> chart = sht.charts.add()
>>> chart.set_source_data(sht.range('A1').expand())
>>> chart.chart_type = 'line'
>>> chart.name
'Chart1'

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property count

Returns the number of objects in the collection.

29.2.14 Chart

class xlwings.Chart(name_or_index=None, impl=None)
The chart object is a member of the charts collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.charts[0] # or sht.charts['ChartName']
<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

182 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

property chart_type

Returns and sets the chart type of the chart. The following chart types are available:

3d_area, 3d_area_stacked, 3d_area_stacked_100, 3d_bar_clustered,
3d_bar_stacked, 3d_bar_stacked_100, 3d_column, 3d_column_clustered,
3d_column_stacked, 3d_column_stacked_100, 3d_line, 3d_pie, 3d_pie_exploded,
area, area_stacked, area_stacked_100, bar_clustered, bar_of_pie,
bar_stacked, bar_stacked_100, bubble, bubble_3d_effect, column_clustered,
column_stacked, column_stacked_100, combination, cone_bar_clustered,
cone_bar_stacked, cone_bar_stacked_100, cone_col, cone_col_clustered,
cone_col_stacked, cone_col_stacked_100, cylinder_bar_clustered,
cylinder_bar_stacked, cylinder_bar_stacked_100, cylinder_col,
cylinder_col_clustered, cylinder_col_stacked, cylinder_col_stacked_100,
doughnut, doughnut_exploded, line, line_markers, line_markers_stacked,
line_markers_stacked_100, line_stacked, line_stacked_100, pie,
pie_exploded, pie_of_pie, pyramid_bar_clustered, pyramid_bar_stacked,
pyramid_bar_stacked_100, pyramid_col, pyramid_col_clustered,
pyramid_col_stacked, pyramid_col_stacked_100, radar, radar_filled,
radar_markers, stock_hlc, stock_ohlc, stock_vhlc, stock_vohlc, surface,
surface_top_view, surface_top_view_wireframe, surface_wireframe, xy_scatter,
xy_scatter_lines, xy_scatter_lines_no_markers, xy_scatter_smooth,
xy_scatter_smooth_no_markers

New in version 0.1.1.

delete()

Deletes the chart.

property height

Returns or sets the number of points that represent the height of the chart.

property left

Returns or sets the number of points that represent the horizontal position of the chart.

property name

Returns or sets the name of the chart.

property parent

Returns the parent of the chart.

New in version 0.9.0.

set_source_data(source)
Sets the source data range for the chart.

Parameters
source (Range) – Range object, e.g. xw.books['Book1'].sheets[0].
range('A1')

to_pdf(path=None, show=None, quality='standard')
Exports the chart as PDF.

29.2. Object model 183

xlwings - Make Excel Fly!, Release dev

Parameters

• path (str or path-like, default None) – Path where you want to store
the pdf. Defaults to the name of the chart in the same directory as the Excel file
if the Excel file is stored and to the current working directory otherwise.

• show (bool, default False) – Once created, open the PDF file with the de-
fault application.

• quality (str, default 'standard') – Quality of the PDF file. Can either be
'standard' or 'minimum'.

New in version 0.26.2.

to_png(path=None)
Exports the chart as PNG picture.

Parameters
path (str or path-like, default None) – Path where you want to store the
picture. Defaults to the name of the chart in the same directory as the Excel file if
the Excel file is stored and to the current working directory otherwise.

New in version 0.24.8.

property top

Returns or sets the number of points that represent the vertical position of the chart.

property width

Returns or sets the number of points that represent the width of the chart.

29.2.15 Pictures

class xlwings.main.Pictures(impl)
A collection of all picture objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].pictures
Pictures([<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>,

<Picture 'Picture 2' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

add(image, link_to_file=False, save_with_document=True, left=None, top=None, width=None,
height=None, name=None, update=False, scale=None, format=None, anchor=None,
export_options=None)
Adds a picture to the specified sheet.

Parameters

• image (str or path-like object or matplotlib.figure.Figure) –
Either a filepath or a Matplotlib figure object.

184 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

• left (float, default None) – Left position in points, defaults to 0. If you
use top/left, you must not provide a value for anchor.

• top (float, default None) – Top position in points, defaults to 0. If you use
top/left, you must not provide a value for anchor.

• width (float, default None) – Width in points. Defaults to original width.

• height (float, default None) – Height in points. Defaults to original
height.

• name (str, default None) – Excel picture name. Defaults to Excel standard
name if not provided, e.g., ‘Picture 1’.

• update (bool, default False) – Replace an existing picture with the same
name. Requires name to be set.

• scale (float, default None) – Scales your picture by the provided factor.

• format (str, default None) – Only used if image is a Matplotlib
or Plotly plot. By default, the plot is inserted in the “png” format,
but you may want to change this to a vector-based format like “svg”
on Windows (may require Microsoft 365) or “eps” on macOS for bet-
ter print quality. If you use 'vector', it will be using 'svg' on
Windows and 'eps' on macOS. To find out which formats your ver-
sion of Excel supports, see: https://support.microsoft.com/en-us/topic/
support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840

• anchor (xw.Range, default None) – The xlwings Range object of where
you want to insert the picture. If you use anchor, you must not provide values
for top/left.

New in version 0.24.3.

• export_options (dict, default None) – For Matplotlib plots, this dic-
tionary is passed on to image.savefig() with the following defaults:
{"bbox_inches": "tight", "dpi": 200}, so if you want to leave the
picture uncropped and increase dpi to 300, use: export_options={"dpi":
300}. For Plotly, the options are passed to write_image().

New in version 0.27.7.

Returns

Return type
Picture

29.2. Object model 185

https://support.microsoft.com/en-us/topic/support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840
https://support.microsoft.com/en-us/topic/support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840

xlwings - Make Excel Fly!, Release dev

Examples

1. Picture

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(r'C:\path\to\file.png')
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

2. Matplotlib

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Book1]Sheet1>>

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property count

Returns the number of objects in the collection.

29.2.16 Picture

class xlwings.Picture(impl=None)
The picture object is a member of the pictures collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.pictures[0] # or sht.charts['PictureName']
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

delete()

Deletes the picture.

New in version 0.5.0.

property height

Returns or sets the number of points that represent the height of the picture.

New in version 0.5.0.

186 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

property left

Returns or sets the number of points that represent the horizontal position of the picture.

New in version 0.5.0.

property lock_aspect_ratio

True will keep the original proportion, False will allow you to change height and width inde-
pendently of each other (read/write).

New in version 0.24.0.

property name

Returns or sets the name of the picture.

New in version 0.5.0.

property parent

Returns the parent of the picture.

New in version 0.9.0.

property top

Returns or sets the number of points that represent the vertical position of the picture.

New in version 0.5.0.

update(image, format=None, export_options=None)
Replaces an existing picture with a new one, taking over the attributes of the existing picture.

Parameters

• image (str or path-like object or matplotlib.figure.Figure) –
Either a filepath or a Matplotlib figure object.

• format (str, default None) – See under Pictures.add()

• export_options (dict, default None) – See under Pictures.add()

New in version 0.5.0.

property width

Returns or sets the number of points that represent the width of the picture.

New in version 0.5.0.

29.2.17 Names

class xlwings.main.Names(impl)
A collection of all name objects in the workbook:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names
[<Name 'MyName': =Sheet1!A3>]

29.2. Object model 187

xlwings - Make Excel Fly!, Release dev

New in version 0.9.0.

add(name, refers_to)
Defines a new name for a range of cells.

Parameters

• name (str) – Specifies the text to use as the name. Names cannot include spaces
and cannot be formatted as cell references.

• refers_to (str) – Describes what the name refers to, in English, using A1-
style notation.

Returns

Return type
Name

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine beingused.

New in version 0.9.0.

property count

Returns the number of objects in the collection.

29.2.18 Name

class xlwings.Name(impl)
The name object is a member of the names collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names[0] # or sht.names['MyName']
<Name 'MyName': =Sheet1!A3>

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

delete()

Deletes the name.

New in version 0.9.0.

property name

Returns or sets the name of the name object.

New in version 0.9.0.

188 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

property refers_to

Returns or sets the formula that the name is defined to refer to, in A1-style notation, beginning
with an equal sign.

New in version 0.9.0.

property refers_to_range

Returns the Range object referred to by a Name object.

New in version 0.9.0.

29.2.19 Note

class xlwings.main.Note(impl)

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.24.2.

delete()

Delete the note.

New in version 0.24.2.

property text

Gets or sets the text of a note. Keep in mind that the note must already exist!

Examples

>>> sheet = xw.Book(...).sheets[0]
>>> sheet['A1'].note.text = 'mynote'
>>> sheet['A1'].note.text
>>> 'mynote'

New in version 0.24.2.

29.2.20 Tables

class xlwings.main.Tables(impl)
A collection of all table objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].tables
Tables([<Table 'Table1' in <Sheet [Book11]Sheet1>>,

<Table 'Table2' in <Sheet [Book11]Sheet1>>])

New in version 0.21.0.

29.2. Object model 189

xlwings - Make Excel Fly!, Release dev

add(source=None, name=None, source_type=None, link_source=None, has_headers=True,
destination=None, table_style_name='TableStyleMedium2')
Creates a Table to the specified sheet.

Parameters

• source (xlwings range, default None) – An xlwings range object, repre-
senting the data source.

• name (str, default None) – The name of the Table. By default, it uses the
autogenerated name that is assigned by Excel.

• source_type (str, default None) – This currently defaults to
xlSrcRange, i.e. expects an xlwings range object. No other options are
allowed at the moment.

• link_source (bool, default None) – Currently not implemented as this is
only in case source_type is xlSrcExternal.

• has_headers (bool or str, default True) – Indicates whether the data
being imported has column labels. Defaults to True. Possible values: True,
FAlse, 'guess'

• destination (xlwings range, default None) – Currently not imple-
mented as this is used in case source_type is xlSrcExternal.

• table_style_name (str, default 'TableStyleMedium2') – Possible
strings: 'TableStyleLightN'' (where N is 1-21), 'TableStyleMediumN'
(where N is 1-28), ‘TableStyleDarkN’` (where N is 1-11)

Returns

Return type
Table

Examples

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [['a', 'b'], [1, 2]]
>>> table = sheet.tables.add(source=sheet['A1'].expand(), name='MyTable
→˓')
>>> table
<Table 'MyTable' in <Sheet [Book1]Sheet1>>

190 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

29.2.21 Table

class xlwings.main.Table(*args, **options)
The table object is a member of the tables collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.tables[0] # or sht.tables['TableName']
<Table 'Table 1' in <Sheet [Book1]Sheet1>>

New in version 0.21.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property data_body_range

Returns an xlwings range object that represents the range of values, excluding the header row

property display_name

Returns or sets the display name for the specified Table object

property header_row_range

Returns an xlwings range object that represents the range of the header row

property insert_row_range

Returns an xlwings range object representing the row where data is going to be inserted. This is
only available for empty tables, otherwise it’ll return None

property name

Returns or sets the name of the Table.

property parent

Returns the parent of the table.

property range

Returns an xlwings range object of the table.

resize(range)
Resize a Table by providing an xlwings range object

New in version 0.24.4.

property show_autofilter

Turn the autofilter on or off by setting it to True or False (read/write boolean)

property show_headers

Show or hide the header (read/write)

property show_table_style_column_stripes

Returns or sets if the Column Stripes table style is used for (read/write boolean)

29.2. Object model 191

xlwings - Make Excel Fly!, Release dev

property show_table_style_first_column

Returns or sets if the first column is formatted (read/write boolean)

property show_table_style_last_column

Returns or sets if the last column is displayed (read/write boolean)

property show_table_style_row_stripes

Returns or sets if the Row Stripes table style is used (read/write boolean)

property show_totals

Gets or sets a boolean to show/hide the Total row.

property table_style

Gets or sets the table style. See Tables.add for possible values.

property totals_row_range

Returns an xlwings range object representing the Total row

update(data, index=True)
Updates the Excel table with the provided data. Currently restricted to DataFrames.

Changed in version 0.24.0.

Parameters

• data (pandas DataFrame) – Currently restricted to pandas DataFrames.

• index (bool, default True) – Whether or not the index of a pandas
DataFrame should be written to the Excel table.

Returns

Return type
Table

Examples

import pandas as pd
import xlwings as xw

sheet = xw.Book('Book1.xlsx').sheets[0]
table_name = 'mytable'

Sample DataFrame
nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],

columns=['col ' + str(i) for i in range(ncols)])

Hide the index, then insert a new table if it doesn't exist yet,
otherwise update the existing one

(continues on next page)

192 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

df = df.set_index('col 0')
if table_name in [table.name for table in sheet.tables]:

sheet.tables[table_name].update(df)
else:

mytable = sheet.tables.add(source=sheet['A1'],
name=table_name).update(df)

29.2.22 Font

class xlwings.main.Font(impl)
The font object can be accessed as an attribute of the range or shape object.

• mysheet['A1'].font

• mysheet.shapes[0].font

New in version 0.23.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.23.0.

property bold

Returns or sets the bold property (boolean).

>>> sheet['A1'].font.bold = True
>>> sheet['A1'].font.bold
True

New in version 0.23.0.

property color

Returns or sets the color property (tuple).

>>> sheet['A1'].font.color = (255, 0, 0) # or '#ff0000'
>>> sheet['A1'].font.color
(255, 0, 0)

New in version 0.23.0.

property italic

Returns or sets the italic property (boolean).

>>> sheet['A1'].font.italic = True
>>> sheet['A1'].font.italic
True

New in version 0.23.0.

29.2. Object model 193

xlwings - Make Excel Fly!, Release dev

property name

Returns or sets the name of the font (str).

>>> sheet['A1'].font.name = 'Calibri'
>>> sheet['A1'].font.name
Calibri

New in version 0.23.0.

property size

Returns or sets the size (float).

>>> sheet['A1'].font.size = 13
>>> sheet['A1'].font.size
13

New in version 0.23.0.

29.2.23 Characters

class xlwings.main.Characters(impl)
The characters object can be accessed as an attribute of the range or shape object.

• mysheet['A1'].characters

• mysheet.shapes[0].characters

Note: On macOS, characters are currently not supported due to bugs/lack of support in Apple-
Script.

New in version 0.23.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.23.0.

property font

Returns or sets the text property of a characters object.

>>> sheet['A1'].characters[1:3].font.bold = True
>>> sheet['A1'].characters[1:3].font.bold
True

New in version 0.23.0.

property text

Returns or sets the text property of a characters object.

194 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

>>> sheet['A1'].value = 'Python'
>>> sheet['A1'].characters[:3].text
Pyt

New in version 0.23.0.

29.2.24 Markdown

class xlwings.pro.Markdown(text, style=<MarkdownStyle> h1.font: .bold: True
paragraph.blank_lines_after: 1 unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1 strong.bold: True emphasis.italic:
True)

Markdown objects can be assigned to a single cell or shape via myrange.value or myshape.text.
They accept a string in Markdown format which will cause the text in the cell to be formatted accord-
ingly. They can also be used in mysheet.render_template().

Note: On macOS, formatting is currently not supported, but things like bullet points will still work.

Parameters

• text (str) – The text in Markdown syntax

• style (MarkdownStyle object, optional) – The MarkdownStyle object de-
fines how the text will be formatted.

Examples

>>> mysheet['A1'].value = Markdown("A text with *emphasis* and **strong**␣
→˓style.")
>>> myshape.text = Markdown("A text with *emphasis* and **strong** style.")

New in version 0.23.0.

29.2.25 MarkdownStyle

class xlwings.pro.MarkdownStyle

MarkdownStyle defines how Markdown objects are being rendered in Excel cells or shapes. Start by
instantiating a MarkdownStyle object. Printing it will show you the current (default) style:

>>> style = MarkdownStyle()
>>> style
<MarkdownStyle>
h1.font: .bold: True

(continues on next page)

29.2. Object model 195

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

h1.blank_lines_after: 1
paragraph.blank_lines_after: 1
unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1
strong.bold: True
emphasis.italic: True

You can override the defaults, e.g., to make **strong** text red instead of bold, do this:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

New in version 0.23.0.

29.3 UDF decorators

xlwings.func(category='xlwings', volatile=False, call_in_wizard=True)
Functions decorated with xlwings.func will be imported as Function to Excel when running “Im-
port Python UDFs”.

category
[int or str, default “xlwings”] 1-14 represent built-in categories, for user-defined categories use
strings

New in version 0.10.3.

volatile
[bool, default False] Marks a user-defined function as volatile. A volatile function must be re-
calculated whenever calculation occurs in any cells on the worksheet. A nonvolatile function is
recalculated only when the input variables change. This method has no effect if it’s not inside a
user-defined function used to calculate a worksheet cell.

New in version 0.10.3.

call_in_wizard
[bool, default True] Set to False to suppress the function call in the function wizard.

New in version 0.10.3.

xlwings.sub()

Functions decorated with xlwings.sub will be imported as Sub (i.e. macro) to Excel when running
“Import Python UDFs”.

xlwings.arg(arg, convert=None, **options)
Apply converters and options to arguments, see also Range.options().

Examples:

196 Chapter 29. Python API

xlwings - Make Excel Fly!, Release dev

Convert x into a 2-dimensional numpy array:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
def add_one(x):

return x + 1

xlwings.ret(convert=None, **options)
Apply converters and options to return values, see also Range.options().

Examples

1) Suppress the index and header of a returned DataFrame:

import pandas as pd

@xw.func
@xw.ret(index=False, header=False)
def get_dataframe(n, m):

return pd.DataFrame(np.arange(n * m).reshape((n, m)))

2) Dynamic array:

Note: If your version of Excel supports the new native dynamic arrays, then you don’t have to do
anything special, and you shouldn’t use the expand decorator! To check if your version of Excel
supports it, see if you have the =UNIQUE() formula available. Native dynamic arrays were introduced
in Office 365 Insider Fast at the end of September 2018.

expand='table' turns the UDF into a dynamic array. Currently you must not use volatile functions
as arguments of a dynamic array, e.g. you cannot use =TODAY() as part of a dynamic array. Also note
that a dynamic array needs an empty row and column at the bottom and to the right and will overwrite
existing data without warning.

Unlike standard Excel arrays, dynamic arrays are being used from a single cell like a standard function
and auto-expand depending on the dimensions of the returned array:

import xlwings as xw
import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(n, m):

return np.arange(n * m).reshape((n, m))

New in version 0.10.0.

29.3. UDF decorators 197

xlwings - Make Excel Fly!, Release dev

29.4 Reports

Required Notice: Copyright (C) Zoomer Analytics GmbH.

xlwings PRO is dual-licensed under one of the following licenses:

• PolyForm Noncommercial License 1.0.0 (for noncommercial use): https://polyformproject.org/
licenses/noncommercial/1.0.0

• xlwings PRO License (for commercial use): https://github.com/xlwings/xlwings/blob/main/
LICENSE_PRO.txt

Commercial licenses can be purchased at https://www.xlwings.org

class xlwings.pro.reports.Image(filename)
Use this class to provide images to either render_template().

Parameters
filename (str or pathlib.Path object) – The file name or path

class xlwings.pro.reports.Markdown(text, style=<MarkdownStyle> h1.font: .bold: True
paragraph.blank_lines_after: 1
unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1 strong.bold: True
emphasis.italic: True)

Markdown objects can be assigned to a single cell or shape via myrange.value or myshape.text.
They accept a string in Markdown format which will cause the text in the cell to be formatted accord-
ingly. They can also be used in mysheet.render_template().

Note: On macOS, formatting is currently not supported, but things like bullet points will still work.

Parameters

• text (str) – The text in Markdown syntax

• style (MarkdownStyle object, optional) – The MarkdownStyle object de-
fines how the text will be formatted.

Examples

>>> mysheet['A1'].value = Markdown("A text with *emphasis* and **strong**␣
→˓style.")
>>> myshape.text = Markdown("A text with *emphasis* and **strong** style.")

New in version 0.23.0.

class xlwings.pro.reports.MarkdownStyle

MarkdownStyle defines how Markdown objects are being rendered in Excel cells or shapes. Start by
instantiating a MarkdownStyle object. Printing it will show you the current (default) style:

198 Chapter 29. Python API

https://polyformproject.org/licenses/noncommercial/1.0.0
https://polyformproject.org/licenses/noncommercial/1.0.0
https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt
https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt
https://www.xlwings.org

xlwings - Make Excel Fly!, Release dev

>>> style = MarkdownStyle()
>>> style
<MarkdownStyle>
h1.font: .bold: True
h1.blank_lines_after: 1
paragraph.blank_lines_after: 1
unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1
strong.bold: True
emphasis.italic: True

You can override the defaults, e.g., to make **strong** text red instead of bold, do this:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

New in version 0.23.0.

xlwings.pro.reports.render_template(template, output, book_settings=None, app=None, **data)
This function requires xlwings PRO.

This is a convenience wrapper around mysheet.render_template

Writes the values of all key word arguments to the output file according to the template and the
variables contained in there (Jinja variable syntax). Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, pictures and Matplotlib/Plotly
figures.

Parameters

• template (str) – Path to your Excel template, e.g. r'C:\Path\to\
my_template.xlsx'

• output (str) – Path to your Report, e.g. r'C:\Path\to\my_report.xlsx'

• book_settings (dict, default None) – A dict of xlwings.
Book parameters, for details see: xlwings.Book . For example:
book_settings={'update_links': False}.

• app (xlwings App, default None) – By passing in an xlwings App instance,
you can control where your report runs and configure things like visible=False.
For details see xlwings.App. By default, it creates the report in the currently
active instance of Excel.

• data (kwargs) – All key/value pairs that are used in the template.

Returns

Return type
xlwings Book

29.4. Reports 199

xlwings - Make Excel Fly!, Release dev

Examples

In my_template.xlsx, put the following Jinja variables in two cells: {{ title }} and {{ df }}

>>> from xlwings.pro.reports import render_template
>>> import pandas as pd
>>> df = pd.DataFrame(data=[[1,2],[3,4]])
>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx',

title='MyTitle', df=df)

With many template variables it may be useful to collect the data first:

>>> data = dict(title='MyTitle', df=df)
>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx', **data)

If you need to handle external links or a password, use it like so:

>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx',
book_settings={'update_links': True,
'password': 'mypassword'}, **data)

200 Chapter 29. Python API

CHAPTER

THIRTY

REST API

Note: This is an experimental feature and may be removed in the future.

New in version 0.13.0.

30.1 Quickstart

xlwings offers an easy way to expose an Excel workbook via REST API both on Windows and macOS. This
can be useful when you have a workbook running on a single computer and want to access it from another
computer. Or you can build a Linux based web app that can interact with a legacy Excel application while
you are in the progress of migrating the Excel functionality into your web app (if you need help with that,
give us a shout).

You can run the REST API server from a command prompt or terminal as follows (this requires Flask>=1.0,
so make sure to pip install Flask):

xlwings restapi run

Then perform a GET request e.g. via PowerShell on Windows or Terminal on Mac (while having an unsaved
“Book1” open). Note that you need to run the server and the GET request from two separate terminals (or
you can use something more convenient like Postman or Insomnia for testing the API):

$ curl "http://127.0.0.1:5000/book/book1/sheets/0/range/A1:B2"
{

"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 10.0,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"1",
"2"

(continues on next page)

201

https://www.xlwings.org/contact
https://www.getpostman.com/
https://insomnia.rest/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

],
[

"3",
"4"

]
],
"formula_array": null,
"height": 32.0,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": "General",
"row": 1,
"row_height": 16.0,
"shape": [

2,
2

],
"size": 4,
"top": 0.0,
"value": [

[
1.0,
2.0

],
[

3.0,
4.0

]
],
"width": 130.0

}

In the command prompt where your server is running, press Ctrl-C to shut it down again.

The xlwings REST API is a thin wrapper around the Python API which makes it very easy if you have worked
previously with xlwings. It also means that the REST API does require the Excel application to be up and
running which makes it a great choice if the data in your Excel workbook is constantly changing as the REST
API will always deliver the current state of the workbook without the need of saving it first.

Note: Currently, we only provide the GET methods to read the workbook. If you are also interested in
the POST methods to edit the workbook, let us know via GitHub issues. Some other things will also need
improvement, most notably exception handling.

202 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

30.2 Run the server

xlwings restapi run will run a Flask development server on http://127.0.0.1:5000. You can pro-
vide --host and --port as command line args and it also respects the Flask environment variables like
FLASK_ENV=development.

If you want to have more control, you can run the server directly with Flask, see the Flask docs for more
details:

set FLASK_APP=xlwings.rest.api
flask run

If you are on Mac, use export FLASK_APP=xlwings.rest.api instead of set FLASK_APP=xlwings.
rest.api.

For production, you can use any WSGI HTTP Server like gunicorn (on Mac) or waitress (on Mac/Windows)
to serve the API. For example, with gunicorn you would do: gunicorn xlwings.rest.api:api. Or with
waitress (adjust the host accordingly if you want to make the api accessible from outside of localhost):

from xlwings.rest.api import api
from waitress import serve
serve(wsgiapp, host='127.0.0.1', port=5000)

30.3 Indexing

While the Python API offers Python’s 0-based indexing (e.g. xw.books[0]) as well as Excel’s 1-based
indexing (e.g. xw.books(1)), the REST API only offers 0-based indexing, e.g. /books/0.

30.4 Range Options

The REST API accepts Range options as query parameters, see xlwings.Range.options() e.g.

/book/book1/sheets/0/range/A1?expand=table&transpose=true

Remember that options only affect the value property.

30.5 Endpoint overview

End-
point

Corresponds
to

Short Description

/book Book Finds your workbook across all open instances of Excel and will open it if it
can’t find it

/books Books Books collection of the active Excel instance
/apps Apps This allows you to specify the Excel instance you want to work with

30.2. Run the server 203

http://127.0.0.1:5000
http://flask.pocoo.org/docs/1.0/quickstart/
https://gunicorn.org/
https://docs.pylonsproject.org/projects/waitress/en/latest/

xlwings - Make Excel Fly!, Release dev

30.6 Endpoint details

30.6.1 /book

GET /book/<fullname_or_name>

Example response:

{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [
"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1",
"Sheet2"

]
}

GET /book/<fullname_or_name>/names

Example response:

{
"names": [
{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},
{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /book/<fullname_or_name>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

204 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

GET /book/<fullname_or_name>/names/<name>/range

Example response:

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",
"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [
1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /book/<fullname_or_name>/sheets

Example response:

{
"sheets": [
{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [
"Sheet1!myname1"

],
"pictures": [
"Picture 3"

],
"shapes": [

(continues on next page)

30.6. Endpoint details 205

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{
"charts": [],
"name": "Sheet2",
"names": [],
"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [
"Sheet1!myname1"

],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts

Example response:

{
"charts": [
{
"chart_type": "line",
"height": 211.0,

(continues on next page)

206 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names

Example response:

{
"names": [
{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/
range

Example response:

30.6. Endpoint details 207

xlwings - Make Excel Fly!, Release dev

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,
"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 14.25,
"value": [
[
null,
null

],
[
null,
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures

Example response:

208 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

{
"pictures": [
{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/pictures/
<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,

(continues on next page)

30.6. Endpoint details 209

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 0.0,
"value": [
[

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
(continues on next page)

210 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 0.0,
"value": [
[

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [
{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

},
{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",

(continues on next page)

30.6. Endpoint details 211

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"top": 0.0,
"type": "picture",
"width": 100.0

}
]

}

GET /book/<fullname_or_name>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

30.6.2 /books

GET /books

Example response:

{
"books": [
{
"app": 1104,
"fullname": "Book1",
"name": "Book1",
"names": [],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1"

]
},
{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [
"Sheet1!myname1",
"myname2"

(continues on next page)

212 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1",
"Sheet2"

]
},
{
"app": 1104,
"fullname": "Book4",
"name": "Book4",
"names": [],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1"

]
}

]
}

GET /books/<book_name_or_ix>

Example response:

{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [
"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1",
"Sheet2"

]
}

GET /books/<book_name_or_ix>/names

Example response:

{
"names": [
{
"name": "Sheet1!myname1",

(continues on next page)

30.6. Endpoint details 213

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"refers_to": "=Sheet1!B2:C3"
},
{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /books/<book_name_or_ix>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /books/<book_name_or_ix>/names/<name>/range

Example response:

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",
"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [
1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

214 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

GET /books/<book_name_or_ix>/sheets

Example response:

{
"sheets": [
{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [
"Sheet1!myname1"

],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{
"charts": [],
"name": "Sheet2",
"names": [],
"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [
"Sheet1!myname1"

],
"pictures": [
"Picture 3"

(continues on next page)

30.6. Endpoint details 215

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

Example response:

{
"charts": [
{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/<chart_name_or_ix>

Example response:

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

Example response:

{
"names": [
{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

(continues on next page)

216 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/<sheet_scope_name>/
range

Example response:

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,
"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [
2,
2

],
(continues on next page)

30.6. Endpoint details 217

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"size": 4,
"top": 14.25,
"value": [
[
null,
null

],
[
null,
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [
{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/
<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

Example response:

218 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 0.0,
"value": [
[

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

30.6. Endpoint details 219

xlwings - Make Excel Fly!, Release dev

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 0.0,
"value": [
[

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

Example response:

220 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

{
"shapes": [
{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

},
{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"type": "picture",
"width": 100.0

}
]

}

GET /books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

30.6.3 /apps

GET /apps

Example response:

{
"apps": [
{
"books": [
"Book1",
"C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",

(continues on next page)

30.6. Endpoint details 221

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"Book4"
],
"calculation": "automatic",
"display_alerts": true,
"pid": 1104,
"screen_updating": true,
"selection": "[Book1.xlsx]Sheet2!A1",
"version": "16.0",
"visible": true

},
{
"books": [
"Book2",
"Book5"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 7920,
"screen_updating": true,
"selection": "[Book5]Sheet2!A1",
"version": "16.0",
"visible": true

}
]

}

GET /apps/<pid>

Example response:

{
"books": [
"Book1",
"C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"Book4"

],
"calculation": "automatic",
"display_alerts": true,
"pid": 1104,
"screen_updating": true,
"selection": "[Book1.xlsx]Sheet2!A1",
"version": "16.0",
"visible": true

}

GET /apps/<pid>/books

222 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

Example response:

{
"books": [
{
"app": 1104,
"fullname": "Book1",
"name": "Book1",
"names": [],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1"

]
},
{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",
"name": "Book1.xlsx",
"names": [
"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1",
"Sheet2"

]
},
{
"app": 1104,
"fullname": "Book4",
"name": "Book4",
"names": [],
"selection": "Sheet2!A1",
"sheets": [
"Sheet1"

]
}

]
}

GET /apps/<pid>/books/<book_name_or_ix>

Example response:

{
"app": 1104,
"fullname": "C:\\Users\\felix\\DEV\\xlwings\\scripts\\Book1.xlsx",

(continues on next page)

30.6. Endpoint details 223

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"name": "Book1.xlsx",
"names": [
"Sheet1!myname1",
"myname2"

],
"selection": "Sheet2!A1",
"sheets": [

"Sheet1",
"Sheet2"

]
}

GET /apps/<pid>/books/<book_name_or_ix>/names

Example response:

{
"names": [
{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

},
{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/names/<name>

Example response:

{
"name": "myname2",
"refers_to": "=Sheet1!A1"

}

GET /apps/<pid>/books/<book_name_or_ix>/names/<name>/range

Example response:

{
"address": "A1",
"color": null,
"column": 1,
"column_width": 8.47,

(continues on next page)

224 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"count": 1,
"current_region": "A1:B2",
"formula": "=1+1.1",
"formula_array": "=1+1,1",
"height": 14.25,
"last_cell": "A1",
"left": 0.0,
"name": "myname2",
"number_format": "General",
"row": 1,
"row_height": 14.3,
"shape": [
1,
1

],
"size": 1,
"top": 0.0,
"value": 2.1,
"width": 51.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets

Example response:

{
"sheets": [
{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [
"Sheet1!myname1"

],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

},
{
"charts": [],

(continues on next page)

30.6. Endpoint details 225

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"name": "Sheet2",
"names": [],
"pictures": [],
"shapes": [],
"used_range": "A1"

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>

Example response:

{
"charts": [
"Chart 1"

],
"name": "Sheet1",
"names": [
"Sheet1!myname1"

],
"pictures": [
"Picture 3"

],
"shapes": [
"Chart 1",
"Picture 3"

],
"used_range": "A1:B2"

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts

Example response:

{
"charts": [
{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}
]

}

226 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/charts/
<chart_name_or_ix>

Example response:

{
"chart_type": "line",
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"width": 355.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names

Example response:

{
"names": [
{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/
<sheet_scope_name>

Example response:

{
"name": "Sheet1!myname1",
"refers_to": "=Sheet1!B2:C3"

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/names/
<sheet_scope_name>/range

Example response:

{
"address": "B2:C3",
"color": null,
"column": 2,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",

(continues on next page)

30.6. Endpoint details 227

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"formula": [
[

"",
""

],
[

"",
""

]
],
"formula_array": "",
"height": 28.5,
"last_cell": "C3",
"left": 51.0,
"name": "Sheet1!myname1",
"number_format": "General",
"row": 2,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 14.25,
"value": [
[
null,
null

],
[
null,
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures

Example response:

{
"pictures": [
{
"height": 100.0,
"left": 0.0,

(continues on next page)

228 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"name": "Picture 3",
"top": 0.0,
"width": 100.0

}
]

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/pictures/
<picture_name_or_ix>

Example response:

{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"width": 100.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,
"name": null,
"number_format": null,

(continues on next page)

30.6. Endpoint details 229

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"row": 1,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 0.0,
"value": [
[

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/range/<address>

Example response:

{
"address": "A1:B2",
"color": null,
"column": 1,
"column_width": 8.47,
"count": 4,
"current_region": "A1:B2",
"formula": [
[

"=1+1.1",
"a string"

],
[

"43395.0064583333",
""

]
],
"formula_array": null,
"height": 28.5,
"last_cell": "B2",
"left": 0.0,

(continues on next page)

230 Chapter 30. REST API

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"name": null,
"number_format": null,
"row": 1,
"row_height": 14.3,
"shape": [
2,
2

],
"size": 4,
"top": 0.0,
"value": [
[

2.1,
"a string"

],
[

"Mon, 22 Oct 2018 00:09:18 GMT",
null

]
],
"width": 102.0

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes

Example response:

{
"shapes": [
{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

},
{
"height": 100.0,
"left": 0.0,
"name": "Picture 3",
"top": 0.0,
"type": "picture",
"width": 100.0

}
]

(continues on next page)

30.6. Endpoint details 231

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

}

GET /apps/<pid>/books/<book_name_or_ix>/sheets/<sheet_name_or_ix>/shapes/
<shape_name_or_ix>

Example response:

{
"height": 211.0,
"left": 0.0,
"name": "Chart 1",
"top": 0.0,
"type": "chart",
"width": 355.0

}

232 Chapter 30. REST API

INDEX

A
activate() (xlwings.App method), 150
activate() (xlwings.Book method), 156
activate() (xlwings.Shape method), 180
activate() (xlwings.Sheet method), 162
active (xlwings.main.Apps property), 148
active (xlwings.main.Books property), 154
active (xlwings.main.Sheets property), 161
add() (xlwings.main.Apps method), 148
add() (xlwings.main.Books method), 154
add() (xlwings.main.Charts method), 181
add() (xlwings.main.Names method), 188
add() (xlwings.main.Pictures method), 184
add() (xlwings.main.Sheets method), 161
add() (xlwings.main.Tables method), 189
add_hyperlink() (xlwings.Range method), 167
address (xlwings.Range property), 167
api (xlwings.App property), 150
api (xlwings.Book property), 156
api (xlwings.Chart property), 182
api (xlwings.main.Characters property), 194
api (xlwings.main.Charts property), 182
api (xlwings.main.Font property), 193
api (xlwings.main.Names property), 188
api (xlwings.main.Note property), 189
api (xlwings.main.PageSetup property), 161
api (xlwings.main.Pictures property), 186
api (xlwings.main.Shapes property), 179
api (xlwings.main.Table property), 191
api (xlwings.Name property), 188
api (xlwings.Picture property), 186
api (xlwings.Range property), 167
api (xlwings.Shape property), 180
api (xlwings.Sheet property), 162
App (class in xlwings), 149
app (xlwings.Book property), 156
Apps (class in xlwings.main), 148

autofit() (xlwings.Range method), 167
autofit() (xlwings.RangeColumns method), 179
autofit() (xlwings.RangeRows method), 178
autofit() (xlwings.Sheet method), 162

B
bold (xlwings.main.Font property), 193
Book (class in xlwings), 155
book (xlwings.Sheet property), 162
Books (class in xlwings.main), 154
books (xlwings.App property), 150

C
calculate() (xlwings.App method), 150
calculation (xlwings.App property), 150
caller() (xlwings.Book class method), 156
cells (xlwings.Sheet property), 162
Characters (class in xlwings.main), 194
Chart (class in xlwings), 182
chart_type (xlwings.Chart property), 182
Charts (class in xlwings.main), 181
charts (xlwings.Sheet property), 163
clear() (xlwings.Range method), 167
clear() (xlwings.Sheet method), 163
clear_contents() (xlwings.Range method), 167
clear_contents() (xlwings.Sheet method), 163
clear_formats() (xlwings.Range method), 167
clear_formats() (xlwings.Sheet method), 163
close() (xlwings.Book method), 157
color (xlwings.main.Font property), 193
color (xlwings.Range property), 167
column (xlwings.Range property), 168
column_width (xlwings.Range property), 168
columns (xlwings.Range property), 169
copy() (xlwings.Range method), 169
copy() (xlwings.Sheet method), 163
copy_picture() (xlwings.Range method), 169
count (xlwings.main.Apps property), 148

233

xlwings - Make Excel Fly!, Release dev

count (xlwings.main.Charts property), 182
count (xlwings.main.Names property), 188
count (xlwings.main.Pictures property), 186
count (xlwings.main.Shapes property), 179
count (xlwings.Range property), 169
count (xlwings.RangeColumns property), 179
count (xlwings.RangeRows property), 178
current_region (xlwings.Range property), 169
cut_copy_mode (xlwings.App property), 150

D
data_body_range (xlwings.main.Table property),

191
delete() (xlwings.Chart method), 183
delete() (xlwings.main.Note method), 189
delete() (xlwings.Name method), 188
delete() (xlwings.Picture method), 186
delete() (xlwings.Range method), 169
delete() (xlwings.Shape method), 180
delete() (xlwings.Sheet method), 164
display_alerts (xlwings.App property), 150
display_name (xlwings.main.Table property), 191

E
enable_events (xlwings.App property), 150
end() (xlwings.Range method), 169
expand() (xlwings.Range method), 170

F
Font (class in xlwings.main), 193
font (xlwings.main.Characters property), 194
formula (xlwings.Range property), 170
formula2 (xlwings.Range property), 170
formula_array (xlwings.Range property), 171
fullname (xlwings.Book property), 157

G
get_address() (xlwings.Range method), 171

H
has_array (xlwings.Range property), 171
header_row_range (xlwings.main.Table property),

191
height (xlwings.Chart property), 183
height (xlwings.Picture property), 186
height (xlwings.Range property), 171
height (xlwings.Shape property), 180
hwnd (xlwings.App property), 151

hyperlink (xlwings.Range property), 172

I
Image (class in xlwings.pro.reports), 198
index (xlwings.Sheet property), 164
insert() (xlwings.Range method), 172
insert_row_range (xlwings.main.Table property),

191
interactive (xlwings.App property), 151
italic (xlwings.main.Font property), 193

J
json() (xlwings.Book method), 157

K
keys() (xlwings.main.Apps method), 149
kill() (xlwings.App method), 151

L
last_cell (xlwings.Range property), 172
left (xlwings.Chart property), 183
left (xlwings.Picture property), 186
left (xlwings.Range property), 173
left (xlwings.Shape property), 180
load() (in module xlwings), 147
lock_aspect_ratio (xlwings.Picture property),

187

M
macro() (xlwings.App method), 151
macro() (xlwings.Book method), 157
Markdown (class in xlwings.pro), 195
Markdown (class in xlwings.pro.reports), 198
MarkdownStyle (class in xlwings.pro), 195
MarkdownStyle (class in xlwings.pro.reports), 198
merge() (xlwings.Range method), 173
merge_area (xlwings.Range property), 173
merge_cells (xlwings.Range property), 173
module

xlwings, 147
xlwings.pro.reports, 198

N
Name (class in xlwings), 188
name (xlwings.Book property), 158
name (xlwings.Chart property), 183
name (xlwings.main.Font property), 193
name (xlwings.main.Table property), 191

234 Index

xlwings - Make Excel Fly!, Release dev

name (xlwings.Name property), 188
name (xlwings.Picture property), 187
name (xlwings.Range property), 173
name (xlwings.Shape property), 180
name (xlwings.Sheet property), 164
Names (class in xlwings.main), 187
names (xlwings.Book property), 158
names (xlwings.Sheet property), 164
Note (class in xlwings.main), 189
note (xlwings.Range property), 173
number_format (xlwings.Range property), 173

O
offset() (xlwings.Range method), 174
open() (xlwings.main.Books method), 154
options() (xlwings.Range method), 174

P
page_setup (xlwings.Sheet property), 164
PageSetup (class in xlwings.main), 161
parent (xlwings.Chart property), 183
parent (xlwings.main.Table property), 191
parent (xlwings.Picture property), 187
parent (xlwings.Shape property), 180
paste() (xlwings.Range method), 175
Picture (class in xlwings), 186
Pictures (class in xlwings.main), 184
pictures (xlwings.Sheet property), 164
pid (xlwings.App property), 152
print_area (xlwings.main.PageSetup property),

161
properties() (xlwings.App method), 152

Q
quit() (xlwings.App method), 152

R
Range (class in xlwings), 166
range (xlwings.main.Table property), 191
range() (xlwings.App method), 153
range() (xlwings.Sheet method), 164
RangeColumns (class in xlwings), 179
RangeRows (class in xlwings), 178
raw_value (xlwings.Range property), 175
refers_to (xlwings.Name property), 188
refers_to_range (xlwings.Name property), 189
render_template() (in module xl-

wings.pro.reports), 199

render_template() (xlwings.App method), 153
render_template() (xlwings.Book method), 158
render_template() (xlwings.Sheet method), 164
resize() (xlwings.main.Table method), 191
resize() (xlwings.Range method), 175
row (xlwings.Range property), 175
row_height (xlwings.Range property), 176
rows (xlwings.Range property), 176

S
save() (xlwings.Book method), 158
scale_height() (xlwings.Shape method), 180
scale_width() (xlwings.Shape method), 181
screen_updating (xlwings.App property), 153
select() (xlwings.Range method), 176
select() (xlwings.Sheet method), 165
selection (xlwings.App property), 153
selection (xlwings.Book property), 159
set_mock_caller() (xlwings.Book method), 159
set_source_data() (xlwings.Chart method), 183
Shape (class in xlwings), 180
shape (xlwings.Range property), 176
Shapes (class in xlwings.main), 179
shapes (xlwings.Sheet property), 165
Sheet (class in xlwings), 162
sheet (xlwings.Range property), 176
Sheets (class in xlwings.main), 161
sheets (xlwings.Book property), 159
show_autofilter (xlwings.main.Table property),

191
show_headers (xlwings.main.Table property), 191
show_table_style_column_stripes (xl-

wings.main.Table property), 191
show_table_style_first_column (xl-

wings.main.Table property), 191
show_table_style_last_column (xl-

wings.main.Table property), 192
show_table_style_row_stripes (xl-

wings.main.Table property), 192
show_totals (xlwings.main.Table property), 192
size (xlwings.main.Font property), 194
size (xlwings.Range property), 176
startup_path (xlwings.App property), 153
status_bar (xlwings.App property), 153

T
Table (class in xlwings.main), 191
table (xlwings.Range property), 176

Index 235

xlwings - Make Excel Fly!, Release dev

table_style (xlwings.main.Table property), 192
Tables (class in xlwings.main), 189
tables (xlwings.Sheet property), 165
text (xlwings.main.Characters property), 194
text (xlwings.main.Note property), 189
text (xlwings.Shape property), 181
to_pdf() (xlwings.Book method), 159
to_pdf() (xlwings.Chart method), 183
to_pdf() (xlwings.Range method), 176
to_pdf() (xlwings.Sheet method), 165
to_png() (xlwings.Chart method), 184
to_png() (xlwings.Range method), 177
top (xlwings.Chart property), 184
top (xlwings.Picture property), 187
top (xlwings.Range property), 177
top (xlwings.Shape property), 181
totals_row_range (xlwings.main.Table property),

192
type (xlwings.Shape property), 181

U
unmerge() (xlwings.Range method), 177
update() (xlwings.main.Table method), 192
update() (xlwings.Picture method), 187
used_range (xlwings.Sheet property), 166

V
value (xlwings.Range property), 177
version (xlwings.App property), 154
view() (in module xlwings), 147
visible (xlwings.App property), 154
visible (xlwings.Sheet property), 166

W
width (xlwings.Chart property), 184
width (xlwings.Picture property), 187
width (xlwings.Range property), 178
width (xlwings.Shape property), 181
wrap_text (xlwings.Range property), 178

X
xlwings

module, 147
xlwings.arg() (in module xlwings), 196
xlwings.func() (in module xlwings), 196
xlwings.pro.reports

module, 198
xlwings.ret() (in module xlwings), 197
xlwings.sub() (in module xlwings), 196

236 Index

	Video course
	Installation
	Prerequisites
	Installation
	Add-in
	Dependencies
	How to activate xlwings PRO
	Optional Dependencies
	Update
	Uninstall

	Quickstart
	1. Interacting with Excel from a Jupyter notebook
	2. Scripting: Automate/interact with Excel from Python
	3. Macros: Call Python from Excel
	4. UDFs: User Defined Functions (Windows only)

	Connect to a Book
	Python to Excel
	Excel to Python (RunPython)
	User Defined Functions (UDFs)

	Syntax Overview
	Active Objects
	Full qualification
	App context manager
	Range indexing/slicing
	Range Shortcuts
	Object Hierarchy

	Data Structures Tutorial
	Single Cells
	Lists
	Range expanding
	NumPy arrays
	Pandas DataFrames
	Pandas Series
	Chunking: Read/Write big DataFrames etc.

	Add-in & Settings
	Run main
	Installation
	User Settings
	Anaconda/Miniconda

	Making use of Environment Variables
	User Config: Ribbon/Config File
	Workbook Directory Config: Config file
	Workbook Config: xlwings.conf Sheet
	Alternative: Standalone VBA module

	RunPython
	xlwings add-in
	Call Python with “RunPython”
	Function Arguments and Return Values

	User Defined Functions (UDFs)
	One-time Excel preparations
	Workbook preparation
	A simple UDF
	Array formulas: Get efficient
	Number of array dimensions: ndim

	Array formulas with NumPy and Pandas
	@xw.arg and @xw.ret decorators
	Dynamic Array Formulas
	Docstrings
	The “caller” argument
	The “vba” keyword
	Macros
	Call UDFs from VBA
	Asynchronous UDFs

	Matplotlib & Plotly Charts
	Matplotlib
	Getting started
	Full integration with Excel
	Properties
	Getting a Matplotlib figure

	Plotly static charts
	Prerequisites
	How to use

	Jupyter Notebooks: Interact with Excel
	The view function
	The load function

	Command Line Client (CLI)
	Deployment
	Zip files
	RunFrozenPython

	OneDrive and SharePoint
	OneDrive (Personal)
	OneDrive for Business
	SharePoint (Online and On-Premises)
	Implementation Details & Limitations

	Troubleshooting
	Issue: dll not found
	Issue: Files that are saved on OneDrive or SharePoint cause an error to pop up

	Converters and Options
	Default Converter
	Built-in Converters
	Dictionary converter
	Numpy array converter
	Pandas Series converter
	Pandas DataFrame converter
	xw.Range and ‘raw’ converters

	Custom Converter

	Debugging
	RunPython
	UDF debug server

	Extensions
	In-Excel SQL

	Custom Add-ins
	Quickstart
	Changing the Ribbon menu
	Importing UDFs
	Configuration
	Installation
	Renaming your add-in
	Deployment

	Threading and Multiprocessing
	Threading
	Multiprocessing

	Missing Features
	Example: Workaround to use VBA’s Range.WrapText

	xlwings with other Office Apps
	How To
	Config

	xlwings PRO Overview
	PRO Features

	Remote Interpreter
	Why is this useful?
	Prerequisites
	Introduction
	Local Development with Desktop Excel
	Cloud-based development with Gitpod
	Local Development with Google Sheets or Excel on the web
	Part I: xlwings Server
	Part II: xlwings Client

	Configuration
	Configuration Examples: Function Arguments
	Configuration Examples: xlwings.conf sheet

	Production Deployment
	Triggers
	Limitations
	Roadmap

	xlwings Reports
	Quickstart
	Render Books and Sheets

	DataFrames
	Excel Tables
	Excel Charts
	Images
	Matplotlib and Plotly Plots
	Matplotlib
	Plotly

	Text
	Simple Text without Formatting
	Markdown Formatting

	Date and Time
	Number Format
	Frames: Multi-column Layout
	PDF Layout

	Markdown Formatting
	Releasing xlwings Tools
	Step 1: One-Click Installer
	Step 2: Release Command (CLI)
	Updating a Release
	Embedded Code Explained

	Permissioning of Code Execution
	Prerequisites
	Configuration
	GET request
	POST request
	Implementation Details & Limitations

	Python API
	Top-level functions
	Object model
	Apps
	App
	Books
	Book
	PageSetup
	Sheets
	Sheet
	Range
	RangeRows
	RangeColumns
	Shapes
	Shape
	Charts
	Chart
	Pictures
	Picture
	Names
	Name
	Note
	Tables
	Table
	Font
	Characters
	Markdown
	MarkdownStyle

	UDF decorators
	Reports

	REST API
	Quickstart
	Run the server
	Indexing
	Range Options
	Endpoint overview
	Endpoint details
	/book
	/books
	/apps

	Index

