
xlwings - Make Excel Fly!
Release dev

Zoomer Analytics LLC

May 06, 2023

GETTING STARTED

1 Quickstart 1
1.1 1. Interacting with Excel from a Jupyter notebook . 1
1.2 2. Scripting: Automate/interact with Excel from Python 1
1.3 3. Macros: Call Python from Excel . 2
1.4 4. UDFs: User Defined Functions (Windows only) . 3

2 Video course 5

3 Installation 7
3.1 Prerequisites . 7
3.2 xlwings Python package . 7
3.3 xlwings Excel Add-in . 8
3.4 Dependencies . 8
3.5 How to activate xlwings PRO . 8
3.6 Optional Dependencies . 9
3.7 Update . 9
3.8 Uninstall . 9

4 Connect to a Book 11
4.1 Python to Excel . 11
4.2 Excel to Python (RunPython) . 12
4.3 User Defined Functions (UDFs) . 12

5 Syntax Overview 13
5.1 Active Objects . 13
5.2 Full qualification . 14
5.3 App context manager . 14
5.4 Range indexing/slicing . 14
5.5 Range Shortcuts . 15
5.6 Object Hierarchy . 15

6 Data Structures Tutorial 17
6.1 Single Cells . 17
6.2 Lists . 18
6.3 Range expanding . 19
6.4 NumPy arrays . 19

i

6.5 Pandas DataFrames . 20
6.6 Pandas Series . 20
6.7 Chunking: Read/Write big DataFrames etc. 21

7 Add-in & Settings 23
7.1 Run main . 23
7.2 Installation . 24
7.3 User Settings . 24
7.4 Making use of Environment Variables . 25
7.5 Config Hierarchy . 25
7.6 User Config: Ribbon/Config File . 26
7.7 Directory Config: Config file . 27
7.8 Workbook Config: xlwings.conf Sheet . 27
7.9 Alternative: Standalone VBA module . 27

8 RunPython 29
8.1 xlwings add-in . 29
8.2 Call Python with “RunPython” . 29
8.3 Function Arguments and Return Values . 30

9 User Defined Functions (UDFs) 31
9.1 One-time Excel preparations . 31
9.2 Workbook preparation . 31
9.3 A simple UDF . 32
9.4 Array formulas: Get efficient . 33
9.5 Array formulas with NumPy and Pandas . 34
9.6 @xw.arg and @xw.ret decorators . 34
9.7 Dynamic Array Formulas . 35
9.8 Docstrings . 37
9.9 The “caller” argument . 37
9.10 The “vba” keyword . 37
9.11 Macros . 38
9.12 Call UDFs from VBA . 38
9.13 Asynchronous UDFs . 39

10 Matplotlib & Plotly Charts 41
10.1 Matplotlib . 41
10.2 Plotly static charts . 45

11 Jupyter Notebooks: Interact with Excel 47
11.1 The view function . 47
11.2 The load function . 48

12 Command Line Client (CLI) 49

13 Deployment 53
13.1 Zip files . 53
13.2 RunFrozenPython . 53

ii

14 OneDrive and SharePoint 55
14.1 OneDrive (Personal) . 55
14.2 OneDrive for Business . 56
14.3 SharePoint (Online and On-Premises) . 56
14.4 Implementation Details & Limitations . 57

15 Troubleshooting 59
15.1 Issue: dll not found . 59
15.2 Issue: Files that are saved on OneDrive or SharePoint cause an error to pop up 59
15.3 Issue: Python was not found; run without arguments to install from the Microsoft Store, or

disable this shortcut from Settings > Manage App Execution Aliases. 59

16 Converters and Options 61
16.1 Default Converter . 62
16.2 Built-in Converters . 67
16.3 Custom Converter . 71

17 Debugging 75
17.1 RunPython . 76
17.2 UDF debug server . 76

18 Extensions 79
18.1 In-Excel SQL . 79

19 Custom Add-ins 81
19.1 Quickstart . 81
19.2 Changing the Ribbon menu . 83
19.3 Importing UDFs . 83
19.4 Configuration . 83
19.5 Installation . 83
19.6 Renaming your add-in . 84
19.7 Deployment . 84

20 Threading and Multiprocessing 85
20.1 Threading . 85
20.2 Multiprocessing . 86

21 Missing Features 89
21.1 Example: Workaround to use VBA’s Range.WrapText 89

22 xlwings with other Office Apps 91
22.1 How To . 91
22.2 Config . 92

23 License Key 93
23.1 How to get a license key . 93
23.2 Activate a developer key . 94
23.3 Setting developer keys or deploy keys as environment variable 94
23.4 Generate a deploy key . 94

iii

23.5 Updating the deploy key in a workbook via the “xlwings release” command 94
23.6 Updating the deploy key in a workbook manually . 95
23.7 Setting the license key in code . 95

24 1-click Installer/Embedded Code 97
24.1 Step 1: One-Click Installer . 97
24.2 Step 2: Release Command (CLI) . 100
24.3 Updating a Release . 101
24.4 Embedded Code Explained . 101

25 xlwings Reader 105
25.1 Reading a specific range . 105
25.2 Reading an entire sheet . 106
25.3 Converters: DataFrames etc. 106
25.4 Named Ranges . 106
25.5 Dynamic Ranges . 107
25.6 Cell errors . 107
25.7 Limitations . 107

26 xlwings Reports 109
26.1 Quickstart . 109
26.2 Components and Filters . 112
26.3 Markdown Formatting . 133

27 xlwings Server 137
27.1 xlwings Server: VBA, Office Scripts, Google Apps Script 137
27.2 Office.js Add-ins . 151
27.3 Office.js Custom Functions . 165
27.4 Server Authentication . 178

28 Changelog 185
28.1 v0.30.6 (May 5, 2023) . 185
28.2 v0.30.5 (Apr 25, 2023) . 185
28.3 v0.30.4 (Mar 31, 2023) . 185
28.4 v0.30.3 (Mar 26, 2023) . 186
28.5 v0.30.2 (Mar 16, 2023) . 186
28.6 v0.30.1 (Mar 6, 2023) . 186
28.7 v0.30.0 (Mar 2, 2023) . 186
28.8 v0.29.1 (Feb 5, 2023) . 186
28.9 v0.29.0 (Jan 29, 2023) . 187
28.10 v0.28.9 (Jan 21, 2023) . 187
28.11 v0.28.8 (Jan 13, 2023) . 187
28.12 v0.28.7 (Dec 27, 2022) . 187
28.13 v0.28.6 (Dec 15, 2022) . 187
28.14 v0.28.4 and v0.28.5 (Oct 29, 2022) . 188
28.15 v0.28.3 (Oct 21, 2022) . 188
28.16 v0.28.2 (Oct 17, 2022) . 188
28.17 v0.28.1 (Oct 10, 2022) . 189

iv

28.18 v0.28.0 (Oct 4, 2022) . 190
28.19 v0.27.15 (Sep 16, 2022) . 190
28.20 v0.27.14 (Aug 26, 2022) . 190
28.21 v0.27.13 (Aug 22, 2022) . 191
28.22 v0.27.12 (Aug 8, 2022) . 191
28.23 v0.27.11 (Jul 6, 2022) . 191
28.24 v0.27.10 (Jun 8, 2022) . 191
28.25 v0.27.9 (Jun 4, 2022) . 192
28.26 v0.27.8 (May 22, 2022) . 192
28.27 v0.27.7 (May 1, 2022) . 192
28.28 v0.27.6 (Apr 11, 2022) . 192
28.29 v0.27.5 (Apr 1, 2022) . 193
28.30 v0.27.4 (Mar 29, 2022) . 193
28.31 v0.27.3 (Mar 18, 2022) . 193
28.32 v0.27.2 (Mar 11, 2022) . 193
28.33 v0.27.0 and v0.27.1 (Mar 8, 2022) . 194
28.34 v0.26.3 (Feb 19, 2022) . 194
28.35 v0.26.2 (Feb 10, 2022) . 194
28.36 v0.26.0 and v0.26.1 (Feb 1, 2022) . 195
28.37 Older Releases . 195

29 License 245
29.1 xlwings (Open Source) . 245
29.2 xlwings PRO . 245
29.3 Third-party Open Source Licenses . 245

30 Open Source Licenses 247
30.1 pywin32 (used for interactive mode on Windows) . 247
30.2 psutil (used for interactive mode on macOS) . 249
30.3 Appscript (used for interactive mode on macOS) . 249
30.4 Mistune . 250
30.5 VBA-Dictionary (used in VBA add-in & modules) . 251
30.6 VBA-Web (used in VBA add-in & modules) . 251
30.7 watchgod (used in xlwings.exe) . 252
30.8 msal (used in xlwings.exe) . 252
30.9 core-js (used in xlwings.js) . 253
30.10 Bootstrap (used in xlwings-alert.html in connection with xlwings.js) 253
30.11 bootstrap-ie11 (used in xlwings-alert.html in connection with xlwings.js) 254
30.12 Webpack (used in xlwings.js) . 254

31 Top-level functions 255
31.1 Parameters . 255
31.2 Examples . 255
31.3 Parameters . 256
31.4 Examples . 256

32 UDF decorators 257

v

33 App 259
33.1 Parameters . 259

34 Apps 267

35 Book 269
35.1 Parameters . 269

36 Books 277
36.1 Parameters . 277
36.2 Returns . 278

37 Characters 279

38 Chart 281
38.1 Arguments . 282
38.2 Parameters . 282
38.3 Parameters . 283

39 Charts 285
39.1 Arguments . 285
39.2 Returns . 286
39.3 Examples . 286

40 Font 287

41 Name 289

42 Names 291
42.1 Parameters . 291
42.2 Returns . 291

43 Note 293
43.1 Examples . 293

44 PageSetup 295
44.1 Examples . 295

45 Picture 297
45.1 Arguments . 298

46 Pictures 299
46.1 Arguments . 299
46.2 Returns . 300
46.3 Examples . 300

47 Range 303
47.1 Arguments . 303
47.2 Examples . 303

vi

48 RangeColumns 319
48.1 Example . 319

49 RangeRows 321
49.1 Example . 321

50 Reports 323
50.1 Arguments . 323
50.2 Arguments . 323
50.3 Examples . 324
50.4 Parameters . 325
50.5 Returns . 325
50.6 Examples . 325

51 Shape 327

52 Shapes 329

53 Sheet 331
53.1 Arguments . 331
53.2 Examples . 332
53.3 Arguments . 332
53.4 Returns . 333
53.5 Examples . 333
53.6 Parameters . 334
53.7 Examples . 334
53.8 Parameters . 335
53.9 Parameters . 335
53.10 Examples . 335
53.11 Returns . 336

54 Sheets 337
54.1 Parameters . 337
54.2 Returns . 338

55 Table 339
55.1 Arguments . 340
55.2 Returns . 341
55.3 Examples . 341

56 Tables 343
56.1 Arguments . 343
56.2 Returns . 344
56.3 Examples . 344

Index 345

vii

viii

CHAPTER

ONE

QUICKSTART

This guide assumes you have xlwings already installed. If that’s not the case, head over to Installation.

1.1 1. Interacting with Excel from a Jupyter notebook

If you’re just interested in getting a pandas DataFrame in and out of your Jupyter notebook, you can use the
view and load functions, see Jupyter Notebooks: Interact with Excel.

1.2 2. Scripting: Automate/interact with Excel from Python

Establish a connection to a workbook:

>>> import xlwings as xw
>>> wb = xw.Book() # this will open a new workbook
>>> wb = xw.Book('FileName.xlsx') # connect to a file that is open or in the␣
→˓current working directory
>>> wb = xw.Book(r'C:\path\to\file.xlsx') # on Windows: use raw strings to␣
→˓escape backslashes

If you have the same file open in two instances of Excel, you need to fully qualify it and include the app
instance. You will find your app instance key (the PID) via xw.apps.keys():

>>> xw.apps[10559].books['FileName.xlsx']

Instantiate a sheet object:

>>> sheet = wb.sheets['Sheet1']

Reading/writing values to/from ranges is as easy as:

>>> sheet['A1'].value = 'Foo 1'
>>> sheet['A1'].value
'Foo 1'

There are many convenience features available, e.g. Range expanding:

1

xlwings - Make Excel Fly!, Release dev

>>> sheet['A1'].value = [['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]
>>> sheet['A1'].expand().value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Powerful converters handle most data types of interest, including Numpy arrays and Pandas DataFrames in
both directions:

>>> import pandas as pd
>>> df = pd.DataFrame([[1,2], [3,4]], columns=['a', 'b'])
>>> sheet['A1'].value = df
>>> sheet['A1'].options(pd.DataFrame, expand='table').value

a b
0.0 1.0 2.0
1.0 3.0 4.0

Matplotlib figures can be shown as pictures in Excel:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
[<matplotlib.lines.Line2D at 0x1071706a0>]
>>> sheet.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Workbook4]Sheet1>>

1.3 3. Macros: Call Python from Excel

You can call Python functions either by clicking the Run button (new in v0.16) in the add-in or from VBA
using the RunPython function:

The Run button expects a function called main in a Python module with the same name as your workbook.
The great thing about that approach is that you don’t need your workbooks to be macro-enabled, you can
save it as xlsx.

If you want to call any Python function no matter in what module it lives or what name it has, use RunPython:

Sub HelloWorld()
RunPython "import hello; hello.world()"

End Sub

Note: Per default, RunPython expects hello.py in the same directory as the Excel file with the same name,
but you can change both of these things: if your Python file is an a different folder, add that folder to the
PYTHONPATH in the config. If the file has a different name, change the RunPython command accordingly.

Refer to the calling Excel book by using xw.Book.caller():

2 Chapter 1. Quickstart

xlwings - Make Excel Fly!, Release dev

hello.py
import numpy as np
import xlwings as xw

def world():
wb = xw.Book.caller()
wb.sheets[0]['A1'].value = 'Hello World!'

To make this run, you’ll need to have the xlwings add-in installed or have the workbooks setup in the stan-
dalone mode. The easiest way to get everything set up is to use the xlwings command line client from either
a command prompt on Windows or a terminal on Mac: xlwings quickstart myproject.

For details about the addin, see Add-in & Settings.

1.4 4. UDFs: User Defined Functions (Windows only)

Writing a UDF in Python is as easy as:

import xlwings as xw

@xw.func
def hello(name):

return f'Hello {name}'

Converters can be used with UDFs, too. Again a Pandas DataFrame example:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame)
def correl2(x):

x arrives as DataFrame
return x.corr()

Import this function into Excel by clicking the import button of the xlwings add-in: for a step-by-step tutorial,
see User Defined Functions (UDFs).

1.4. 4. UDFs: User Defined Functions (Windows only) 3

xlwings - Make Excel Fly!, Release dev

4 Chapter 1. Quickstart

CHAPTER

TWO

VIDEO COURSE

Those who prefer a didactically structured video course over this documentation should have a look at our
video course:

https://training.xlwings.org/p/xlwings

It’s also a great way to support the ongoing development of xlwings :)

5

https://training.xlwings.org/p/xlwings

xlwings - Make Excel Fly!, Release dev

6 Chapter 2. Video course

CHAPTER

THREE

INSTALLATION

3.1 Prerequisites

• xlwings (Open Source) requires an installation of Excel and therefore only works on Windows and
macOS. Note that macOS currently does not support UDFs.

• xlwings PRO offers additional features:

– File Reader (new in v0.28.0): Runs additionally on Linux and doesn’t require an installation
of Excel.

– xlwings Server (new in v0.26.0). Runs additionally on Linux and doesn’t require a local
installation of Python. Works with Desktop Excel on Windows and macOS as well as with
Excel on the web and Google Sheets.

• xlwings requires at least Python 3.7.

Here are previous versions of xlwings that support older versions of Python:

• Python 3.6: 0.25.3

• Python 3.5: 0.19.5

• Python 2.7: 0.16.6

3.2 xlwings Python package

xlwings comes pre-installed with

• Anaconda (Windows and macOS)

• WinPython (Windows only) Make sure not to take the dot version as this only contains Python.

If you are new to Python or have trouble installing xlwings, one of these distributions is highly recommended.
Otherwise, you can also install it with pip:

pip install xlwings

or conda:

7

https://www.anaconda.com/products/individual
https://winpython.github.io

xlwings - Make Excel Fly!, Release dev

conda install xlwings

Note that the official conda package might be a few releases behind. You can, however, use the conda-forge
channel (replace install with upgrade if xlwings is already installed):

conda install -c conda-forge xlwings

3.3 xlwings Excel Add-in

To install the add-in, run the following command:

xlwings addin install

To automate Excel from Python, you don’t need an add-in. Also, you can use a single file VBA module
(standalone workbook) instead of the add-in. For more details, see Add-in & Settings.

Note: The add-in needs to be the same version as the Python package. Make sure to run xlwings add
install again after upgrading the xlwings package.

Note: When you are on macOS and are using the VBA standalone module instead of the add-in, you need
to run $ xlwings runpython install once.

3.4 Dependencies

For automating Excel, you’ll need the following dependencies:

• Windows: pywin32

• Mac: psutil, appscript

The dependencies are automatically installed via conda or pip. If you would like to install xlwings without
dependencies, you can run pip install xlwings --no-deps.

3.5 How to activate xlwings PRO

See xlwings PRO.

8 Chapter 3. Installation

xlwings - Make Excel Fly!, Release dev

3.6 Optional Dependencies

• NumPy

• pandas

• Matplotlib

• Pillow

• Jinja2 (for xlwings.reports)

These packages are not required but highly recommended as they play very nicely with xlwings. They are
all pre-installed with Anaconda. With pip, you can install xlwings with all optional dependencies as follows:

pip install "xlwings[all]"

3.7 Update

To update to the latest xlwings version, run the following in a command prompt:

pip install --upgrade xlwings

or:

conda update -c conda-forge xlwings

Make sure to keep your version of the Excel add-in in sync with your Python package by running the following
(make sure to close Excel first):

xlwings addin install

3.8 Uninstall

To uninstall xlwings completely, first uninstall the add-in, then uninstall the xlwings package using the same
method (pip or conda) that you used for installing it:

xlwings addin remove

Then

pip uninstall xlwings

or:

conda remove xlwings

Finally, manually remove the .xlwings directory in your home folder if it exists.

3.6. Optional Dependencies 9

xlwings - Make Excel Fly!, Release dev

10 Chapter 3. Installation

CHAPTER

FOUR

CONNECT TO A BOOK

4.1 Python to Excel

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances and
returns an error, should the same book be open in multiple instances. To connect to a book in the active app
instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or something like xw.apps[10559] for existing apps, get␣
→˓the available PIDs via xw.apps.keys()
>>> app.books['Book1']

Note that you usually should use App as a context manager as this will make sure that the Excel instance is
closed and cleaned up again properly:

with xw.App() as app:
book = app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()
Unsaved book xw.Book('Book1') xw.books['Book1']
Book by
(full)name

xw.Book(r'C:/path/to/file.
xlsx')

xw.books.open(r'C:/path/to/file.
xlsx')

Note: When specifying file paths on Windows, you should either use raw strings by putting an r in front of
the string or use double back-slashes like so: C:\\path\\to\\file.xlsx.

11

xlwings - Make Excel Fly!, Release dev

4.2 Excel to Python (RunPython)

To reference the calling book when using RunPython in VBA, use xw.Book.caller(), see Call Python
with “RunPython”. Check out the section about Debugging to see how you can call a script from both
sides, Python and Excel, without the need to constantly change between xw.Book.caller() and one of the
methods explained above.

4.3 User Defined Functions (UDFs)

Unlike RunPython, UDFs don’t need a call to xw.Book.caller(), see User Defined Functions (UDFs).
You’ll usually use the caller argument which returns the xlwings range object from where you call the
function.

12 Chapter 4. Connect to a Book

CHAPTER

FIVE

SYNTAX OVERVIEW

The xlwings object model is very similar to the one used by VBA.

All code samples below depend on the following import:

>>> import xlwings as xw

5.1 Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sheet = xw.sheets.active # in active book
>>> sheet = wb.sheets.active # in specific book

A Range can be instantiated with A1 notation, a tuple of Excel’s 1-based indices, or a named range:

import xlwings as xw
sheet1 = xw.Book("MyBook.xlsx").sheets[0]

sheet1.range("A1")
sheet1.range("A1:C3")
sheet1.range((1,1))
sheet1.range((1,1), (3,3))
sheet1.range("NamedRange")

Or using index/slice notation
sheet1["A1"]
sheet1["A1:C3"]
sheet1[0, 0]

(continues on next page)

13

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

sheet1[0:4, 0:4]
sheet1["NamedRange"]

5.2 Full qualification

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based
indexing/slicing. As an example, the following expressions all reference the same range:

xw.apps[763].books[0].sheets[0].range('A1')
xw.apps(10559).books(1).sheets(1).range('A1')
xw.apps[763].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(10559).books('Book1').sheets('Sheet1').range('A1')

Note that the apps keys are different for you as they are the process IDs (PID). You can get the list of your
PIDs via xw.apps.keys().

5.3 App context manager

If you want to open a new Excel instance via App(), you usually should use App as a context manager as this
will make sure that the Excel instance is closed and cleaned up again properly:

with xw.App() as app:
book = app.books['Book1']

5.4 Range indexing/slicing

Range objects support indexing and slicing, a few examples:

>>> myrange = xw.Book().sheets[0].range('A1:D5')
>>> myrange[0, 0]
<Range [Workbook1]Sheet1!A1>
>>> myrange[1]
<Range [Workbook1]Sheet1!B1>
>>> myrange[:, 3:]
<Range [Workbook1]Sheet1!D1:D5>
>>> myrange[1:3, 1:3]
<Range [Workbook1]Sheet1!B2:C3>

14 Chapter 5. Syntax Overview

xlwings - Make Excel Fly!, Release dev

5.5 Range Shortcuts

Sheet objects offer a shortcut for range objects by using index/slice notation on the sheet object. This evaluates
to either sheet.range or sheet.cells depending on whether you pass a string or indices/slices:

>>> sheet = xw.Book().sheets['Sheet1']
>>> sheet['A1']
<Range [Book1]Sheet1!A1>
>>> sheet['A1:B5']
<Range [Book1]Sheet1!A1:B5>
>>> sheet[0, 1]
<Range [Book1]Sheet1!B1>
>>> sheet[:10, :10]
<Range [Book1]Sheet1!A1:J10>

5.6 Object Hierarchy

The following shows an example of the object hierarchy, i.e. how to get from an app to a range object and all
the way back:

>>> myrange = xw.apps[10559].books[0].sheets[0].range('A1')
>>> myrange.sheet.book.app
<Excel App 10559>

5.5. Range Shortcuts 15

xlwings - Make Excel Fly!, Release dev

16 Chapter 5. Syntax Overview

CHAPTER

SIX

DATA STRUCTURES TUTORIAL

This tutorial gives you a quick introduction to the most common use cases and default behaviour of xlwings
when reading and writing values. For an in-depth documentation of how to control the behavior using the
options method, have a look at Converters and Options.

All code samples below depend on the following import:

>>> import xlwings as xw

6.1 Single Cells

Single cells are by default returned either as float, unicode, None or datetime objects, depending on
whether the cell contains a number, a string, is empty or represents a date:

>>> import datetime as dt
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = 1
>>> sheet['A1'].value
1.0
>>> sheet['A2'].value = 'Hello'
>>> sheet['A2'].value
'Hello'
>>> sheet['A3'].value is None
True
>>> sheet['A4'].value = dt.datetime(2000, 1, 1)
>>> sheet['A4'].value
datetime.datetime(2000, 1, 1, 0, 0)

17

xlwings - Make Excel Fly!, Release dev

6.2 Lists

• 1d lists: Ranges that represent rows or columns in Excel are returned as simple lists, which means that
once they are in Python, you’ve lost the information about the orientation. If that is an issue, the next
point shows you how to preserve this info:

>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1],[2],[3],[4],[5]] # Column orientation (nested␣
→˓list)
>>> sheet['A1:A5'].value
[1.0, 2.0, 3.0, 4.0, 5.0]
>>> sheet['A1'].value = [1, 2, 3, 4, 5]
>>> sheet['A1:E1'].value
[1.0, 2.0, 3.0, 4.0, 5.0]

To force a single cell to arrive as list, use:

>>> sheet['A1'].options(ndim=1).value
[1.0]

Note: To write a list in column orientation to Excel, use transpose: sheet.range('A1').
options(transpose=True).value = [1,2,3,4]

• 2d lists: If the row or column orientation has to be preserved, set ndim in the Range options. This will
return the Ranges as nested lists (“2d lists”):

>>> sheet['A1:A5'].options(ndim=2).value
[[1.0], [2.0], [3.0], [4.0], [5.0]]
>>> sheet['A1:E1'].options(ndim=2).value
[[1.0, 2.0, 3.0, 4.0, 5.0]]

• 2 dimensional Ranges are automatically returned as nested lists. When assigning (nested) lists to a
Range in Excel, it’s enough to just specify the top left cell as target address. This sample also makes
use of index notation to read the values back into Python:

>>> sheet['A10'].value = [['Foo 1', 'Foo 2', 'Foo 3'], [10, 20, 30]]
>>> sheet.range((10,1),(11,3)).value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

Note: Try to minimize the number of interactions with Excel. It is always more efficient to
do sheet.range('A1').value = [[1,2],[3,4]] than sheet.range('A1').value = [1, 2] and
sheet.range('A2').value = [3, 4].

18 Chapter 6. Data Structures Tutorial

xlwings - Make Excel Fly!, Release dev

6.3 Range expanding

You can get the dimensions of Excel Ranges dynamically through either the method expand or through the
expand keyword in the options method. While expand gives back an expanded Range object, options are
only evaluated when accessing the values of a Range. The difference is best explained with an example:

>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1,2], [3,4]]
>>> range1 = sheet['A1'].expand('table') # or just .expand()
>>> range2 = sheet['A1'].options(expand='table')
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sheet['A3'].value = [5, 6]
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

'table' expands to 'down' and 'right', the other available options which can be used for column or row
only expansion, respectively.

Note: Using expand() together with a named Range as top left cell gives you a flexible setup in Excel: You
can move around the table and change its size without having to adjust your code, e.g. by using something
like sheet.range('NamedRange').expand().value.

6.4 NumPy arrays

NumPy arrays work similar to nested lists. However, empty cells are represented by nan instead of None. If
you want to read in a Range as array, set convert=np.array in the options method:

>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = np.eye(3)
>>> sheet['A1'].options(np.array, expand='table').value
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

6.3. Range expanding 19

xlwings - Make Excel Fly!, Release dev

6.5 Pandas DataFrames

>>> sheet = xw.Book().sheets[0]
>>> df = pd.DataFrame([[1.1, 2.2], [3.3, None]], columns=['one', 'two'])
>>> df

one two
0 1.1 2.2
1 3.3 NaN
>>> sheet['A1'].value = df
>>> sheet['A1:C3'].options(pd.DataFrame).value

one two
0 1.1 2.2
1 3.3 NaN
options: work for reading and writing
>>> sheet['A5'].options(index=False).value = df
>>> sheet['A9'].options(index=False, header=False).value = df

6.6 Pandas Series

>>> import pandas as pd
>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.], name='myseries')
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64
>>> sheet['A1'].value = s
>>> sheet['A1:B7'].options(pd.Series).value
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64

Note: You only need to specify the top left cell when writing a list, a NumPy array or a Pandas DataFrame
to Excel, e.g.: sheet['A1'].value = np.eye(10)

20 Chapter 6. Data Structures Tutorial

xlwings - Make Excel Fly!, Release dev

6.7 Chunking: Read/Write big DataFrames etc.

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a
memory error. The ideal chunksize will depend on your system and size of the array, so you will have to
try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

6.7. Chunking: Read/Write big DataFrames etc. 21

xlwings - Make Excel Fly!, Release dev

22 Chapter 6. Data Structures Tutorial

CHAPTER

SEVEN

ADD-IN & SETTINGS

The xlwings add-in is the preferred way to be able to use the Run main button, RunPython or UDFs. Note
that you don’t need an add-in if you just want to manipulate Excel by running a Python script.

Note: The ribbon of the add-in is compatible with Excel >= 2007 on Windows and >= 2016 on macOS. On
macOS, all UDF related functionality is not available.

Note: The add-in is password protected with the password xlwings. For debugging or to add new exten-
sions, you need to unprotect it.

7.1 Run main

New in version 0.16.0.

The Run main button is the easiest way to run your Python code: It runs a function called main in a Python
module that has the same name as your workbook. This allows you to save your workbook as xlsx without
enabling macros. The xlwings quickstart command will create a workbook that will automatically work
with the Run button.

23

xlwings - Make Excel Fly!, Release dev

7.2 Installation

To install the add-in, use the command line client:

xlwings addin install

Technically, this copies the add-in from Python’s installation directory to Excel’s XLSTART folder. Then,
to use RunPython or UDFs in a workbook, you need to set a reference to xlwings in the VBA editor, see
screenshot (Windows: Tools > References..., Mac: it’s on the lower left corner of the VBA editor).
Note that when you create a workbook via xlwings quickstart, the reference should already be set.

7.3 User Settings

When you install the add-in for the first time, it will get auto-configured and therefore, a quickstart project
should work out of the box. For fine-tuning, here are the available settings:

• Interpreter: This is the path to the Python interpreter. This works also with virtual or conda envs
on Mac. If you use conda envs on Windows, then leave this empty and use Conda Path and Conda
Env below instead. Examples: "C:\Python39\pythonw.exe" or "/usr/local/bin/python3.
9". Note that in the settings, this is stored as Interpreter_Win or Interpreter_Mac, respectively,
see below!

• PYTHONPATH: If the source file of your code is not found, add the path to its directory here.

• Conda Path: If you are on Windows and use Anaconda or Miniconda, then type here the path to
your installation, e.g. C:\Users\Username\Miniconda3 or %USERPROFILE%\Anaconda. NOTE
that you need at least conda 4.6! You also need to set Conda Env, see next point.

24 Chapter 7. Add-in & Settings

xlwings - Make Excel Fly!, Release dev

• Conda Env: If you are on Windows and use Anaconda or Miniconda, type here the name of your
conda env, e.g. base for the base installation or myenv for a conda env with the name myenv.

• UDF Modules: Names of Python modules (without .py extension) from which the UDFs are being im-
ported. Separate multiple modules by “;”. Example: UDF_MODULES = "common_udfs;myproject"
The default imports a file in the same directory as the Excel spreadsheet with the same name but ending
in .py.

• Debug UDFs: Check this box if you want to run the xlwings COM server manually for debugging, see
Debugging.

• RunPython: Use UDF Server: Uses the same COM Server for RunPython as for UDFs. This will
be faster, as the interpreter doesn’t shut down after each call.

• Restart UDF Server: This restarts the UDF Server/Python interpreter.

• Show Console: Check the box in the ribbon or set the config to TRUE if you want the command prompt
to pop up. This currently only works on Windows.

• ADD_WORKBOOK_TO_PYTHONPATH: Uncheck this box to not automatically add the directory of
your workbook to the PYTHONPATH. This can be helpful if you experience issues with
OneDrive/SharePoint: uncheck this box and provide the path where your source file is manually via
the PYTHONPATH setting.

7.3.1 Anaconda/Miniconda

If you use Anaconda or Miniconda on Windows, you will need to set your Conda Path and Conda Env
settings, as you will otherwise get errors when using NumPy etc. In return, leave Interpreter empty.

7.4 Making use of Environment Variables

With environment variables, you can set dynamic paths e.g. to your interpreter or PYTHONPATH:

• On Windows, you can use all environment variables like so: %USERPROFILE%\Anaconda.

• On macOS, the following special variables are supported: $HOME, $APPLICATIONS, $DOCUMENTS,
$DESKTOP.

7.5 Config Hierarchy

xlwings looks for settings in the following locations and order:

• Workbook configuration

First, xlwings looks for a sheet called xlwings.conf. This is the recommended way to configure
your workbook for deployment as you don’t have to handle an additional config file. When you run the
quickstart command, it will create a sample configuration on a sheet called _xlwings.conf: remove
the leading underscore in the name to activate it. If you don’t want to use it, feel free to delete the
sheet.

7.4. Making use of Environment Variables 25

xlwings - Make Excel Fly!, Release dev

• Directory configuration

Next, xlwings looks for a file called xlwings.conf in the same directory as your Excel workbook.

• User configuration

Finally, xlwings looks for a file called xlwings.conf in the .xlwings folder in the user’s home
directory. Normally, you don’t edit this file directly—instead, it is created and edited by the add-in
whenever you change a setting.

You will find more details about the each configuration type below.

Source: The section “Config Hierarchy” is taken from “Python for Excel by Felix Zumstein (O’Reilly).
Copyright 2021 Zoomer Analytics LLC, 978-1-492-08100-5.”

7.6 User Config: Ribbon/Config File

The settings in the xlwings Ribbon are stored in a config file that can also be manipulated externally. The
location is

• Windows: .xlwings\xlwings.conf in your home folder, that is usually C:\Users\<username>

• macOS: ~/Library/Containers/com.microsoft.Excel/Data/xlwings.conf

The format is as follows (currently the keys are required to be all caps) - note the OS specific Interpreter
settings!

"INTERPRETER_WIN","C:\path\to\python.exe"
"INTERPRETER_MAC","/path/to/python"
"PYTHONPATH",""
"ADD_WORKBOOK_TO_PYTHONPATH",""
"CONDA PATH",""
"CONDA ENV",""
"UDF MODULES",""
"DEBUG UDFS",""
"USE UDF SERVER",""
"SHOW CONSOLE",""
"ONEDRIVE_CONSUMER_WIN",""
"ONEDRIVE_CONSUMER_WIN",""
"ONEDRIVE_COMMERCIAL_WIN",""
"ONEDRIVE_COMMERCIAL_MAC",""
"SHAREPOINT_WIN",""
"SHAREPOINT_MAC",""

Note: The ONEDRIVE_WIN/_MAC setting has to be edited directly in the file, there is currently no possibility
to edit it via the ribbon. Usually, it is only required if you are either on macOS or if your environment
variables on Windows are not correctly set or if you have a private and corporate location and don’t want to
go with the default one. ONEDRIVE_WIN/_MAC has to point to the root folder of your local OneDrive folder.

26 Chapter 7. Add-in & Settings

xlwings - Make Excel Fly!, Release dev

7.7 Directory Config: Config file

The global settings of the Ribbon/Config file can be overridden for one or more workbooks by creating a
xlwings.conf file in the workbook’s directory.

Note: Workbook directory config files are not supported if your workbook is stored on SharePoint or
OneDrive.

7.8 Workbook Config: xlwings.conf Sheet

Workbook specific settings will override global (Ribbon) and workbook directory config files: Workbook
specific settings are set by listing the config key/value pairs in a sheet with the name xlwings.conf. When
you create a new project with xlwings quickstart, it’ll already have such a sheet but you need to rename
it from _xlwings.conf to xlwings.conf to make it active.

7.9 Alternative: Standalone VBA module

Sometimes, it might be useful to run xlwings code without having to install an add-in first. To do so,
you need to use the standalone option when creating a new project: xlwings quickstart myproject
--standalone.

This will add the content of the add-in as a single VBA module so you don’t need to set a reference to the
add-in anymore. It will also include Dictionary.cls as this is required on macOS. It will still read in the
settings from your xlwings.conf if you don’t override them by using a sheet with the name xlwings.conf.

7.7. Directory Config: Config file 27

xlwings - Make Excel Fly!, Release dev

28 Chapter 7. Add-in & Settings

CHAPTER

EIGHT

RUNPYTHON

8.1 xlwings add-in

To get access to Run main (new in v0.16) button or the RunPython VBA function, you’ll need the xlwings
addin (or VBA module), see Add-in & Settings.

For new projects, the easiest way to get started is by using the command line client with the quickstart
command, see Command Line Client (CLI) for details:

$ xlwings quickstart myproject

8.2 Call Python with “RunPython”

In the VBA Editor (Alt-F11), write the code below into a VBA module. xlwings quickstart automat-
ically adds a new module with a sample call. If you rather want to start from scratch, you can add a new
module via Insert > Module.

Sub HelloWorld()
RunPython "import hello; hello.world()"

End Sub

This calls the following code in hello.py:

hello.py
import numpy as np
import xlwings as xw

def world():
wb = xw.Book.caller()
wb.sheets[0]['A1'].value = 'Hello World!'

You can then attach HelloWorld to a button or run it directly in the VBA Editor by hitting F5.

Note: Place xw.Book.caller() within the function that is being called from Excel and not outside as
global variable. Otherwise it prevents Excel from shutting down properly upon exiting and leaves you with

29

xlwings - Make Excel Fly!, Release dev

a zombie process when you use Use UDF Server = True.

8.3 Function Arguments and Return Values

While it’s technically possible to include arguments in the function call within RunPython, it’s not very
convenient. Also, RunPython does not allow you to return values. To overcome these issues, use UDFs, see
User Defined Functions (UDFs) - however, this is currently limited to Windows only.

30 Chapter 8. RunPython

CHAPTER

NINE

USER DEFINED FUNCTIONS (UDFS)

This tutorial gets you quickly started on how to write User Defined Functions.

Note:

• UDFs are currently only available on Windows.

• For details of how to control the behaviour of the arguments and return values, have a look at Converters
and Options.

• For a comprehensive overview of the available decorators and their options, check out the correspond-
ing API docs: UDF decorators.

9.1 One-time Excel preparations

1) Enable Trust access to the VBA project object model under File > Options > Trust
Center > Trust Center Settings > Macro Settings. You only need to do this once. Also,
this is only required for importing the functions, i.e. end users won’t need to bother about this.

2) Install the add-in via command prompt: xlwings addin install (see Add-in & Settings).

9.2 Workbook preparation

The easiest way to start a new project is to run xlwings quickstart myproject on a command prompt
(see Command Line Client (CLI)). This automatically adds the xlwings reference to the generated workbook.

31

xlwings - Make Excel Fly!, Release dev

9.3 A simple UDF

The default addin settings expect a Python source file in the way it is created by quickstart:

• in the same directory as the Excel file

• with the same name as the Excel file, but with a .py ending instead of .xlsm.

Alternatively, you can point to a specific module via UDF Modules in the xlwings ribbon.

Let’s assume you have a Workbook myproject.xlsm, then you would write the following code in
myproject.py:

import xlwings as xw

@xw.func
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

• Now click on Import Python UDFs in the xlwings tab to pick up the changes made to myproject.
py.

• Enter the formula =double_sum(1, 2) into a cell and you will see the correct result:

• The docstring (in triple-quotes) will be shown as function description in Excel.

Note:

• You only need to re-import your functions if you change the function arguments or the function name.

• Code changes in the actual functions are picked up automatically (i.e. at the next calculation of the
formula, e.g. triggered by Ctrl-Alt-F9), but changes in imported modules are not. This is the very
behaviour of how Python imports work. If you want to make sure everything is in a fresh state, click
Restart UDF Server.

• The @xw.func decorator is only used by xlwings when the function is being imported into Excel. It
tells xlwings for which functions it should create a VBA wrapper function, otherwise it has no effect
on how the functions behave in Python.

32 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.4 Array formulas: Get efficient

Calling one big array formula in Excel is much more efficient than calling many single-cell formulas, so it’s
generally a good idea to use them, especially if you hit performance problems.

You can pass an Excel Range as a function argument, as opposed to a single cell and it will show up in Python
as list of lists.

For example, you can write the following function to add 1 to every cell in a Range:

@xw.func
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

To use this formula in Excel,

• Click on Import Python UDFs again

• Fill in the values in the range A1:B2

• Select the range D1:E2

• Type in the formula =add_one(A1:B2)

• Press Ctrl+Shift+Enter to create an array formula. If you did everything correctly, you’ll see the
formula surrounded by curly braces as in this screenshot:

9.4.1 Number of array dimensions: ndim

The above formula has the issue that it expects a “two dimensional” input, e.g. a nested list of the form [[1,
2], [3, 4]]. Therefore, if you would apply the formula to a single cell, you would get the following error:
TypeError: 'float' object is not iterable.

To force Excel to always give you a two-dimensional array, no matter whether the argument is a single cell,
a column/row or a two-dimensional Range, you can extend the above formula like this:

@xw.func
@xw.arg('data', ndim=2)
def add_one(data):

return [[cell + 1 for cell in row] for row in data]

9.4. Array formulas: Get efficient 33

xlwings - Make Excel Fly!, Release dev

9.5 Array formulas with NumPy and Pandas

Often, you’ll want to use NumPy arrays or Pandas DataFrames in your UDF, as this unlocks the full power
of Python’s ecosystem for scientific computing.

To define a formula for matrix multiplication using numpy arrays, you would define the following function:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
@xw.arg('y', np.array, ndim=2)
def matrix_mult(x, y):

return x @ y

Note: If you are not on Python >= 3.5 with NumPy >= 1.10, use x.dot(y) instead of x @ y.

A great example of how you can put Pandas at work is the creation of an array-based CORREL formula.
Excel’s version of CORREL only works on 2 datasets and is cumbersome to use if you want to quickly get the
correlation matrix of a few time-series, for example. Pandas makes the creation of an array-based CORREL2
formula basically a one-liner:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame, index=False, header=False)
@xw.ret(index=False, header=False)
def CORREL2(x):

"""Like CORREL, but as array formula for more than 2 data sets"""
return x.corr()

9.6 @xw.arg and @xw.ret decorators

These decorators are to UDFs what the options method is to Range objects: they allow you to apply con-
verters and their options to function arguments (@xw.arg) and to the return value (@xw.ret). For example,
to convert the argument x into a pandas DataFrame and suppress the index when returning it, you would do
the following:

@xw.func
@xw.arg('x', pd.DataFrame)
@xw.ret(index=False)
def myfunction(x):

(continues on next page)

34 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

x is a DataFrame, do something with it
return x

For further details see the Converters and Options documentation.

9.7 Dynamic Array Formulas

Note: If your version of Excel supports the new native dynamic arrays, then you don’t have to do anything
special, and you shouldn’t use the expand decorator! To check if your version of Excel supports it, see if you
have the =UNIQUE() formula available. Native dynamic arrays were introduced in Office 365 Insider Fast at
the end of September 2018.

As seen above, to use Excel’s array formulas, you need to specify their dimensions up front by selecting the
result array first, then entering the formula and finally hitting Ctrl-Shift-Enter. In practice, it often turns
out to be a cumbersome process, especially when working with dynamic arrays such as time series data.
Since v0.10, xlwings offers dynamic UDF expansion:

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):

return np.random.randn(int(r), int(c))

Note:

• Expanding array formulas will overwrite cells without prompting

• Pre v0.15.0 doesn’t allow to have volatile functions as arguments, e.g. you cannot use functions like
=TODAY() as arguments. Starting with v0.15.0, you can use volatile functions as input, but the UDF
will be called more than 1x.

• Dynamic Arrays have been refactored with v0.15.0 to be proper legacy arrays: To edit a dynamic array
with xlwings >= v0.15.0, you need to hit Ctrl-Shift-Enter while in the top left cell. Note that you
don’t have to do that when you enter the formula for the first time.

9.7. Dynamic Array Formulas 35

xlwings - Make Excel Fly!, Release dev

36 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.8 Docstrings

The following sample shows how to include docstrings both for the function and for the arguments x and y
that then show up in the function wizard in Excel:

import xlwings as xw

@xw.func
@xw.arg('x', doc='This is x.')
@xw.arg('y', doc='This is y.')
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

9.9 The “caller” argument

You often need to know which cell called the UDF. For this, xlwings offers the reserved argument caller
which returns the calling cell as xlwings range object:

@xw.func
def get_caller_address(caller):

caller will not be exposed in Excel, so use it like so:
=get_caller_address()
return caller.address

Note that caller will not be exposed in Excel but will be provided by xlwings behind the scenes.

9.10 The “vba” keyword

By using the vba keyword, you can get access to any Excel VBA object in the form of a pywin32 object. For
example, if you wanted to pass the sheet object in the form of its CodeName, you can do it as follows:

@xw.func
@xw.arg('sheet1', vba='Sheet1')
def get_name(sheet1):

call this function in Excel with:
=get_name()
return sheet1.Name

Note that vba arguments are not exposed in the UDF but automatically provided by xlwings.

9.8. Docstrings 37

xlwings - Make Excel Fly!, Release dev

9.11 Macros

On Windows, as an alternative to calling macros via RunPython, you can also use the @xw.sub decorator:

import xlwings as xw

@xw.sub
def my_macro():

"""Writes the name of the Workbook into Range("A1") of Sheet 1"""
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = wb.name

After clicking on Import Python UDFs, you can then use this macro by executing it via Alt + F8 or by
binding it e.g. to a button. To do the latter, make sure you have the Developer tab selected under File >
Options > Customize Ribbon. Then, under the Developer tab, you can insert a button via Insert >
Form Controls. After drawing the button, you will be prompted to assign a macro to it and you can select
my_macro.

9.12 Call UDFs from VBA

Imported functions can also be used from VBA. For example, for a function returning a 2d array:

Sub MySub()

Dim arr() As Variant
Dim i As Long, j As Long

arr = my_imported_function(...)

For j = LBound(arr, 2) To UBound(arr, 2)
For i = LBound(arr, 1) To UBound(arr, 1)

Debug.Print "(" & i & "," & j & ")", arr(i, j)
Next i

Next j

End Sub

38 Chapter 9. User Defined Functions (UDFs)

xlwings - Make Excel Fly!, Release dev

9.13 Asynchronous UDFs

Note: This is an experimental feature

New in version v0.14.0.

xlwings offers an easy way to write asynchronous functions in Excel. Asynchronous functions return imme-
diately with #N/A waiting.... While the function is waiting for its return value, you can use Excel to do
other stuff and whenever the return value is available, the cell value will be updated.

The only available mode is currently async_mode='threading', meaning that it’s useful for I/O-bound
tasks, for example when you fetch data from an API over the web.

You make a function asynchronous simply by giving it the respective argument in the function decorator. In
this example, the time consuming I/O-bound task is simulated by using time.sleep:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):

time.sleep(5) # long running tasks
return a

You can use this function like any other xlwings function, simply by putting =myfunction("abcd") into a
cell (after you have imported the function, of course).

Note that xlwings doesn’t use the native asynchronous functions that were introduced with Excel 2010, so
xlwings asynchronous functions are supported with any version of Excel.

9.13. Asynchronous UDFs 39

xlwings - Make Excel Fly!, Release dev

40 Chapter 9. User Defined Functions (UDFs)

CHAPTER

TEN

MATPLOTLIB & PLOTLY CHARTS

10.1 Matplotlib

Using pictures.add(), it is easy to paste a Matplotlib plot as picture in Excel.

10.1.1 Getting started

The easiest sample boils down to:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

sheet = xw.Book().sheets[0]
sheet.pictures.add(fig, name='MyPlot', update=True)

Note: If you set update=True, you can resize and position the plot on Excel: subsequent calls to
pictures.add() with the same name ('MyPlot') will update the picture without changing its position
or size.

10.1.2 Full integration with Excel

Calling the above code with RunPython and binding it e.g. to a button is straightforward and works cross-
platform.

However, on Windows you can make things feel even more integrated by setting up a UDF along the following
lines:

@xw.func
def myplot(n, caller):

fig = plt.figure()
(continues on next page)

41

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

plt.plot(range(int(n)))
caller.sheet.pictures.add(fig, name='MyPlot', update=True)
return 'Plotted with n={}'.format(n)

If you import this function and call it from cell B2, then the plot gets automatically updated when cell B1
changes:

10.1.3 Properties

Size, position and other properties can either be set as arguments within pictures.add(), or by manipu-
lating the picture object that is returned, see xlwings.Picture().

For example:

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True,

left=sht.range('B5').left, top=sht.range('B5').top)

or:

>>> plot = sht.pictures.add(fig, name='MyPlot', update=True)
>>> plot.height /= 2
>>> plot.width /= 2

42 Chapter 10. Matplotlib & Plotly Charts

xlwings - Make Excel Fly!, Release dev

10.1. Matplotlib 43

xlwings - Make Excel Fly!, Release dev

10.1.4 Getting a Matplotlib figure

Here are a few examples of how you get a matplotlib figure object:

• via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

or:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4, 5])
fig = plt.gcf()

• via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

• via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

Note: When working with Google Sheets, you can use a maximum of 1 million pixels per picture. Total
pixels is a function of figure size and dpi: (width in inches * dpi) * (height in inches * dpi). For example, fig
= plt.figure(figsize=(6, 4)) with 200 dpi (default dpi when using pictures.add()) will result in
(6 * 200) * (4 * 200) = 960,000 px. To change the dpi, provide export_options: pictures.add(fig,
export_options={"bbox_inches": "tight", "dpi": 300}). Existing figure size can be checked
via fig.get_size_inches(). pandas also accepts figsize like so: ax = df.plot(figsize=(3, 3)).
Note that "bbox_inches": "tight" crops the image and therefore will reduce the number of pixels in
a non-deterministic way. export_options will be passed to figure.figsave() when using Matplotlib
and to figure.write_image() when using Plotly.

44 Chapter 10. Matplotlib & Plotly Charts

xlwings - Make Excel Fly!, Release dev

10.2 Plotly static charts

10.2.1 Prerequisites

In addition to plotly, you will need kaleido, psutil, and requests. The easiest way to get it is via pip:

$ pip install kaleido psutil requests

or conda:

$ conda install -c conda-forge python-kaleido psutil requests

See also: https://plotly.com/python/static-image-export/

10.2.2 How to use

It works the same as with Matplotlib, however, rendering a Plotly chart takes slightly longer. Here is a sample:

import xlwings as xw
import plotly.express as px

Plotly chart
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")

Add it to Excel
wb = xw.Book()
wb.sheets[0].pictures.add(fig, name='IrisScatterPlot', update=True)

10.2. Plotly static charts 45

https://plotly.com/python/static-image-export/

xlwings - Make Excel Fly!, Release dev

46 Chapter 10. Matplotlib & Plotly Charts

CHAPTER

ELEVEN

JUPYTER NOTEBOOKS: INTERACT WITH EXCEL

When you work with Jupyter notebooks, you may use Excel as an interactive data viewer or scratchpad from
where you can load DataFrames. The two convenience functions view and load make this really easy.

Note: The view and load functions should exclusively be used for interactive work. If you write scripts,
use the xlwings API as introduced under Quickstart and Syntax Overview.

11.1 The view function

The view function accepts pretty much any object of interest, whether that’s a number, a string, a nested
list or a NumPy array or a pandas DataFrame. By default, it writes the data into an Excel table in a new
workbook. If you wanted to reuse the same workbook, provide a sheet object, e.g. view(df, sheet=xw.
sheets.active), for further options see view.

47

xlwings - Make Excel Fly!, Release dev

Changed in version 0.22.0: Earlier versions were not formatting the output as Excel table

11.2 The load function

To load in a range in an Excel sheet as pandas DataFrame, use the load function. If you only select one cell,
it will auto-expand to cover the whole range. If, however, you select a specific range that is bigger than one
cell, it will load in only the selected cells. If the data in Excel does not have an index or header, set them to
False like this: xw.load(index=False), see also load .

New in version 0.22.0.

48 Chapter 11. Jupyter Notebooks: Interact with Excel

CHAPTER

TWELVE

COMMAND LINE CLIENT (CLI)

xlwings comes with a command line client. On Windows, type the commands into a Command Prompt or
Anaconda Prompt, on Mac, type them into a Terminal. To get an overview of all commands, simply type
xlwings and hit Enter:

addin Run "xlwings addin install" to install the Excel add-
in (will be copied to the user's XLSTART folder).
Instead of "install" you can also use "update",
"remove" or "status". Note that this command may take
a while. You can install your custom add-in by
providing the name or path via the --file/-f flag,
e.g. "xlwings add-in install -f custom.xlam or copy
all Excel files in a directory to the XLSTART folder
by providing the path via the --dir flag." To install
the add-in for every user globally, use the --glob/-g
flag and run this command from an Elevated Command
Prompt.
(New in 0.6.0, the --dir flag was added in 0.24.8 and the
--glob flag in 0.28.4)

quickstart Run "xlwings quickstart myproject" to create a folder
called "myproject" in the current directory with an
Excel file and a Python file, ready to be used. Use
the "--standalone" flag to embed all VBA code in the
Excel file and make it work without the xlwings add-
in. Use "--fastapi" for creating a project that uses a
remote Python interpreter. Use "--addin --ribbon" to
create a template for a custom ribbon addin. Leave
away the "--ribbon" if you don't want a ribbon tab.

runpython macOS only: run "xlwings runpython install" if you
want to enable the RunPython calls without installing
the add-in. This will create the following file:
~/Library/Application
Scripts/com.microsoft.Excel/xlwings.applescript
(new in 0.7.0)

restapi Use "xlwings restapi run" to run the xlwings REST API
via Flask dev server. Accepts "--host" and "--port" as

(continues on next page)

49

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

optional arguments.
license xlwings PRO: Use "xlwings license update -k KEY" where

"KEY" is your personal (trial) license key. This will
update ~/.xlwings/xlwings.conf with the LICENSE_KEY
entry. If you have a paid license, you can run
"xlwings license deploy" to create a deploy key. This
is not available for trial keys.

config Run "xlwings config create" to create the user config
file (~/.xlwings/xlwings.conf) which is where the
settings from the Ribbon add-in are stored. It will
configure the Python interpreter that you are running
this command with. To reset your configuration, run
this with the "--force" flag which will overwrite your
current configuration.
(New in 0.19.5)

code Run "xlwings code embed" to embed all Python modules
of the workbook's dir in your active Excel file. Use
the "--file" flag to only import a single file by
providing its path. Requires xlwings PRO.
(Changed in 0.23.4)

permission "xlwings permission cwd" prints a JSON string that can
be used to permission the execution of all modules in
the current working directory via GET request.
"xlwings permission book" does the same for code that
is embedded in the active workbook.
(New in 0.23.4)

release Run "xlwings release" to configure your active
workbook to work with a one-click installer for easy
deployment. Requires xlwings PRO.
(New in 0.23.4)

copy Run "xlwings copy os" to copy the xlwings Office
Scripts module. Run "xlwings copy gs" to copy the
xlwings Google Apps Script module. Run "xlwings copy
vba" to copy the standalone xlwings VBA module. Run
"xlwings copy vba --addin" to copy the xlwings VBA
module for custom add-ins.
(New in 0.26.0, 'vba' added in 0.28.7)

auth Microsoft Azure AD: "xlwings auth azuread", see
https://docs.xlwings.org/en/stable/server_authentication.html
(New in 0.28.6)

vba This functionality allows you to easily write VBA code
in an external editor: run "xlwings vba edit" to
update the VBA modules of the active workbook from
their local exports everytime you hit save. If you run
this the first time, the modules will be exported from
Excel into your current working directory. To

(continues on next page)

50 Chapter 12. Command Line Client (CLI)

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

overwrite the local version of the modules with those
from Excel, run "xlwings vba export". To overwrite the
VBA modules in Excel with their local versions, run
"xlwings vba import". The "--file/-f" flag allows you
to specify a file path instead of using the active
Workbook. Requires "Trust access to the VBA project
object model" enabled. NOTE: Whenever you change
something in the VBA editor (such as the layout of a
form or the properties of a module), you have to run
"xlwings vba export".
(New in 0.26.3, changed in 0.27.0)

51

xlwings - Make Excel Fly!, Release dev

52 Chapter 12. Command Line Client (CLI)

CHAPTER

THIRTEEN

DEPLOYMENT

13.1 Zip files

New in version 0.15.2.

To make it easier to distribute, you can zip up your Python code into a zip file. If you use UDFs, this will
disable the automatic code reload, so this is a feature meant for distribution, not development. In practice,
this means that when your code is inside a zip file, you’ll have to click on re-import to get any changes.

If you name your zip file like your Excel file (but with .zip extension) and place it in the same folder as your
Excel workbook, xlwings will automatically find it (similar to how it works with a single python file).

If you want to use a different directory, make sure to add it to the PYTHONPATH in your config (Ribbon or
config file):

PYTHONPATH, "C:\path\to\myproject.zip"

13.2 RunFrozenPython

Changed in version 0.15.2.

You can use a freezer like PyInstaller, cx_Freeze, py2exe etc. to freeze your Python module into an executable
so that the recipient doesn’t have to install a full Python distribution.

Note:

• This does not work with UDFs.

• Currently only available on Windows, but support for Mac should be easy to add.

• You need at least 0.15.2 to support arguments whereas the syntax changed in 0.15.6

Use it as follows:

Sub MySample()
RunFrozenPython "C:\path\to\dist\myproject\myproject.exe", "arg1 arg2"

End Sub

53

xlwings - Make Excel Fly!, Release dev

54 Chapter 13. Deployment

CHAPTER

FOURTEEN

ONEDRIVE AND SHAREPOINT

Since v0.27.4, xlwings works with locally synced files on OneDrive, OneDrive for Business, and Share-
Point. Some constellations will work out-of-the-box, while others require you to edit the configuration via
the xlwings.conf file (see User Config) or the workbook’s xlwings.conf sheet (see Workbook Config).

Note: This documentation is for OneDrive and SharePoint files that are synced to a local folder. This
means that both, the Excel and Python file, need to show the green check mark in the File Explorer/Finder
as status—a cloud icon will not work. If, in turn, you are looking for the documentation to run xlwings with
Excel on the web, see xlwings Server: VBA, Office Scripts, Google Apps Script.

An easy workaround if you run into issues is to:

• Disable the ADD_WORKBOOK_TO_PYTHONPATH setting (either via the checkbox on the Ribbon or via
the settings in the xlwings.conf sheet).

• Add the directory of your Python source file to the PYTHONPATH—again, either via Ribbon or
xlwings.conf sheet.

If you are using the PRO version, you could instead also embed your code to get around these issues.

For a bit more flexibility, follow the solutions below.

14.1 OneDrive (Personal)

Default setups work out-of-the-box on Windows and macOS. If you get an error message, add the following
setting with the correct path to the local root directory of your OneDrive. If possible, make use of environment
variables (as shown in the examples) so the configuration will work across different users with the same setup:

• Windows (Example):

ONEDRIVE_CONSUMER_WIN %USERPROFILE%\OneDrive

• macOS (Example):

55

xlwings - Make Excel Fly!, Release dev

ONEDRIVE_CONSUMER_MAC $HOME/OneDrive

14.2 OneDrive for Business

• Windows: Default setups work out-of-the-box. If you get an error message, add the following setting
with the correct path to the local root directory of your OneDrive for Business. If possible, make use
of environment variables (as shown in the examples) so the configuration will work across different
users with the same setup:

ONEDRIVE_COMMERCIAL_WIN %USERPROFILE%\OneDrive - My Company LLC

• macOS: macOS always requires the following setting with the correct path to the local root directory of
your OneDrive for Business. If possible, make use of environment variables (as shown in the examples)
so the configuration will work across different users with the same setup:

ONEDRIVE_COMMERCIAL_MAC $HOME/OneDrive - My Company LLC

14.3 SharePoint (Online and On-Premises)

On Windows, the location of the local root folder of SharePoint can sometimes be derived from the OneDrive
environment variables. Most of the time though, you’ll have to provide the following setting (on macOS this
is a must):

• Windows:

SHAREPOINT_WIN %USERPROFILE%\My Company LLC

• macOS:

SHAREPOINT_MAC $HOME/My Company LLC

56 Chapter 14. OneDrive and SharePoint

xlwings - Make Excel Fly!, Release dev

14.4 Implementation Details & Limitations

A lot of the xlwings functionality depends on the workbook’s FullName property (via VBA/COM) that
returns the local path of the file unless it is saved on OneDrive, OneDrive for Business or SharePoint with
AutoSave enabled. In this case, it returns a URL instead.

URLs for OneDrive and OneDrive for Business can be translated fairly straight forward to the local equiv-
alent. You will need to know the root directory of the local drive though: on Windows, these are usually
provided via environment variables for OneDrive. On macOS they don’t exist, which is the reason why you
need to provide the root directory for OneDrive. On Windows, the root directory for SharePoint can some-
times be derived from the env vars, too, but this is not guaranteed. On macOS, you’ll need to provide it
always anyway.

SharePoint, unfortunately, allows you to map the drives locally in any way you want and there’s no way to
reliably get the local path for these files. On Windows, xlwings first checks the registry for the mapping. If
this doesn’t work, xlwings checks if the local path is mapped by using the defaults and if the file can’t be
found, it checks all existing local files on SharePoint. If it finds one with the same name, it’ll use this. If,
however, it finds more than one with the same name, you will get an error message. In this case, you can
either rename the file to something unique across all the locally synced SharePoint files or you can change the
SHAREPOINT_WIN/MAC setting to not stop at the root folder but include additional folders. As an example,
assume you have the following file structure on your local SharePoint:

My Company LLC/
sitename1/

myfile.xlsx
sitename2 - Documents/

myfile.xlsx

In this case, you could either rename one of the files, or you could add a path that goes beyond the root folder
(preferably under the xlwings.conf sheet):

SHAREPOINT_WIN %USERPROFILE%/My Company LLC/sitename2 - Documents

14.4. Implementation Details & Limitations 57

xlwings - Make Excel Fly!, Release dev

58 Chapter 14. OneDrive and SharePoint

CHAPTER

FIFTEEN

TROUBLESHOOTING

15.1 Issue: dll not found

Solution:

1) xlwings32-<version>.dll and xlwings64-<version>.dll are both in the same directory as
your python.exe. If not, something went wrong with your installation. Reinstall it with pip or
conda, see Installation.

2) Check your Interpreter in the add-in or config sheet. If it is empty, then you need to be
able to open a windows command prompt and type python to start an interactive Python session.
If you get the error 'python' is not recognized as an internal or external command,
operable program or batch file., then you have two options: Either add the path of where your
python.exe lives to your Windows path (see https://www.computerhope.com/issues/ch000549.htm)
or set the full path to your interpreter in the add-in or your config sheet, e.g. C:\Users\MyUser\
anaconda\pythonw.exe

15.2 Issue: Files that are saved on OneDrive or SharePoint cause an
error to pop up

Solution:

See the dedicated page about how to configure OneDrive and Sharepoint: OneDrive and SharePoint.

15.3 Issue: Python was not found; run without arguments to install
from the Microsoft Store, or disable this shortcut from Settings
> Manage App Execution Aliases.

Solution:

The Python interpreter is not correctly installed or the configuration does not point to the Python interpreter.
To fix this:

1) Verify that a Python interpreter is installed. Python can be installed in any way, including via Conda
or virtual environment or the xlwings 1-click installer (part of xlwings PRO).

59

https://www.computerhope.com/issues/ch000549.htm

xlwings - Make Excel Fly!, Release dev

2) Check the configuration of xlwings according to its Config Hierarchy.

60 Chapter 15. Troubleshooting

CHAPTER

SIXTEEN

CONVERTERS AND OPTIONS

Introduced with v0.7.0, converters define how Excel ranges and their values are converted both during read-
ing and writing operations. They also provide a consistent experience across xlwings.Range objects and
User Defined Functions (UDFs).

Converters are explicitly set in the options method when manipulating Range objects or in the @xw.arg
and @xw.ret decorators when using UDFs. If no converter is specified, the default converter is applied when
reading. When writing, xlwings will automatically apply the correct converter (if available) according to the
object’s type that is being written to Excel. If no converter is found for that type, it falls back to the default
converter.

All code samples below depend on the following import:

>>> import xlwings as xw

Syntax:

Ac-
tion

Range objects UDFs

read-
ing

myrange.options(convert=None, **kwargs).
value

@arg('x', convert=None,
**kwargs)

writ-
ing

myrange.options(convert=None, **kwargs).
value = myvalue

@ret(convert=None,
**kwargs)

Note: Keyword arguments (kwargs) may refer to the specific converter or the default converter. For exam-
ple, to set the numbers option in the default converter and the index option in the DataFrame converter, you
would write:

myrange.options(pd.DataFrame, index=False, numbers=int).value

61

xlwings - Make Excel Fly!, Release dev

16.1 Default Converter

If no options are set, the following conversions are performed:

• single cells are read in as floats in case the Excel cell holds a number, as unicode in case it holds
text, as datetime if it contains a date and as None in case it is empty.

• columns/rows are read in as lists, e.g. [None, 1.0, 'a string']

• 2d cell ranges are read in as list of lists, e.g. [[None, 1.0, 'a string'], [None, 2.0,
'another string']]

The following options can be set:

16.1.1 ndim

Force the value to have either 1 or 2 dimensions regardless of the shape of the range:

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1, 2], [3, 4]]
>>> sheet['A1'].value
1.0
>>> sheet['A1'].options(ndim=1).value
[1.0]
>>> sheet['A1'].options(ndim=2).value
[[1.0]]
>>> sheet['A1:A2'].value
[1.0 3.0]
>>> sheet['A1:A2'].options(ndim=2).value
[[1.0], [3.0]]

16.1.2 numbers

By default cells with numbers are read as float, but you can change it to int:

>>> sheet['A1'].value = 1
>>> sheet['A1'].value
1.0
>>> sheet['A1'].options(numbers=int).value
1

Alternatively, you can specify any other function or type which takes a single float argument.

Using this on UDFs looks like this:

@xw.func
@xw.arg('x', numbers=int)

(continues on next page)

62 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

def myfunction(x):
all numbers in x arrive as int
return x

Note: Excel delivers all numbers as floats in the interactive mode, which is the reason why the int converter
rounds numbers first before turning them into integers. Otherwise it could happen that e.g., 5 might be
returned as 4 in case it is represented as a floating point number that is slightly smaller than 5. Should you
require Python’s original int in your converter, use raw int` instead.

16.1.3 dates

By default cells with dates are read as datetime.datetime, but you can change it to datetime.date:

• Range:

>>> import datetime as dt
>>> sheet['A1'].options(dates=dt.date).value

• UDFs (decorator):

@xw.arg('x', dates=dt.date)

Alternatively, you can specify any other function or type which takes the same keyword arguments as
datetime.datetime, for example:

>>> my_date_handler = lambda year, month, day, **kwargs: "%04i-%02i-%02i" %␣
→˓(year, month, day)
>>> sheet['A1'].options(dates=my_date_handler).value
'2017-02-20'

16.1.4 empty

Empty cells are converted per default into None, you can change this as follows:

• Range:

>>> sheet['A1'].options(empty='NA').value

• UDFs (decorator):

@xw.arg('x', empty='NA')

16.1. Default Converter 63

xlwings - Make Excel Fly!, Release dev

16.1.5 transpose

This works for reading and writing and allows us to e.g. write a list in column orientation to Excel:

• Range: sheet['A1'].options(transpose=True).value = [1, 2, 3]

• UDFs:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):

x will be returned unchanged as transposed both when reading and␣
→˓writing
return x

16.1.6 expand

This works the same as the Range properties table, vertical and horizontal but is only evaluated when
getting the values of a Range:

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1,2], [3,4]]
>>> range1 = sheet['A1'].expand()
>>> range2 = sheet['A1'].options(expand='table')
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sheet['A3'].value = [5, 6]
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

Note: The expand method is only available on Range objects as UDFs only allow to manipulate the calling
cells.

64 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

16.1.7 chunksize

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a
memory error. The ideal chunksize will depend on your system and size of the array, so you will have to
try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

16.1.8 err_to_str

New in version 0.28.0.

If True, will include cell errors such as #N/A as strings. By default, they will be converted to None.

16.1.9 formatter

New in version 0.28.1.

Note: You can’t use formatters with Excel tables.

The formatter option accepts the name of a function. The function will be called after writing the values
to Excel and allows you to easily style the range in a very flexible way. How it works is best shown with a
little example:

import pandas as pd
import xlwings as xw

sheet = xw.Book().sheets[0]

def table(rng: xw.Range, df: pd.DataFrame):
"""This is the formatter function"""
Header
rng[0, :].color = "#A9D08E"

(continues on next page)

16.1. Default Converter 65

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Rows
for ix, row in enumerate(rng.rows[1:]):

if ix % 2 == 0:
row.color = "#D0CECE" # Even rows

Columns
for ix, col in enumerate(df.columns):

if "two" in col:
rng[1:, ix].number_format = "0.0%"

df = pd.DataFrame(data={"one": [1, 2, 3, 4], "two": [5, 6, 7, 8]})
sheet["A1"].options(formatter=table, index=False).value = df

Running this code will format the DataFrame like this:

The formatter’s signature is: def myformatter(myrange, myvalues) where myrange corresponds to
the range where myvalues are written to. myvalues is simply what you assign to the value property in
the last line of the example. Since we’re using this with a DataFrame, it makes sense to name the argument
accordingly and using type hints will help your editor with auto-completion. If you would use a nested list
instead of a DataFrame, you would write something like this instead:

def table(rng: xw.Range, values: list[list]): # Python >= 3.9

For Python <= 3.8, you’ll need to capitalize List and import it like so:

from typing import List

66 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

16.2 Built-in Converters

xlwings offers several built-in converters that perform type conversion to dictionaries, NumPy arrays, Pan-
das Series and DataFrames. These build on top of the default converter, so in most cases the options de-
scribed above can be used in this context, too (unless they are meaningless, for example the ndim in the case
of a dictionary).

It is also possible to write and register a custom converter for additional types, see below.

The samples below can be used with both xlwings.Range objects and UDFs even though only one version
may be shown.

16.2.1 Dictionary converter

The dictionary converter turns two Excel columns into a dictionary. If the data is in row orientation, use
transpose:

>>> sheet = xw.sheets.active
>>> sheet['A1:B2'].options(dict).value
{'a': 1.0, 'b': 2.0}
>>> sheet['A4:B5'].options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

Note: instead of dict, you can also use OrderedDict from collections.

16.2.2 Numpy array converter

options: dtype=None, copy=True, order=None, ndim=None

The first 3 options behave the same as when using np.array() directly. Also, ndimworks the same as shown
above for lists (under default converter) and hence returns either numpy scalars, 1d arrays or 2d arrays.

Example

>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].options(transpose=True).value = np.array([1, 2, 3])
>>> sheet['A1:A3'].options(np.array, ndim=2).value
array([[1.],

[2.],
[3.]])

16.2. Built-in Converters 67

xlwings - Make Excel Fly!, Release dev

16.2.3 Pandas Series converter

options: dtype=None, copy=False, index=1, header=True

The first 2 options behave the same as when using pd.Series() directly. ndim doesn’t have an effect on
Pandas series as they are always expected and returned in column orientation.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.
When writing, include or exclude the index by setting it to True or False.

header: Boolean

When reading, set it to False if Excel doesn’t show either index or series names.
When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

>>> sheet = xw.Book().sheets[0]
>>> s = sheet['A1'].options(pd.Series, expand='table').value
>>> s
date
2001-01-01 1
2001-01-02 2
2001-01-03 3
2001-01-04 4
2001-01-05 5
2001-01-06 6
Name: series name, dtype: float64

68 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

16.2.4 Pandas DataFrame converter

options: dtype=None, copy=False, index=1, header=1

The first 2 options behave the same as when using pd.DataFrame() directly. ndim doesn’t have an effect
on Pandas DataFrames as they are automatically read in with ndim=2.

index: int or Boolean

When reading, it expects the number of index columns shown in Excel.
When writing, include or exclude the index by setting it to True or False.

header: int or Boolean

When reading, it expects the number of column headers shown in Excel.
When writing, include or exclude the index and series names by setting it to True or False.

For index and header, 1 and True may be used interchangeably.

Example:

>>> sheet = xw.Book().sheets[0]
>>> df = sheet['A1:D5'].options(pd.DataFrame, header=2).value
>>> df

(continues on next page)

16.2. Built-in Converters 69

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

a b
c d e

ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> sheet['A1'].value = df

Writing back and changing some of the options, e.g. getting rid of the index:
>>> sheet['B7'].options(index=False).value = df

The same sample for UDF (starting in cell A13 on screenshot) looks like this:

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):
x is a DataFrame, do something with it
return x

16.2.5 xw.Range and ‘raw’ converters

Technically speaking, these are “no-converters”.

• If you need access to the xlwings.Range object directly, you can do:

@xw.func
@xw.arg('x', 'range')
def myfunction(x):
return x.formula

This returns x as xlwings.Range object, i.e. without applying any converters or options.

• The raw converter delivers the values unchanged from the underlying libraries (pywin32 on Windows
and appscript on Mac), i.e. no sanitizing/cross-platform harmonizing of values are being made.
This might be useful in a few cases for efficiency reasons. E.g:

>>> sheet['A1:B2'].value
[[1.0, 'text'], [datetime.datetime(2016, 2, 1, 0, 0), None]]

>>> sheet['A1:B2'].options('raw').value # or sheet['A1:B2'].raw_value
((1.0, 'text'), (pywintypes.datetime(2016, 2, 1, 0, 0, tzinfo=TimeZoneInfo(
→˓'GMT Standard Time', True)), None))

70 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

16.3 Custom Converter

Here are the steps to implement your own converter:

• Inherit from xlwings.conversion.Converter

• Implement both a read_value and write_value method as static- or classmethod:

– In read_value, value is what the base converter returns: hence, if no base has been specified
it arrives in the format of the default converter.

– In write_value, value is the original object being written to Excel. It must be returned in the
format that the base converter expects. Again, if no base has been specified, this is the default
converter.

The options dictionary will contain all keyword arguments specified in the options method, e.g.
when calling myrange.options(myoption='some value') or as specified in the @arg and @ret
decorator when using UDFs. Here is the basic structure:

from xlwings.conversion import Converter

class MyConverter(Converter):

@staticmethod
def read_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

@staticmethod
def write_value(value, options):

myoption = options.get('myoption', default_value)
return_value = value # Implement your conversion here
return return_value

• Optional: set a base converter (base expects a class name) to build on top of an existing converter, e.g.
for the built-in ones: DictConverter, NumpyArrayConverter, PandasDataFrameConverter,
PandasSeriesConverter

• Optional: register the converter: you can (a) register a type so that your converter becomes the default
for this type during write operations and/or (b) you can register an alias that will allow you to explicitly
call your converter by name instead of just by class name

The following examples should make it much easier to follow - it defines a DataFrame converter that extends
the built-in DataFrame converter to add support for dropping nan’s:

from xlwings.conversion import Converter, PandasDataFrameConverter

class DataFrameDropna(Converter):

(continues on next page)

16.3. Custom Converter 71

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

base = PandasDataFrameConverter

@staticmethod
def read_value(builtin_df, options):

dropna = options.get('dropna', False) # set default to False
if dropna:

converted_df = builtin_df.dropna()
else:

converted_df = builtin_df
This will arrive in Python when using the DataFrameDropna converter␣

→˓for reading
return converted_df

@staticmethod
def write_value(df, options):

dropna = options.get('dropna', False)
if dropna:

converted_df = df.dropna()
else:

converted_df = df
This will be passed to the built-in PandasDataFrameConverter when␣

→˓writing
return converted_df

Now let’s see how the different converters can be applied:

Fire up a Workbook and create a sample DataFrame
sheet = xw.Book().sheets[0]
df = pd.DataFrame([[1.,10.],[2.,np.nan], [3., 30.]])

• Default converter for DataFrames:

Write
sheet['A1'].value = df

Read
sheet['A1:C4'].options(pd.DataFrame).value

• DataFrameDropna converter:

Write
sheet['A7'].options(DataFrameDropna, dropna=True).value = df

Read
sheet['A1:C4'].options(DataFrameDropna, dropna=True).value

• Register an alias (optional):

72 Chapter 16. Converters and Options

xlwings - Make Excel Fly!, Release dev

DataFrameDropna.register('df_dropna')

Write
sheet['A12'].options('df_dropna', dropna=True).value = df

Read
sheet['A1:C4'].options('df_dropna', dropna=True).value

• Register DataFrameDropna as default converter for DataFrames (optional):

DataFrameDropna.register(pd.DataFrame)

Write
sheet['A13'].options(dropna=True).value = df

Read
sheet['A1:C4'].options(pd.DataFrame, dropna=True).value

These samples all work the same with UDFs, e.g.:

@xw.func
@arg('x', DataFrameDropna, dropna=True)
@ret(DataFrameDropna, dropna=True)
def myfunction(x):

...
return x

Note: Python objects run through multiple stages of a transformation pipeline when they are being written
to Excel. The same holds true in the other direction, when Excel/COM objects are being read into Python.

Pipelines are internally defined by Accessor classes. A Converter is just a special Accessor which converts
to/from a particular type by adding an extra stage to the pipeline of the default Accessor. For example, the
PandasDataFrameConverter defines how a list of lists (as delivered by the default Accessor) should be
turned into a Pandas DataFrame.

The Converter class provides basic scaffolding to make the task of writing a new Converter easier. If you
need more control you can subclass Accessor directly, but this part requires more work and is currently
undocumented.

16.3. Custom Converter 73

xlwings - Make Excel Fly!, Release dev

74 Chapter 16. Converters and Options

CHAPTER

SEVENTEEN

DEBUGGING

Since xlwings runs in every Python environment, you can use your preferred way of debugging.

• RunPython: When calling Python through RunPython, you can set a mock_caller to make it easy
to switch back and forth between calling the function from Excel and Python.

• UDFs: For debugging User Defined Functions, xlwings offers a convenient debugging server

To begin with, Excel will show Python errors in a Message Box:

Note: On Mac, if the import of a module/package fails before xlwings is imported, the popup will not be
shown and the StatusBar will not be reset. However, the error will still be logged in the log file (/Users/
<User>/Library/Containers/com.microsoft.Excel/Data/xlwings.log).

75

xlwings - Make Excel Fly!, Release dev

17.1 RunPython

Consider the following sample code of your Python source code my_module.py:

my_module.py
import os
import xlwings as xw

def my_macro():
wb = xw.Book.caller()
wb.sheets[0]['A1'].value = 1

if __name__ == '__main__':
Expects the Excel file next to this source file, adjust accordingly.
xw.Book('myfile.xlsm').set_mock_caller()
my_macro()

my_macro() can now easily be run from Python for debugging and from Excel via RunPython without
having to change the source code:

Sub my_macro()
RunPython "import my_module; my_module.my_macro()"

End Sub

17.2 UDF debug server

Windows only: To debug UDFs, just check the Debug UDFs in the Add-in & Settings, at the top of the xlwings
VBA module. Then add the following lines at the end of your Python source file and run it. Depending on
which IDE you use, you might need to run the code in “debug” mode (e.g. in case you’re using PyCharm or
PyDev):

if __name__ == '__main__':
xw.serve()

When you recalculate the Sheet (Ctrl-Alt-F9), the code will stop at breakpoints or output any print calls
that you may have.

The following screenshot shows the code stopped at a breakpoint in the community version of PyCharm:

Note: When running the debug server from a command prompt, there is currently no gracious way to
terminate it, but closing the command prompt will kill it.

76 Chapter 17. Debugging

xlwings - Make Excel Fly!, Release dev

17.2. UDF debug server 77

xlwings - Make Excel Fly!, Release dev

78 Chapter 17. Debugging

CHAPTER

EIGHTEEN

EXTENSIONS

It’s easy to extend the xlwings add-in with own code like UDFs or RunPython macros, so that they can be
deployed without end users having to import or write the functions themselves. Just add another VBA module
to the xlwings addin with the respective code.

UDF extensions can be used from every workbook without having to set a reference.

18.1 In-Excel SQL

The xlwings addin comes with a built-in extension that adds in-Excel SQL syntax (sqlite dialect):

=sql(SQL Statement, table a, table b, ...)

As this extension uses UDFs, it’s only available on Windows right now.

79

xlwings - Make Excel Fly!, Release dev

80 Chapter 18. Extensions

CHAPTER

NINETEEN

CUSTOM ADD-INS

New in version 0.22.0.

Custom add-ins work on Windows and macOS and are white-labeled xlwings add-ins that include all your
RunPython functions and UDFs (as usual, UDFs work on Windows only). You can build add-ins with and
without an Excel ribbon.

The useful thing about add-in is that UDFs and RunPython calls will be available in all workbooks right out
of the box without having to add any references via the VBA editor’s Tools > References.... You can
also work with standard xlsx files rather than xlsm files. This tutorial assumes you’re familiar with how
xlwings and its configuration works.

19.1 Quickstart

Start by running the following command on a command line (to create an add-in without a ribbon, you would
leave away the --ribbon flag):

$ xlwings quickstart myproject --addin --ribbon

This will create the familiar quickstart folder with a Python file and an Excel file, but this time, the Excel file
is in the xlam format.

• Double-click the Excel add-in to open it in Excel

• Add a new empty workbook (Ctrl+N on Windows or Command+N on macOS)

You should see a new ribbon tab called MyAddin like this:

The add-in and VBA project are currently always called myaddin, no matter what name you chose in the
quickstart command. We’ll see towards the end of this tutorial how we can change that, but for now we’ll
stick to it.

Compared to the xlwings add-in, the custom add-in offers an additional level of configuration: the configura-
tion sheet of the add-in itself which is the easiest way to configure simple add-ins with a static configuration.

Let’s open the VBA editor by clicking on Alt+F11 (Windows) or Option+F11 (macOS). In our project,
select ThisWorkbook, then change the Property IsAddin from True to False, see the following screenshot:

This will make the sheet _myaddin.conf visible (again, we’ll see how to change the name of myaddin at
the end of this tutorial):

81

xlwings - Make Excel Fly!, Release dev

82 Chapter 19. Custom Add-ins

xlwings - Make Excel Fly!, Release dev

• Activate the sheet config by renaming it from _myaddin.conf to myaddin.conf

• Set your Interpreter_Win/_Mac or Conda settings (you may want to take them over from the xl-
wings settings for now)

Once done, switch back to the VBA editor, select ThisWorkbook again, and change IsAddin back to True
before you save your add-in from the VBA editor. Switch back to Excel and click the Run button under the My
Addin ribbon tab and if you’ve configured the Python interpreter correctly, it will print Hello xlwings!
into cell A1 of the active workbook.

19.2 Changing the Ribbon menu

To change the buttons and items in the ribbon menu or the Backstage View, download and install the Office
RibbonX Editor. While it is only available for Windows, the created ribbons will also work on macOS. Open
your add-in with it so you can change the XML code that defines your buttons etc. You will find a good
tutorial here. The callback function for the demo Run button is in the RibbonMyAddin VBA module that
you’ll find in the VBA editor.

19.3 Importing UDFs

To import your UDFs into the custom add-in, run the ImportPythonUDFsToAddin Sub towards the end
of the xlwings module (click into the Sub and hit F5). Remember, you only have to do this whenever you
change the function name, argument or decorator, so your end users won’t have to deal with this.

If you are only deploying UDFs via your add-in, you probably don’t need a Ribbon menu and can leave away
the --ribbon flag in the quickstart command.

19.4 Configuration

As mentioned before, configuration works the same as with xlwings, so you could have your users override
the default configuration we did above by adding a myaddin.conf sheet on their workbook or you could use
the myaddin.conf file in the user’s home directory. For details see Add-in & Settings.

19.5 Installation

If you want to permanently install your add-in, you can do so by using the xlwings CLI:

$ xlwings addin install --file C:\path\to\your\myproject.xlam

This, however, means that you will need to adjust the PYTHONPATH for it to find your Python code (or move
your Python code to somewhere where Python looks for it—more about that below under deployment). The
command will copy your add-in to the XLSTART folder, a special folder from where Excel will open all files
everytime you start it.

19.2. Changing the Ribbon menu 83

https://github.com/fernandreu/office-ribbonx-editor/releases
https://github.com/fernandreu/office-ribbonx-editor/releases
https://www.rondebruin.nl/win/s2/win001.htm

xlwings - Make Excel Fly!, Release dev

19.6 Renaming your add-in

Admittedly, this part is a bit cumbersome for now. Let’s assume, we would like to rename the addin from
MyAddin to Demo:

• In the xlwings VBA module, change Public Const PROJECT_NAME As String = "myaddin"
to Public Const PROJECT_NAME As String = "demo". You’ll find this line at the top, right after
the Declare statements.

• If you rely on the myaddin.conf sheet for your configuration, rename it to demo.conf

• Right-click the VBA project, select MyAddin Properties... and rename the Project Name from
MyAddin to Demo.

• If you use the ribbon, you want to rename the RibbonMyAddin VBA module to RibbonDemo. To do
this, select the module in the VBA editor, then rename it in the Properties window. If you don’t see
the Properties window, hit F4.

• Open the add-in in the Office RibbonX Editor (see above) and replace all occurrences of MyAddin
with Demo in the XML code.

And finally, you may want to rename your myproject.xlam file in the Windows explorer, but I assume you
have already run the quickstart command with the correct name, so this won’t be necessary.

19.7 Deployment

By far the easiest way to deploy your add-in to your end-users is to build an installer via the xlwings PRO
offering. This will take care of everything and your end users literally just need to double-click the installer
and they are all set (no existing Python installation required and no manual installation of the add-in or
adjusting of settings required).

If you want it the free (but hard) way, you either need to build an installer yourself or you need your users to
install Python and the add-in and take care of placing the Python code in the correct directory. This normally
involves tweaking the following settings, for example in the myaddin.conf sheet:

• Interpreter_Win/_Mac: if your end-users have a working version of Python, you can use environ-
ment variables to dynamically resolve to the correct path. For example, if they have Anaconda installed
in the default location, you could use the following configuration:

Conda Path: %USERPROFILE%\anaconda3
Conda Env: base
Interpreter_Mac: $HOME/opt/anaconda3/bin/python

• PYTHONPATH: since you can’t have your Python source code in the XLSTART folder next to the add-in,
you’ll need to adjust the PYTHONPATH setting and add the folder to where the Python code will be.
You could point this to a shared drive or again make use of environment variables so the users can
place the file into a folder called MyAddin in their home directory, for example. However, you can also
place your Python code where Python looks for it, for example by placing them in the site-packages
directory of the Python distribution—an easy way to achieve this is to build a Python package that you
can install via pip.

84 Chapter 19. Custom Add-ins

CHAPTER

TWENTY

THREADING AND MULTIPROCESSING

New in version 0.13.0.

20.1 Threading

While xlwings is not technically thread safe, it’s still easy to use it in threads as long as you have at least
v0.13.0 and stick to a simple rule: Do not pass xlwings objects to threads. This rule isn’t a requirement on
macOS, but it’s still recommended if you want your programs to be cross-platform.

Consider the following example that will NOT work:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

myrange = q.get()
myrange.value = myrange.address
print(myrange.address)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)
t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
THIS DOESN'T WORK - passing xlwings objects to threads will fail!

(continues on next page)

85

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

myrange = xw.Book('Book1.xlsx').sheets[0].range(cell)
q.put(myrange)

q.join()

To make it work, you simply have to fully qualify the cell reference in the thread instead of passing a Book
object:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
while True:

cell_ = q.get()
xw.Book('Book1.xlsx').sheets[0].range(cell_).value = cell_
print(cell_)
q.task_done()

q = Queue()

for i in range(num_threads):
t = threading.Thread(target=write_to_workbook)
t.daemon = True
t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
q.put(cell)

q.join()

20.2 Multiprocessing

Note: Multiprocessing is only supported on Windows!

The same rules apply to multiprocessing as for threading, here’s a working example:

from multiprocessing import Pool
import xlwings as xw

(continues on next page)

86 Chapter 20. Threading and Multiprocessing

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

def write_to_workbook(cell):
xw.Book('Book1.xlsx').sheets[0].range(cell).value = cell
print(cell)

if __name__ == '__main__':
with Pool(4) as p:

p.map(write_to_workbook,
['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

20.2. Multiprocessing 87

xlwings - Make Excel Fly!, Release dev

88 Chapter 20. Threading and Multiprocessing

CHAPTER

TWENTYONE

MISSING FEATURES

If you’re missing a feature in xlwings, do the following:

1) Most importantly, open an issue on GitHub. Adding functionality should be user driven, so only if you
tell us about what you’re missing, it’s eventually going to find its way into the library. By the way, we
also appreciate pull requests!

2) Workaround: in essence, xlwings is just a smart wrapper around pywin32 on Windows and appscript
on Mac. You can access the underlying objects by calling the api property:

>>> sheet = xw.Book().sheets[0]
>>> sheet.api
Windows (pywin32)
<win32com.gen_py.Microsoft Excel 16.0 Object Library._Worksheet instance at␣
→˓0x2260624985352>
macOS (appscript)
app(pid=2319).workbooks['Workbook1'].worksheets[1]

This works accordingly for the other objects like sheet.range('A1').api etc.

The underlying objects will offer you pretty much everything you can do with VBA, using the syntax
of pywin32 (which pretty much feels like VBA) and appscript (which doesn’t feel like VBA). But apart
from looking ugly, keep in mind that it makes your code platform specific (!), i.e. even if you go
for option 2), you should still follow option 1) and open an issue so the feature finds it’s way into the
library (cross-platform and with a Pythonic syntax).

21.1 Example: Workaround to use VBA’s Range.WrapText

Windows
sheet['A1'].api.WrapText = True

Mac
sheet['A1'].api.wrap_text.set(True)

89

https://github.com/xlwings/xlwings/issues
https://github.com/mhammond/pywin32/
https://github.com/hhas/appscript

xlwings - Make Excel Fly!, Release dev

90 Chapter 21. Missing Features

CHAPTER

TWENTYTWO

XLWINGS WITH OTHER OFFICE APPS

xlwings can also be used to call Python functions from VBA within Office apps other than Excel (like Out-
look, Access etc.).

Note: This is an experimental feature and may be removed in the future. Currently, this functionality is only
available on Windows for UDFs. The RunPython functionality is currently not supported.

22.1 How To

1) As usual, write your Python function and import it into Excel (see User Defined Functions (UDFs)).

2) Press Alt-F11 to get into the VBA editor, then right-click on the xlwings_udfs VBA module and
select Export File.... Save the xlwings_udfs.bas file somewhere.

3) Switch into the other Office app, e.g. Microsoft Access and click again Alt-F11 to get into the VBA
editor. Right-click on the VBA Project and Import File..., then select the file that you exported in
the previous step. Once imported, replace the app name in the first line to the one that you are using,
i.e. Microsoft Access or Microsoft Outlook etc. so that the first line then reads: #Const App
= "Microsoft Access"

4) Now import the standalone xlwings VBA module (xlwings.bas). You can find it in your xlwings
installation folder. To know where that is, do:

>>> import xlwings as xw
>>> xlwings.__path__

And finally do the same as in the previous step and replace the App name in the first line with the name
of the corresponding app that you are using. You are now able to call the Python function from VBA.

91

xlwings - Make Excel Fly!, Release dev

22.2 Config

The other Office apps will use the same global config file as you are editing via the Excel ribbon add-in.
When it makes sense, you’ll be able to use the directory config file (e.g. you can put it next to your Access
or Word file) or you can hardcode the path to the config file in the VBA standalone module, e.g. in the
function GetDirectoryConfigFilePath (e.g. suggested when using Outlook that doesn’t really have the
same concept of files like the other Office apps). NOTE: For Office apps without file concept, you need
to make sure that the PYTHONPATH points to the directory with the Python source file. For details on the
different config options, see Config.

92 Chapter 22. xlwings with other Office Apps

CHAPTER

TWENTYTHREE

LICENSE KEY

To use xlwings PRO functionality, you need to use a license key. xlwings PRO licenses keys are verified
offline (i.e., no telemetry/license server involved). There are two types of license keys:

• Developer key: this is the key that you will be provided with after purchase. As the name suggests,
a developer key should be used by the developer, i.e., someone who writes xlwings code. Developer
keys are valid for one or more developers (depending on your plan) and expire after 1 year.

• Deploy key: to create deploy keys, you’ll need an activated developer key. As the name suggests, a
deploy key should be used for the deployment of workbooks to end-users or with xlwings Server. A
deploy key doesn’t expire but is bound to a specific version of xlwings, which means that you need to
generate a new deploy key every time you update xlwings (the xlwings release command handles
this automatically as we’ll see below). Note that you can’t generate deploy keys with a trial license.

Let’s now see how you can get and activate a license key.

23.1 How to get a license key

License Key for Commercial Purpose:

• To try xlwings PRO for free in a commercial context, request a trial license key: https://www.xlwings.
org/trial

• To use xlwings PRO in a commercial context beyond the trial, you need to enroll in a paid plan (they
include additional services like support and the ability to create one-click installers): https://www.
xlwings.org/pricing

License Key for non-commercial Purpose:

• To use xlwings PRO for free in a non-commercial context (as defined by the PolyForm Noncommercial
License 1.0.0) use the following license key: noncommercial (Note that you need at least xlwings
0.26.0).

93

https://www.xlwings.org/trial
https://www.xlwings.org/trial
https://www.xlwings.org/pricing
https://www.xlwings.org/pricing
https://polyformproject.org/licenses/noncommercial/1.0.0
https://polyformproject.org/licenses/noncommercial/1.0.0

xlwings - Make Excel Fly!, Release dev

23.2 Activate a developer key

To use xlwings PRO locally in your development environment, it’s easiest to run the following command:

xlwings license update -k YOUR_LICENSE_KEY

Make sure to replace YOUR_LICENSE_KEY with your actual key. This will store the license key in your
xlwings.conf file (see User Config: Ribbon/Config File for where this is on your system). Alternatively,
you could also activate the license key by setting an environment variable, as we’ll see next.

23.3 Setting developer keys or deploy keys as environment variable

For xlwings Server deployments, it is recommended to set the license key via the XLWINGS_LICENSE_KEY
environment variable. How you set an environment variable depends on the operating system you use. Man-
aged services often allow you to set environment variables as a secret via their user interface and many
systems and frameworks such as Docker can be configured to read environment variables from a local .env
file.

Setting an environment variable is also a convenient way for your local development environment. Just make
sure to restart your code editor, IDE, or Terminal/Command Prompt after setting the environment variable.

23.4 Generate a deploy key

With an activated developer key, you can generate deploy keys like so:

xlwings license deploy

Make sure that you run this command with the same xlwings version as you’ll be using in your deployment.
For convenience, when you run this command, the xlwings version will be printed as first line, but you can
also query the xlwings version by running the following command in a Terminal/Command Prompt: python
-c "import xlwings;print(xlwings.__version__)"

Note that if you use the xlwings release command, your workbook’s xlwings.conf sheet will be auto-
matically updated with a correct deploy key as we’ll see next.

23.5 Updating the deploy key in a workbook via the “xlwings release”
command

The xlwings release command is the recommended way to prepare a workbook for deployment. It takes
care of:

• Setting the deploy key in the xlwings.conf sheet

• Embedding the code if desired

94 Chapter 23. License Key

xlwings - Make Excel Fly!, Release dev

• Updating the xlwings VBA module so there’s no need to use the xlwings add-in on the end-users
machine

For more details, see Step 2 under 1-click installer.

23.6 Updating the deploy key in a workbook manually

To update a workbook with a deploy key for deployment manually:

• Run xlwings license deploy, see above

• Paste the deploy key in your xlwings.conf sheet as value for LICENSE_KEY, see xlwings.conf Sheet

23.7 Setting the license key in code

If you run use xlwings PRO by running a Python script directly (e.g., as a frozen executable), it is easiest if
you set the deploy key directly in code:

import os
os.environ["XLWINGS_LICENSE_KEY"] = "YOUR_DEPLOY_KEY"

These lines must be run before importing xlwings. It is also best practice to store the deploy key in an external
config file instead of hardcoding it directly in the code.

23.6. Updating the deploy key in a workbook manually 95

xlwings - Make Excel Fly!, Release dev

96 Chapter 23. License Key

CHAPTER

TWENTYFOUR

1-CLICK INSTALLER/EMBEDDED CODE

xlwings PRO offers a simple way to deploy your xlwings tools to your end users without the usual hassle
that’s involved when installing and configuring Python and xlwings. End users don’t need to know anything
about Python as they only need to:

• Run an installer (one installer can power many different Excel workbooks)

• Use the Excel workbook as if it was a normal macro-enabled workbook

Advantages:

• Zero-config: The end user doesn’t have to configure anything throughout the whole process.

• No add-in required: No installation of the xlwings add-in required.

• Easy to update: If you want to deploy an update of your Python code, it’s often good enough to
distribute a new version of your workbook.

• No conflicts: The installer doesn’t touch any environment variables or registry keys and will therefore
not conflict with any existing Python installations.

• Deploy key: The release command will add a deploy key as your LICENSE_KEY. A deploy key won’t
expire and end users won’t need a paid subscription.

You as a developer need to create the one-click installer and run the xlwings release command on the
workbook. Let’s go through these two steps in detail!

There is a video walkthrough at: https://www.youtube.com/watch?v=yw36VT_n1qg

24.1 Step 1: One-Click Installer

As a subscriber of one of our paid plans, you will get access to a private GitHub repository, where you can
build your one-click installer:

1) Update your requirements.txt file with your dependencies: in your repository, start by clicking on
the requirements.txt file. This will open the following screen where you can click on the pencil
icon to edit the file (if you know your way around Git, you can also clone the repository and use your
local commit/push workflow instead):

After you’re done with your edits, click on the green Commit changes button.

97

https://www.youtube.com/watch?v=yw36VT_n1qg
https://www.xlwings.org/pricing

xlwings - Make Excel Fly!, Release dev

Note: If you are unsure about your dependencies, it’s best to work locally with a virtual or
Conda environment. In the virtual/Conda environment, only install packages that you need,
then run: pip list --format=freeze.

2) On the right-hand side of the landing page, click on Releases:

On the next screen, click on Draft a new release (note, the very first time, you will see a
green button called Create a new release instead):

This will bring up the following screen, where you’ll only have to fill in a Tag version (e.g.,
1.0.0), then click on the green button Publish release:

After 3-5 minutes (you can follow the progress under the Actions tab), you’ll find the installer
ready for download under Releases (ignore the zip and tar.gz files):

Note: The one-click installer is a normal Python installation that you can use with multiple Excel workbooks.
Hence, you don’t need to create a separate installer for each workbook as long as they all work with the same
set of dependencies as defined by the requirements.txt file.

98 Chapter 24. 1-click Installer/Embedded Code

xlwings - Make Excel Fly!, Release dev

24.1. Step 1: One-Click Installer 99

xlwings - Make Excel Fly!, Release dev

24.2 Step 2: Release Command (CLI)

The release command is part of the xlwings CLI (command-line client) and will prepare your Excel file to
work with the one-click installer generated in the previous step. Before anything else:

• Make sure that you have enabled Trust access to the VBA project object model un-
der File > Options > Trust Center > Trust Center Settings > Macro Settings. You
only need to do this once and since this is a developer setting, your end users won’t need to bother about
this. This setting is needed so that xlwings can update the Excel file with the correct version of the
VBA code.

• Run the installer from the previous step. This will not interfere with your existing Python installation
as it won’t touch your environment variables or registry. Instead, it will only write to the following
folder: %LOCALAPPDATA%\<installer-name>.

• Make sure that your local version of xlwings corresponds to the version of xlwings in the
requirements.txt from the installer. The easiest way to double-check this is to run pip freeze
on a Command Prompt or Anaconda Prompt. If your local version of xlwings differs, install the same
version as the installer uses via: pip install xlwings==<version from installer>.

To work with the release command, you should have your workbook in the xlsm format next to your Python
code:

myworkbook.xlsm
mymodule_one.py
mypackage/

mymodule_two.py
...

Make sure that your Excel workbook is the active workbook, then run the following command on a Com-
mand/Anaconda Prompt:

xlwings release

100 Chapter 24. 1-click Installer/Embedded Code

xlwings - Make Excel Fly!, Release dev

If this is the first time you run this command, you will be asked a few questions. If you are shown a [Y/n],
you can hit Enter to accept the default as expressed by the capitalized letter:

• Name of your one-click installer? Type in the name of your one-click installer. If you want
to use a different Python distribution (e.g., Anaconda), you can leave this empty (but you will need to
update the xlwings.conf sheet with the Conda settings once the release command has been run).

• Embed your Python code? [Y/n] This will copy the Python code into the sheets of the Excel file.

• Hide the config sheet? [Y/n] This will hide the xlwings.conf sheet.

• Hide the sheets with the embedded Python code? [Y/n] If you embed your Python code,
this will hide all sheets with a .py ending.

• Allow your tool to run without the xlwings add-in? [Y/n] This will remove the VBA
reference to xlwings and copy in the xlwings VBA modules so that the end users don’t need to have the
xlwings add-in installed. Note that in this case, you will need to have your RunPython calls bound to
a button as you can’t use the Ribbon’s Run main button anymore.

Whatever answers you pick, you can always change them later by editing the xlwings.conf sheet or by
deleting the xlwings.conf sheet and re-running the xlwings release command. If you go with the
defaults, you only need to provide your end users with the one-click installer and the Excel workbook, no
external Python files are required.

24.3 Updating a Release

To edit your Python code, it’s easiest to work with external Python files and not with embedded code. To
stop xlwings from using the embedded code, simply delete all sheets with a .py ending and the workbook
will again use the external Python modules. Once you are done editing the files, simply run the xlwings
release command again, which will embed the updated code. If you haven’t done any changes to your
dependencies (i.e., you haven’t upgraded a package or introduced a new one), you only need to redeploy your
Excel workbook to have the end users get the update.

If you did make changes to the requirements.txt and release a new one-click installer, you will need to
have the users install the new version of the installer first.

Note: Every time you change the xlwings version in requirements.txt of your one-click installer, make
sure to upgrade your local xlwings installatino to the same version and run xlwings release again!

24.4 Embedded Code Explained

When you run the xlwings release command, your code will be embedded automatically (except if you
switch this behavior off). You can, however, also embed code directly: on a command line, run the following
command:

xlwings code embed

24.3. Updating a Release 101

xlwings - Make Excel Fly!, Release dev

This will import all Python files from the current directory and paste them into Excel sheets of the currently
active workbook. Now, you can use RunPython as usual: RunPython "import mymodule;mymodule.
myfunction()".

Note that you can have multiple Excel sheets and import them like normal Python files. Consider this exam-
ple:

You can call the main function from VBA like so:

Sub RandomNumbers()
RunPython "import random_numbers;random_numbers.main()"

End Sub

Note:

• UDFs modules don’t have to be added to the UDF Modules explicitly when using embedded code.
However, in contrast to how it works with external files, you currently need to re-import the functions
when you change them.

• While you can hide your sheets with your code, they will be written to a temporary directory in clear
text.

102 Chapter 24. 1-click Installer/Embedded Code

xlwings - Make Excel Fly!, Release dev

24.4. Embedded Code Explained 103

xlwings - Make Excel Fly!, Release dev

104 Chapter 24. 1-click Installer/Embedded Code

CHAPTER

TWENTYFIVE

XLWINGS READER

This feature requires xlwings PRO and at least v0.28.0.

xlwings PRO comes with an ultra fast Excel file reader. Compared with pandas.read_excel(), you should
be able to see speedups anywhere between 5 to 25 times when reading a single sheet. The exact speed will
depend on your content, file format, and Python version. The following Excel file formats are supported:

• xlsx / xlsm / xlam

• xlsb

• xls

Other advantages include:

• Support for named ranges

• Support for dynamic ranges via myrange.expand() or myrange.options(expand="table"), re-
spectively.

• Support for converters so you can read in ranges not just as pandas DataFrames, but also as NumPy
arrays, lists, scalar values, dictionaries, etc.

• You can read out cell errors like #DIV/0! or #N/A as strings instead of converting them all into NaN

Unlike the classic (“interactive”) use of xlwings that requires Excel to be installed, reading a file doesn’t
depend on an installation of Excel and therefore works everywhere where Python runs. However, reading
directly from a file requires the workbook to be saved before xlwings is able to pick up any changes.

25.1 Reading a specific range

To open a file in read mode, provide the mode="r" argument: xw.Book("myfile.xlsx", mode="r").
You usually want to use Book as a context manager so that the file is automatically closed and resources
cleaned up once the code leaves the body of the with statement:

import xlwings as xw

with xw.Book("myfile.xlsx", mode="r") as book:
sheet1 = book.sheets[0]
data = sheet1["A1:B2"].value

105

xlwings - Make Excel Fly!, Release dev

If you don’t use the with statement, make sure to close the book manually via book.close().

25.2 Reading an entire sheet

To read an entire sheet, use the cells property:

with xw.Book("myfile.xlsx", mode="r") as book:
sheet1 = book.sheets[0]
data = sheet1.cells.value

25.3 Converters: DataFrames etc.

You can use the usual converters, for example to read in a range as a DataFrame:

with xw.Book("myfile.xlsx", mode="r") as book:
sheet1 = book.sheets[0]
df = sheet1["A1:B2"].options("df").value
As usual, you can also provide more options
df = sheet1["A1:B2"].options("df", index=False).value

For more details, see Converters and Options.

25.4 Named Ranges

Named ranges can be accessed like so:

with xw.Book("myfile.xlsx", mode="r") as book:
sheet1 = book.sheets[0]
data = sheet1["myname"].value # get values
address = sheet1["myname"].address # get address

Alternatively, you can also access them via the Names collection:

with xw.Book("myfile.xlsx", mode="r") as book:
for name in book.names:

print(name.refers_to_range.value)

106 Chapter 25. xlwings Reader

xlwings - Make Excel Fly!, Release dev

25.5 Dynamic Ranges

You can make use of the usual range expansion to read in a range of dynamic size:

with xw.Book("myfile.xlsx", mode="r") as book:
sheet1 = book.sheets[0]
data = sheet1["A1"].expand().value

25.6 Cell errors

While xlwings reads in cell errors such as #N/A as None by default, you may want to read them in as strings
if you’re specifically looking for these by using the err_to_str option:

with xw.Book("myfile.xlsx", mode="r") as book:
sheet1 = book.sheets[0]
data = sheet1["A1:B2"].option(err_to_str=True).value

25.7 Limitations

• The reader is currently only available via pip install xlwings. Installation via conda is not yet
supported, but you can still use pip to install xlwings into a Conda environment!

• Date cells: Excel cells with a Date/Time are currently only converted to a datetime object in Python
for xlsx file formats. For xlsb format, pandas has the same restriction though (it uses pyxlsb under
the hood).

• Dynamic ranges: myrange.expand() is currently inefficient, so will slow down the reading consid-
erably if the dynamic range is big.

• Named ranges: Named ranges with sheet scope are currently not shown with their proper name: E.g.
mybook.names[0].name will show the name mylocalname instead of including the sheet name like
so Sheet1!mylocalname. Along the same lines, the names property can only be accessed via book
object, not via sheet object. Other defined names (formulas and constants) are currently not sup-
ported.

• Excel tables: Accessing data via table names isn’t supported at the moment.

• Options: except for err_to_str, non-default options are currently inefficient and will slow down the
read operation. This includes dates, empty, and numbers.

• Formulas: currently only the cell values are supported, but not the cell formulas.

• This is only a file reader, writing files is currently not supported.

25.5. Dynamic Ranges 107

xlwings - Make Excel Fly!, Release dev

108 Chapter 25. xlwings Reader

CHAPTER

TWENTYSIX

XLWINGS REPORTS

26.1 Quickstart

You can work on the sheet, book or app level:

• mysheet.render_template(**data): replaces the placeholders in mysheet

• mybook.render_template(**data): replaces the placeholders in all sheets of mybook

• myapp.render_template(template, output, **data): convenience wrapper that copies a
template book before replacing the placeholder with the values. Since this approach allows you to
work with hidden Excel instances, it is the most commonly used method for production.

Let’s go through a typical example: start by creating the following Python script report.py:

report.py
from pathlib import Path

import pandas as pd
import xlwings as xw

We'll place this file in the same directory as the Excel template
this_dir = Path(__file__).resolve().parent

data = dict(
title='MyTitle',
df=pd.DataFrame(data={'one': [1, 2], 'two': [3, 4]})

)

Change visible=False to run this in a hidden Excel instance
with xw.App(visible=True) as app:

book = app.render_template(this_dir / 'mytemplate.xlsx',
this_dir / 'myreport.xlsx',
**data)

book.to_pdf(this_dir / 'myreport.pdf')

Then create the following Excel file called mytemplate.xlsx:

Run the Python script (or run the code from a Jupyter notebook):

109

xlwings - Make Excel Fly!, Release dev

python report.py

This will copy the template and create the following output by replacing the variables in double curly braces
with the value from the Python variable:

If you like, you could also create a classic xlwings tool to call this script or you could design a GUI app by
using a framework like PySimpleGUI and turn it into an executable by using a freezer (e.g., PyInstaller).
This, however, is beyond the scope of this tutorial.

Note: By default, xlwings Reports overwrites existing values in templates if there is not enough free space
for your variable. If you want your rows to dynamically shift according to the height of your array, use
Frames.

Note: Unlike xlwings, xlwings Reports never writes out the index of pandas DataFrames. If you need the
index to appear in Excel, use df.reset_index(), see DataFrames.

See also render_templates (API reference).

110 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

26.1.1 Render Books and Sheets

Sometimes, it’s useful to render a single book or sheet instead of using the myapp.render_template
method. This is a workbook stored as Book1.xlsx:

Running the following code:

import xlwings as xw

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(title='A Demo!', table=[[1, 2], [3, 4]])
book.to_pdf()

Copies the template sheet first and then fills it in:

See also the mysheet.render_template (API reference) and mybook.render_template (API
reference).

New in version 0.22.0.

26.1. Quickstart 111

xlwings - Make Excel Fly!, Release dev

26.2 Components and Filters

26.2.1 DataFrames

To write DataFrames in a consistent manner to Excel, xlwings Reports ignores the DataFrame indices. If you
need to pass the index over to Excel, reset the index before passing in the DataFrame to render_template:
df.reset_index().

When working with pandas DataFrames, the report designer often needs to tweak the data. Thanks to filters,
they can do the most common operations directly in the template without the need to write Python code. A
filter is added to the placeholder in Excel by using the pipe character: {{ myplaceholder | myfilter
}}. You can combine multiple filters by using multiple pipe characters: they are applied from left to right,
i.e. the result from the first filter will be the input for the next filter. Let’s start with an example before listing
each filter with its details:

import xlwings as xw
import pandas as pd

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
df = pd.DataFrame({'one': [1, 2, 3], 'two': [4, 5, 6], 'three': [7, 8, 9]})
sheet.render_template(df=df)

112 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

DataFrames Filters

noheader

Hide the column headers

Example:

{{ df | noheader }}

header

Only return the header

Example:

{{ df | header }}

sortasc

Sort in ascending order (indices are zero-based)

Example: sort by second, then by first column:

{{ df | sortasc(1, 0) }}

sortdesc

Sort in descending order (indices are zero-based)

Example: sort by first, then by second column in descending order:

{{ df | sortdesc(0, 1) }}

columns

Select/reorder columns and insert empty columns (indices are zero-based)

See also: colslice

Example: introduce an empty column (None) as the second column and switch the order of the second and
third column:

{{ df | columns(0, None, 2, 1) }}

26.2. Components and Filters 113

xlwings - Make Excel Fly!, Release dev

Note: Merged cells: you’ll also have to introduce empty columns if you are using merged cells in your Excel
template.

mul, div, sum, sub

Apply an arithmetic operation (multiply, divide, sum, subtract) on a column (indices are zero-based)

Syntax:

{{ df | operation(value, col_ix[, fill_value]) }}

fill_value is optional and determines whether empty cells are included in the operation or not. To include
empty values and thus make it behave like in Excel, set it to 0.

Example: multiply the first column by 100:

{{ df | mul(100, 0) }}

Example: multiply the first column by 100 and the second column by 2:

{{ df | mul(100, 0) | mul(2, 1) }}

Example: add 100 to the first column including empty cells:

{{ df | add(100, 0, 0) }}

maxrows

Maximum number of rows (currently, only sum is supported as aggregation function)

If your DataFrame has 12 rows and you use maxrows(10, "Other") as filter, you’ll get a table that shows
the first 9 rows as-is and sums up the remaining 3 rows under the label Other. If your data is unsorted, make
sure to call sortasc/sortdesc first to make sure the correct rows are aggregated.

See also: aggsmall, head, tail, rowslice

Syntax:

{{ df | maxrows(number_rows, label[, label_col_ix]) }}

label_col_ix is optional: if left away, it will label the first column of the DataFrame (index is zero-based)

Examples:

{{ df | maxrows(10, "Other") }}
{{ df | sortasc(1)| maxrows(5, "Other") }}
{{ df | maxrows(10, "Other", 1) }}

114 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

aggsmall

Aggregate rows with values below a certain threshold (currently, only sum is supported as aggregation func-
tion)

If the values in the specified row are below the threshold values, they will be summed up in a single row.

See also: maxrows, head, tail, rowslice

Syntax:

{{ df | aggsmall(threshold, threshold_col_ix, label[, label_col_ix][, min_rows])␣
→˓}}

label_col_ix and min_rows are optional: if label_col_ix is left away, it will label the first column of
the DataFrame (indices are zero-based). min_rows has the effect that it skips rows from aggregating if it
otherwise the number of rows falls below min_rows. This prevents you from ending up with only one row
called “Other” if you only have a few rows that are all below the threshold. NOTE that this parameter only
makes sense if the data is sorted!

Examples:

{{ df | aggsmall(0.1, 2, "Other") }}
{{ df | sortasc(1) | aggsmall(0.1, 2, "Other") }}
{{ df | aggsmall(0.5, 1, "Other", 1) }}
{{ df | aggsmall(0.5, 1, "Other", 1, 10) }}

head

Only show the top n rows

See also: maxrows, aggsmall, tail, rowslice

Example:

{{ df | head(3) }}

tail

Only show the bottom n rows

See also: maxrows, aggsmall, head, rowslice

Example:

{{ df | tail(5) }}

26.2. Components and Filters 115

xlwings - Make Excel Fly!, Release dev

rowslice

Slice the rows

See also: maxrows, aggsmall, head, tail

Syntax:

{{ df | rowslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show rows 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is including and
the end is excluding):

{{ df | rowslice(2, 5) }}

Example: Show rows 2 to the end of the DataFrame:

{{ df | rowslice(2) }}

colslice

Slice the columns

See also: columns

Syntax:

{{ df | colslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show columns 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is including
and the end is excluding):

{{ df | colslice(2, 5) }}

Example: Show columns 2 to the end of the DataFrame:

{{ df | colslice(2) }}

116 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

vmerge

Merge cells vertically for adjacent cells with the same value — can be used to represent hierarchies

Note: The vmerge filter does not work in Excel tables, as Excel tables don’t support merged cells!

Note that the screenshot uses 4 Frames and the text is centered/vertically aligned in the template.

Syntax (arguments are optional):

{{ df | vmerge(col_index1, col_index2, ...) }}

Example (default): Hierarchical mode across all columns — this is helpful if the number of columns is
dynamic. In hierarchical mode, cells are merged vertically in the first column (indices are zero-based) and
cells in the next columns are merged only within the merged cells of the previous column:

{{ df | vmerge }}

Example: Hierarchical mode across the specified columns only:

{{ df | vmerge(0, 1) }}

Example: Independent mode: If you want to merge cells within columns independently of each other, use
the filter multiple times. This sample merge cells vertically in the first two columns (indices are zero-based):

{{ df | vmerge(0) | vmerge(1) }}

26.2. Components and Filters 117

xlwings - Make Excel Fly!, Release dev

formatter

Note: You can’t use formatters with Excel tables.

The formatter filter accepts the name of a function. The function will be called after writing the values to
Excel and allows you to easily style the range in a very flexible way:

{{ df | formatter("myformatter") }}

The formatter’s signature is: def myformatter(rng, df) where rng corresponds to the range where the
original DataFrame df is written to. Adding type hints (as shown in the example below) will help your editor
with auto-completion.

Note: Within the reports framework, formatters need to be decorated with xlwings.reports.formatter
(see example below)! This isn’t necessary though when you use them as part of the standard xlwings API.

Let’s run through the Quickstart example again, amended by a formatter.

Example:

from pathlib import Path

import pandas as pd
import xlwings as xw
from xlwings.reports import formatter

We'll place this file in the same directory as the Excel template
this_dir = Path(__file__).resolve().parent

@formatter
def table(rng: xw.Range, df: pd.DataFrame):

"""This is the formatter function"""
Header
rng[0, :].color = "#A9D08E"

Rows
for ix, row in enumerate(rng.rows[1:]):

if ix % 2 == 0:
row.color = "#D0CECE" # Even rows

Columns
for ix, col in enumerate(df.columns):

if 'two' in col:
rng[1:, ix].number_format = '0.0%'

(continues on next page)

118 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

data = dict(
title='MyTitle',
df=pd.DataFrame(data={'one': [1, 2, 3, 4], 'two': [5, 6, 7, 8]})

)

Change visible=False to run this in a hidden Excel instance
with xw.App(visible=True) as app:

book = app.render_template(this_dir / 'mytemplate.xlsx',
this_dir / 'myreport.xlsx',
**data)

26.2.2 Excel Tables

Using Excel tables is the recommended way to format tables as the styling can be applied dynamically across
columns and rows. You can also use themes and apply alternating colors to rows/columns. Go to Insert >
Table and make sure that you activate My table has headers before clicking on OK. Add the placeholder
as usual on the top-left of your Excel table (note that this example makes use of Frames):

Running the following script:

26.2. Components and Filters 119

xlwings - Make Excel Fly!, Release dev

import pandas as pd

nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],

columns=[f'col {i}' for i in range(ncols)])

with xw.App(visible=True) as app:
book = app.render_template('template.xlsx', 'output.xlsx', df=df)

Will produce the following report:

Headers of Excel tables are relatively strict, e.g. you can’t have multi-line headers or merged cells. To get
around these limitations, uncheck the Header Row checkbox under Table Design and use the noheader
filter (see DataFrame filters). This will allow you to design your own headers outside of the Excel Table.

Note:

• At the moment, you can only assign pandas DataFrames to tables

120 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

26.2.3 Excel Charts

To use Excel charts in your reports, follow this process:

1. Add some sample/dummy data to your Excel template:

2. If your data source is dynamic, turn it into an Excel Table (Insert > Table). Make sure you do this
before adding the chart in the next step.

3. Add your chart and style it:

4. Reduce the Excel table to a 2 x 2 range and add the placeholder in the top-left corner (in our example
{{ chart_data }}) . You can leave in some dummy data or clear the values of the Excel table:

26.2. Components and Filters 121

xlwings - Make Excel Fly!, Release dev

122 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

26.2. Components and Filters 123

xlwings - Make Excel Fly!, Release dev

5. Assuming your file is called mytemplate.xlsx and your sheet template like on the previous screen-
shot, you can run the following code:

import xlwings as xw
import pandas as pd

df = pd.DataFrame(data={'Q1': [1000, 2000, 3000],
'Q2': [4000, 5000, 6000],
'Q3': [7000, 8000, 9000]},

index=['North', 'South', 'West'])

book = xw.Book("mytemplate.xlsx")
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(chart_data=df.reset_index())

This will produce the following report, with the chart source correctly adjusted:

Note: If you don’t want the source data on your report, you can place it on a separate sheet. It’s easiest
if you add and design the chart on the separate sheet, before cutting the chart and pasting it on your report
template. To prevent the data sheet from being printed when calling to_pdf, you can give it a name that
starts with # and it will be ignored. NOTE that if you start your sheet name with ##, it won’t be printed but
also not rendered!

26.2.4 Images

Images are inserted so that the cell with the placeholder will become the top-left corner of the image. For
example, write the following placeholder into you desired cell: {{ logo }}, then run the following code:

import xlwings as xw
from xlwings.reports import Image

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(logo=Image(r'C:\path\to\logo.png'))

Note: Image also accepts a pathlib.Path object instead of a string.

If you want to use vector-based graphics, you can use svg on Windows and pdf on macOS. You can control
the appearance of your image by applying filters on your placeholder.

Available filters for Images:

• width: Set the width in pixels (height will be scaled proportionally).

124 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

26.2. Components and Filters 125

xlwings - Make Excel Fly!, Release dev

Example:

{{ logo | width(200) }}

• height: Set the height in pixels (width will be scaled proportionally).

Example:

{{ logo | height(200) }}

• width and height: Setting both width and height will distort the proportions of the image!

Example:

{{ logo | height(200) | width(200) }}

• scale: Scale your image using a factor (height and width will be scaled proportionally).

Example:

{{ logo | scale(1.2) }}

• top: Top margin. Has the effect of moving the image down (positive pixel number) or up (negative
pixel number), relative to the top border of the cell. This is very handy to fine-tune the position of
graphics object.

See also: left

Example:

{{ logo | top(5) }}

• left: Left margin. Has the effect of moving the image right (positive pixel number) or left (negative
pixel number), relative to the left border of the cell. This is very handy to fine-tune the position of
graphics object.

See also: top

Example:

{{ logo | left(5) }}

26.2.5 Matplotlib and Plotly Plots

For a general introduction on how to handle Matplotlib and Plotly, see also: Matplotlib & Plotly Charts.
There, you’ll also find the prerequisites to be able to export Plotly charts as pictures.

126 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

Matplotlib

Write the following placeholder in the cell where you want to paste the Matplotlib plot: {{ lineplot }}.
Then run the following code to get your Matplotlib Figure object:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

Plotly

Plotly works practically the same:

import plotly.express as px
import xlwings as xw

fig = px.line(x=["a","b","c"], y=[1,3,2], title="A line plot")
book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

To change the appearance of the Matplotlib or Plotly plot, you can use the same filters as with images.
Additionally, you can use the following filter:

• format: allows to change the default image format from png to e.g., vector, which will export the plot
as vector graphics (svg on Windows and pdf on macOS). As an example, to make the chart smaller
and use the vector format, you would write the following placeholder:

{{ lineplot | scale(0.8) | format("vector") }}

26.2.6 Text

You can work with placeholders in text that lives in cells or shapes like text boxes. If you have more than just
a few words, text boxes usually make more sense as they won’t impact the row height no matter how you style
them. Using the same gird formatting across worksheets is key to getting a consistent multi-page report.

26.2. Components and Filters 127

xlwings - Make Excel Fly!, Release dev

Simple Text without Formatting

New in version 0.21.4.

You can use any shapes like rectangles or circles, not just text boxes:

with xw.App(visible=True) as app:
app.render_template('template.xlsx', 'output.xlsx', temperature=12.3)

This code turns this template:

into this report:

While this works for simple text, you will lose the formatting if you have any. To prevent that, use a Markdown
object, as explained in the next section.

If you will be printing on a PDF Layout with a dark background, you may need to change the font color to
white. This has the nasty side effect that you won’t see anything on the screen anymore. To solve that issue,
use the fontcolor filter:

• fontcolor: Change the color of the whole (!) cell or shape. The primary purpose of this filter is to
make white fonts visible in Excel. For most other colors, you can just change the color in Excel itself.
Note that this filter changes the font of the whole cell or shape and only has an effect if there is just a
single placeholder—if you need to manipulate single words, use Markdown instead, see below. Black
and white can be used as word, otherwise use a hex notation of your desired color.

Example:

{{ mytitle | fontcolor("white") }}
{{ mytitle | fontcolor("#efefef") }}

128 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

Markdown Formatting

New in version 0.23.0.

You can format text in cells or shapes via Markdown syntax. Note that you can also use placeholders in the
Markdown text that will take the values from the variables you supply via the render_template method:

import xlwings as xw
from xlwings.reports import Markdown

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

{{ second_title }}

This paragraph has a line break.
Another line.
"""

The first sheet requires a shape as shown on the screenshot
sheet = xw.sheets.active
sheet.render_template(myplaceholder=Markdown(mytext),

second_title='Another Title')

This will render this template with the placeholder in a cell and a shape:

Like this (this uses the default formatting):

For more details about Markdown, especially about how to change the styling, see Markdown Formatting.

26.2. Components and Filters 129

xlwings - Make Excel Fly!, Release dev

26.2.7 Date and Time

If a placeholder corresponds to a Python datetime object, by default, Excel will format that cell as a date-
formatted cell. This isn’t always desired as the formatting depends on the user’s regional settings. To prevent
that, format the cell in the Text format or use a TextBox and use the datetime filter to format the date in the
desired format. The datetime filter accepts the strftime syntax—for a good reference, see e.g., strftime.org.

To control the language of month and weekday names, you’ll need to set the locale in your Python code.
For example, for German, you would use the following:

import locale
locale.setlocale(locale.LC_ALL, 'de_DE')

Example: The default formatting is December 1, 2020:

{{ mydate | datetime }}

Example: To apply a specific formatting, provide the desired format as filter argument. For example, to get
it in the 12/31/20 format:

{{ mydate | datetime("%m/%d/%y") }}

26.2.8 Number Format

The format filter allows you to format numbers by using the same mechanism as offered by Python’s f-
strings. For example, to format the placeholder performance=0.13 as 13.0%, you would do the following:

{{ performance | format(".1%") }}

This corresponds to the following f-string in Python: f"{performance:0.1%}". To get an introduction to
the formatting string syntax, have a look at the Python String Format Cookbook.

130 Chapter 26. xlwings Reports

https://strftime.org/
https://mkaz.blog/code/python-string-format-cookbook/

xlwings - Make Excel Fly!, Release dev

26.2.9 Frames: Multi-column Layout

Frames are vertical containers in which content is being aligned according to their height. That is, within
Frames:

• Variables do not overwrite existing cell values as they do without Frames.

• Formatting is applied dynamically, depending on the number of rows your object uses in Excel

To use Frames, insert a Note with the text <frame> into row 1 of your Excel template wherever you want a
new dynamic column to start. Frames go from one <frame> to the next <frame> or the right border of the
used range.

How Frames behave is best demonstrated with an example: The following screenshot defines two frames.
The first one goes from column A to column E and the second one goes from column F to column I, since
this is the last column that is used.

You can define and format DataFrames by formatting

• one header and

• one data row

If you use the noheader filter for DataFrames, you can leave the header away and format a single data row.
Alternatively, you could also use Excel Tables, as they can make formatting easier.

Running the following code:

import pandas as pd

df1 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df2 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]])

data = dict(df1=df1.reset_index(), df2=df2.reset_index())

with xw.App(visible=True) as app:
book = app.render_template('my_template.xlsx',

'my_report.xlsx',
**data)

will generate this report:

26.2. Components and Filters 131

xlwings - Make Excel Fly!, Release dev

26.2.10 PDF Layout

Using the layout parameter in the to_pdf() command, you can “print” your Excel workbook on profession-
ally designed PDFs for pixel-perfect reports in your corporate layout including headers, footers, backgrounds
and borderless graphics:

import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

with xw.App(visible=True) as app:
book = app.render_template('template.xlsx',

'report.xlsx',
month_year = 'May 21',
summary_text = '...')

book.to_pdf('report.pdf', layout='monthly_layout.pdf')

Note that the layout PDF either needs to consist of a single page (will be used for each reporting page) or will
need to have the same number of pages as the report (each report page will be printed on the corresponding
layout page).

To create your layout PDF, you can use any program capable of exporting a file in PDF format such as
PowerPoint or Word, but for the best results consider using a professional desktop publishing software such
as Adobe InDesign.

132 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

26.3 Markdown Formatting

This feature requires xlwings PRO and at least v0.23.0.

Markdown offers an easy and intuitive way of styling text components in your cells and shapes. For an
introduction to Markdown, see e.g., Mastering Markdown.

Markdown support is in an early stage and currently only supports:

• First-level headings

• Bold (i.e., strong)

• Italic (i.e., emphasis)

• Unordered lists

It doesn’t support nested objects yet such as 2nd-level headings, bold/italic within bullet points or nested
bullet points.

Let’s go through an example to see how everything works!

from xlwings.reports import Markdown, MarkdownStyle

mytext = """\
Title

(continues on next page)

26.3. Markdown Formatting 133

https://guides.github.com/features/mastering-markdown/

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext)

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text:

But why not make things a tad more stylish? By providing a MarkdownStyle object, you can define your
style. Let’s change the previous example like this:

from xlwings.reports import Markdown, MarkdownStyle

mytext = """\
Title

(continues on next page)

134 Chapter 26. xlwings Reports

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Styling
style = MarkdownStyle()
style.h1.font.color = (255, 0, 0)
style.h1.font.size = 14
style.h1.font.name = 'Comic Sans MS' # No, that's not a font recommendation...
style.h1.blank_lines_after = 0
style.unordered_list.bullet_character = '\N{heavy black heart}' # Emojis are␣
→˓fun!

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext, style) # <= provide your style object here

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext, style)

Here is the output of this:

You can override all properties, i.e., you can change the emphasis from italic to a red font or anything else

26.3. Markdown Formatting 135

xlwings - Make Excel Fly!, Release dev

you want:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

Markdown objects can also be used with template-based reporting, see Quickstart.

Note: macOS currently doesn’t support the formatting (bold, italic, color etc.) of Markdown text due to a
bug with AppleScript/Excel. The text will be rendered correctly though, including bullet points.

See also the API reference:

• Markdown class

• MarkdownStyle class

This feature requires xlwings PRO.

xlwings Reports is a solution for template-based Excel and PDF reporting, making the generation of pixel-
perfect factsheets really simple. xlwings Reports allows business users without Python knowledge to create
and maintain Excel templates without having to rely on a Python developer after the initial setup has been
done: xlwings Reports separates the Python code (pre- and post-processing) from the Excel template (lay-
out/formatting).

xlwings Reports supports all commonly required components:

• Text: Easily format your text via Markdown syntax.

• Tables (dynamic): Write pandas DataFrames to Excel cells and Excel tables and format them dynam-
ically based on the number of rows.

• Charts: Use your favorite charting engine: Excel charts, Matplotlib, or Plotly.

• Images: You can include both raster (e.g., png) or vector (e.g., svg) graphics, including dynamically
generated ones, e.g., QR codes or plots.

• Multi-column Layout: Split your content up into e.g. a classic two column layout by using Frames.

• Single Template: Generate reports in various languages, for various funds etc. based on a single
template.

• PDF Report: Generate PDF reports automatically and “print” the reports on PDFs in your corporate
layout for pixel-perfect results including headers, footers, backgrounds and borderless graphics.

• Easy Pre-processing: Since everything is based on Python, you can connect with literally any data
source and clean it with pandas or some other library.

• Easy Post-processing: Again, with Python you’re just a few lines of code away from sending an email
with the reports as attachment or uploading the reports to your web server, S3 bucket etc.

136 Chapter 26. xlwings Reports

CHAPTER

TWENTYSEVEN

XLWINGS SERVER

27.1 xlwings Server: VBA, Office Scripts, Google Apps Script

This feature requires xlwings PRO and at least v0.27.0.

Instead of installing Python on each end-user’s machine, you can work with a server-based Python installa-
tion. It’s essentially a web application, but uses your spreadsheet as the frontend instead of a web page in a
browser. xlwings Server doesn’t just work with the Desktop versions of Excel on Windows and macOS but
additionally supports Google Sheets and Excel on the web for a full cloud experience. xlwings Server runs
everywhere where Python runs, including Linux, Docker and WSL (Windows Subsystem for Linux). it can
run on your local machine, as a (serverless) cloud service, or on an on-premise server.

Important: This feature currently only covers parts of the RunPython API. See also Limitations and
Roadmap.

27.1.1 Why is this useful?

Having to install a local installation of Python with the correct dependencies is the number one friction when
using xlwings. Most excitingly though, xlwings Server adds support for the web-based spreadsheets: Google
Sheets and Excel on the web.

To automate Office on the web, you have to use Office Scripts (i.e., TypeScript, a typed superset of JavaScript)
and for Google Sheets, you have to use Apps Script (i.e., JavaScript). If you don’t feel like learning JavaScript,
xlwings allows you to write Python code instead. But even if you are comfortable with JavaScript, you
are very limited in what you can do, as both Office Scripts and Apps Script are primarily designed to au-
tomate simple spreadsheet tasks such as inserting a new sheet or formatting cells rather than performing
data-intensive tasks. They also make it very hard/impossible to use external JavaScript libraries and run in
environments with minimal resources.

Note: From here on, when I refer to the xlwings JavaScript module, I mean either the xlwings Apps Script
module if you use Google Sheets or the xlwings Office Scripts module if you use Excel on the web.

On the other hand, xlwings Server brings you these advantages:

137

xlwings - Make Excel Fly!, Release dev

• Work with the whole Python ecosystem: including pandas, machine learning libraries, database
packages, web scraping, boto (for AWS S3), etc. This makes xlwings a great alternative for Power
Query, which isn’t currently available for Excel on the web or Google Sheets.

• Leverage your existing development workflow: use your favorite IDE/editor (local or cloud-based)
with full Git support, allowing you to easily track changes, collaborate and perform code reviews. You
can also write unit tests using pytest.

• Remain in control of your data and code: except for the data you expose in Excel or Google Sheets,
everything stays on your server. This can include database passwords and other sensitive info such as
customer data. There’s also no need to give the Python code to end-users: the whole business logic
with your secret sauce is protected on your own infrastructure.

• Choose the right machine for the job: whether that means using a GPU, a ton of CPU cores, lots of
memory, or a gigantic hard disc. As long as Python runs on it, you can go from serverless functions
as offered by the big cloud vendors all the way to a self-managed Kubernetes cluster under your desk
(see Production Deployment).

• Headache-free deployment and maintenance: there’s only one location (usually a Linux server)
where your Python code lives and you can automate the whole deployment process with continuous
integration pipelines like GitHub actions etc.

• Cross-platform: xlwings Server works with Google Sheets, Excel on the web and the Desktop apps
of Excel on Windows and macOS.

27.1.2 Prerequisites

Excel (VBA)

• At least xlwings 0.27.0

• Either the xlwings add-in installed or a workbook that has been set up in standalone mode

Excel (Office Scripts)

• At least xlwings 0.27.0

• You need the Automate tab enabled in order to access Office Scripts. Note that Office Scripts currently
requires OneDrive for Business or SharePoint (it’s not available on the free office.com), see also Office
Scripts Requirements.

• The fetch command in Office Scripts must not be disabled by your Microsoft 365 administrator.

• Note that Office Scripts is available for Excel on the web and more recently also for Desktop Excel if
you use Microsoft 365 (macOS and Windows), you may need to be on the beta channel though.

138 Chapter 27. xlwings Server

https://docs.microsoft.com/en-gb/office/dev/scripts/overview/excel#requirements
https://docs.microsoft.com/en-gb/office/dev/scripts/overview/excel#requirements

xlwings - Make Excel Fly!, Release dev

Google Sheets

• At least xlwings 0.27.0

• New sheets: no special requirements.

• Older sheets: make sure that Chrome V8 runtime is enabled under Extensions > Apps Script >
Project Settings > Enable Chrome V8 runtime.

27.1.3 Introduction

xlwings Server consists of two parts:

• Backend: the Python part

• Frontend: the xlwings JavaScript module (for Google Sheets/Excel via Office Scripts) or the VBA
code in the form of the add-in or standalone modules (Desktop Excel via VBA)

The backend exposes your Python functions by using a Python web framework. In more detail, you need
to handle a POST request along these lines (the sample shows an excerpt that uses FastAPI as the web
framework, but it works accordingly with any other web framework like Django or Flask):

FastAPI

@app.post("/hello")
def hello(data: dict = Body):

Instantiate a Book object with the deserialized request body
book = xw.Book(json=data)

Use xlwings as usual
sheet = book.sheets[0]
sheet["A1"].value = 'Hello xlwings!'

Pass the following back as the response
return book.json()

• For Desktop Excel, you can run the web server locally and call the respective function

– from VBA (requires the add-in installed or a workbook in standalone mode) or

– from Office Scripts

• For the cloud-based spreadsheets, you have to run this on a web server that can be reached from Google
Sheets or Excel on the web, and you have to paste the xlwings JavaScript module into the respective
editor. How this all works, will be shown in detail under Cloud-based development with Gitpod.

The next section shows you how you can play around with the xlwings Server on your local desktop before
we’ll dive into developing against the cloud-based spreadsheets.

27.1. xlwings Server: VBA, Office Scripts, Google Apps Script 139

https://fastapi.tiangolo.com/

xlwings - Make Excel Fly!, Release dev

27.1.4 Local Development with Desktop Excel

The easiest way to try things out is to run the web server locally against your Desktop version of Excel.
We’re going to use FastAPI as our web framework. While you can use any web framework you like, no
quickstart command exists for these yet. However, for Flask, you can find the respective project on GitHub:
https://github.com/xlwings/xlwings-server-helloworld-flask

Start by running the following command on a Terminal/Command Prompt. Feel free to replace demo with
another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with the following files:

demo.xlsm
main.py
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via
pip install -r requirements.txt. To run this server locally, run python main.py in your Termi-
nal/Command Prompt or use your code editor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using WatchFiles
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, so let’s open demo.xlsm.

If you want to use VBA, press Alt+F11 to open the VBA editor, and in Module1, place your cursor some-
where inside the following function:

Sub SampleRemoteCall()
RunRemotePython "http://127.0.0.1:8000/hello"

End Sub

Then hit F5 to run the function—you should see Hello xlwings! in cell A1 of the first sheet.

If, however, you want to use Office Scripts, you can start from an empty file (it can be xlsx, it doesn’t have
to be xlsm), and run xlwings copy os on the Terminal/Command Prompt/Anaconda Prompt. Then add a
new Office Script and paste the code from the clipboard before clicking on Run.

To move this to production, you need to deploy the backend to a server, set up authentication, and point the
URL to the production server, see Production Deployment.

The next sections, however, show you how you can make this work with Google Sheets and Excel on the
web.

140 Chapter 27. xlwings Server

https://fastapi.tiangolo.com/
https://github.com/xlwings/xlwings-server-helloworld-flask

xlwings - Make Excel Fly!, Release dev

27.1.5 Cloud-based development with Gitpod

Using Gitpod is the easiest solution if you’d like to develop against either Google Sheets or Excel on the web.

If you want to have a development environment up and running in less than 5 minutes (even if you’re new to
web development), simply click the Open in Gitpod button to open a sample project in Gitpod (Gitpod is
a cloud-based development environment with a generous free tier):

Opening the project in Gitpod will require you to sign in with your GitHub account. A few moments later,
you should see an online version of VS Code. In the Terminal, it will ask you to paste the xlwings license key
(get a free trial key if you want to try this out in a commercial context or use the noncommercial license key
if your usage qualifies as noncommercial). Note that your browser will ask you for permission to paste. Once
you confirm your license key by hitting Enter, the server will automatically start with everything properly
configured. You can then open the app directory and look at the main.py file, where you’ll see the hello
function. This is the function we’re going to call from Google Sheets/Excel on the web in just a moment.
Let’s now look at the js folder and open the file according to your platform:

Excel (Office Scripts)

xlwings_excel.ts

Google Sheets

xlwings_google.js

Copy all the code, then switch to Google Sheets or Excel, respectively, and continue as follows:

Excel (Office Scripts)

In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a
function stub. Replace this function stub with the copied code from xlwings_excel.ts. Make sure to click
on Save script before clicking on Run: the script will run the hello function and write Hello xlwings!
into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select
+ Add button.

27.1. xlwings Server: VBA, Office Scripts, Google Apps Script 141

https://github.com/xlwings/xlwings-web-fastapi
https://www.gitpod.io
https://gitpod.io/#https://github.com/xlwings/xlwings-server-helloworld-fastapi
https://www.xlwings.org/trial
https://polyformproject.org/licenses/noncommercial/1.0.0

xlwings - Make Excel Fly!, Release dev

Google Sheets

Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.
gs with a function stub. Replace this function stub with the copied code from xlwings_google.js and
click on the Save icon. Then hit the Run button (the hello function should be automatically selected in the
dropdown to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions
it needs. Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets,
click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle
will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select
Assign Script and write hello in the text box, then hit OK.

Any changes you make to the hello function in app/main.py in Gitpod are automatically saved and
reloaded by the web server and will be reflected the next time you run the script from Google Sheets or
Excel on the web.

Note: While Excel on the web requires you to create a separate script with a function called main for each
Python function, Google Sheets allows you to add multiple functions with any name.

Please note that clicking the Gitpod button gets you up and running quickly, but if you want to save your
changes (i.e., commit them to Git), you should first fork the project on GitHub to your own account and open
it by prepending https://gitpod.io/# to your GitHub URL instead of clicking the button (this works
with GitLab and Bitbucket too). Or continue with the next section, which shows you how you can start a
project from scratch on your local machine.

An alternative for Gitpod is GitHub Codespaces, but unlike Gitpod, GitHub Codespaces only works with
GitHub.

27.1.6 Local Development with Google Sheets or Excel via Office Scripts

This section walks you through a local development workflow as an alternative to using Gitpod/GitHub
Codespaces. What’s making this a little harder than using a preconfigured online IDE like Gitpod is the fact
that we need to expose our local web server to the internet for easy development (even if we use the Desktop
version of Excel).

As before, we’re going to use FastAPI as our web framework. While you can use any web framework you
like, no quickstart command exists for these yet, so you’d have to set up the boilerplate yourself. Let’s start
with the server before turning our attention to the client side (i.e, Google Sheets or Excel on the web).

142 Chapter 27. xlwings Server

https://github.com/features/codespaces
https://fastapi.tiangolo.com/

xlwings - Make Excel Fly!, Release dev

Part I: Backend

Start a new quickstart project by running the following command on a Terminal/Command Prompt. Feel free
to replace demo with another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with a few files:

main.py
demo.xlsm
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via pip
install -r requirements.txt. In app.py, you’ll find the FastAPI boilerplate code and in main.py,
you’ll find the hello function that is exposed under the /hello endpoint.

To run this server locally, run python main.py in your Terminal/Command Prompt or use your code edi-
tor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using watchgod
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, however, to enable it to communicate with Google Sheets or Excel via
Office Scripts, you need to expose the port used by your local server (port 8000 in your example) securely to
the internet. There are many free and paid services available to help you do this. One of the more popular
ones is ngrok whose free version will do the trick (for a list of ngrok alternatives, see Awesome Tunneling):

• ngrok Installation

• ngrok Tutorial

For the sake of this tutorial, let’s assume you’ve installed ngrok, in which case you would run the following
on your Terminal/Command Prompt to expose your local server to the public internet:

$ ngrok http 8000

Note that the number of the port (8000) has to correspond to the port that is configured on your local devel-
opment server as specified at the bottom of main.py. ngrok will print something along these lines:

ngrok by @inconshreveable ␣
→˓ (Ctrl+C to quit)

Session Status online
Account name@domain.com (Plan: Free)

(continues on next page)

27.1. xlwings Server: VBA, Office Scripts, Google Apps Script 143

https://ngrok.com/
https://github.com/anderspitman/awesome-tunneling
https://ngrok.com/download
https://ngrok.com/docs

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

Version 2.3.40
Region United States (us)
Web Interface http://127.0.0.1:4040
Forwarding http://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.
→˓ngrok.io -> http://localhost:8000
Forwarding https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.
→˓ngrok.io -> http://localhost:8000

To configure the xlwings client in the next step, we’ll need the https version of the Forwarding address that
ngrok prints, i.e., https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io.

Note: When you’re not actively developing, you should stop your ngrok session by hitting Ctrl-C in the
Terminal/Command Prompt.

Part II: Frontend

Now it’s time to switch to Google Sheets or Excel! To paste the xlwings JavaScript module, follow these 3
steps:

1. Copy the xlwings JavaScript module: On a Terminal/Command Prompt on your local machine, run
the following command:

Excel (Office Scripts)

$ xlwings copy os

Google Sheets

$ xlwings copy gs

This will copy the correct xlwings JavaScript module to the clipboard so we can paste it in the next
step.

2. Paste the xlwings JavaScript module

144 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

Excel (Office Scripts)

In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a
function stub. Replace this function stub with the copied code from the previous step. Make sure to click on
Save script before clicking on Run: the script will run the hello function and write Hello xlwings!
into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select
+ Add button.

Google Sheets

Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.gs
with a function stub. Replace this function stub with the copied code from the previous step and click on the
Save icon. Then hit the Run button (the hello function should be automatically selected in the dropdown
to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions it needs.
Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets,
click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle
will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select
Assign Script and write hello in the text box, then hit OK.

3. Configuration: The final step is to configure the xlwings JavaScript module properly, see the next
section Configuration.

27.1.7 Configuration

xlwings can be configured in two ways:

• Via arguments in the runPython (via Apps Script / Office Scripts) or RunRemotePython (via VBA)
function, respectively.

• Via xlwings.conf sheet (in this case, the keys are UPPER_CASE with underscore instead of camel-
Case, see the screenshot below).

If you provide a value via config sheet and via function argument, the function argument wins. Let’s see
what the available settings are:

• url (required): This is the full URL of your function. In the above example under Lo-
cal Development with Google Sheets or Excel via Office Scripts, this would be https://
xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello, i.e., the ngrok URL with the
/hello endpoint appended.

• auth (optional): This is a shortcut to set the Authorization header. See the section about Server
Auth for the options.

• headers (optional): A dictionary (VBA) or object literal (JS) with name/value pairs. If you set the
Authorization header, the auth argument will be ignored.

27.1. xlwings Server: VBA, Office Scripts, Google Apps Script 145

xlwings - Make Excel Fly!, Release dev

• exclude (optional): By default, xlwings sends over the complete content of the whole workbook to
the server. If you have sheets with big amounts of data, this can make the calls slow or you could
even hit a timeout. If your backend doesn’t need the content of certain sheets, the exclude option will
block the sheet’s content (e.g., values, pictures, etc.) from being sent to the backend. Currently, you
can only exclude entire sheets as comma-delimited string like so: "Sheet1, Sheet2".

• include (optional): It’s the counterpart to exclude and allows you to submit the names of the sheets
whose content (e.g., values, pictures, etc.) you want to send to the server. Like exclude, include
accepts a comma-delimited string, e.g., "Sheet1,Sheet2".

• timeout (optional, VBA client only): By default, the VBA client has a timeout of 30s, you can change
it by providing the timeout in milliseconds, so if you want to increase it to 40s, provide the argument
as timeout:=40000.

Configuration Examples: Function Arguments

Excel (VBA)

No arguments:

Sub Hello()
RunRemotePython "http://127.0.0.1:8000/hello"

End Sub

Additionally providing the auth and exclude parameters as well as including a custom header:

Sub Hello()
Dim headers As New Dictionary
headers.Add "MyHeader", "my-value"
RunRemotePython "http://127.0.0.1:8000/hello", auth:="xxxxxxxxxxxx",␣

→˓exclude:="xlwings.conf, Sheet1", headers:=headers
End Sub

Excel (Office Scripts)

No arguments:

async function main(workbook: ExcelScript.Workbook) {
await runPython(
workbook,
"https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",

);
}

Additionally providing the auth and exclude parameters as well as a custom header:

146 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

async function main(workbook: ExcelScript.Workbook) {
await runPython(
workbook,
"https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",
{

auth: "xxxxxxxxxxxx",
exclude: "xlwings.conf, Sheet1",
headers: { MyHeader: "my-value" },

}
);

}

Google Sheets

No arguments:

function hello() {
runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello");

}

Additionally providing the auth and exclude parameters as well as a custom header:

function hello() {
runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello", {
auth: "xxxxxxxxxxxx",
exclude: "xlwings.conf, Sheet1",
headers: { MyHeader: "my-value" },

});
}

Configuration Examples: xlwings.conf sheet

Create a sheet called xlwings.conf and fill in key/value pairs like so:

| A | B |

1 | AUTH | xxxxxxxxxxxx |
2 | EXCLUDE | Sheet1,xlwings.conf|

27.1. xlwings Server: VBA, Office Scripts, Google Apps Script 147

xlwings - Make Excel Fly!, Release dev

27.1.8 Production Deployment

The xlwings web server can be built with any web framework and can therefore be deployed using any
solution capable of running a Python backend or function. Here is a list for inspiration (non-exhaustive):

• Fully-managed services: Heroku, Render, Fly.io, etc.

• Interactive environments: PythonAnywhere, Anvil, etc.

• Serverless functions: AWS Lambda, Azure Functions, Google Cloud Functions, Vercel, etc.

• Virtual Machines: DigitalOcean, vultr, Linode, AWS EC2, Microsoft Azure VM, Google Cloud
Compute Engine, etc.

• Corporate servers: Anything will work (including Kubernetes) as long as the respective endpoints
can be accessed from your spreadsheet app.

Serverless Functions

For examples how to configure the serverless function platform with xlwings see the following example
repositories.

• DigitalOcean Functions xlwings server

• Azure Functions xlwings server

• AWS Lambda xlwings server

Important: For production deployments, make sure to set up authentication, see Server Auth.

27.1.9 Triggers

Excel (Office Scripts)

Normally, you would use Power Automate to achieve similar things as with Google Sheets Triggers, but
unfortunately, Power Automate can’t run Office Scripts that contain a fetch command like xlwings does, so
for the time being, you can only trigger xlwings calls manually on Excel on the web. Alternatively, you can
open your Excel file with Google Sheets and leverage the Triggers that Google Sheets offers. This, however,
requires you to store your Excel file on Google Drive.

148 Chapter 27. xlwings Server

https://www.heroku.com
https://www.render.com
https://www.fly.io
https://www.pythonanywhere.com
https://www.anvil.works
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://vercel.com
https://digitalocean.com
https://www.vultr.com
https://www.linode.com/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute
https://cloud.google.com/compute
https://github.com/xlwings/xlwings-server-digitaloceanfunctions
https://github.com/xlwings/xlwings-server-azurefunctions
https://github.com/xlwings/xlwings-server-awslambda

xlwings - Make Excel Fly!, Release dev

Google Sheets

For Google Sheets, you can take advantage of the integrated Triggers (accessible from the menu on the left-
hand side of the Apps Script editor). You can trigger your xlwings functions on a schedule or by an event,
such as opening or editing a sheet.

27.1.10 Workaround for missing features

In the classic version of xlwings, you can use the .api property to fall back to the underlying automation
library and work around missing features in xlwings. That’s not possible with xlwings Server.

Instead, call the book.app.macro() method to run functions in JavaScript or VBA, respectively.

Excel (VBA)

' The first parameter has to be the workbook, the others
' are those parameters that you will provide via Python
' NOTE: you're limited to 10 parameters
Sub WrapText(wb As Workbook, sheetName As String, cellAddress As String)

wb.Worksheets(sheetName).Range(cellAddress).WrapText = True
End Sub

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("'MyWorkbook.xlsm'!WrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

Excel (Office Scripts)

// Note that you need to register your function before calling runPython
async function main(workbook: ExcelScript.Workbook) {
registerCallback(wrapText);
await runPython(workbook, "url", { auth: "DEVELOPMENT" });

}

// The first parameter has to be the workbook, the others
// are those parameters that you will provide via Python
function wrapText(
workbook: ExcelScript.Workbook,
sheetName: string,
cellAddress: string

) {
const range = workbook.getWorksheet(sheetName).getRange(cellAddress);

(continues on next page)

27.1. xlwings Server: VBA, Office Scripts, Google Apps Script 149

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

range.getFormat().setWrapText(true);
}

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("wrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

Google Sheets

// The first parameter has to be the workbook, the others
// are those parameters that you will provide via Python
function wrapText(workbook, sheetName, cellAddress) {

workbook.getSheetByName(sheetName).getRange(cellAddress).setWrap(true);
}

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("wrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

27.1.11 Limitations

• Currently, only a subset of the xlwings API is covered, mainly the Range and Sheet classes with a focus
on reading and writing values and sending pictures (including Matplotlib plots). This, however, in-
cludes full support for type conversion including pandas DataFrames, NumPy arrays, datetime objects,
etc.

• You are moving within the web’s request/response cycle, meaning that values that you write to a range
will only be written back to Google Sheets/Excel once the function call returns. Put differently, you’ll
get the state of the sheets at the moment the call was initiated, but you can’t read from a cell you’ve
just written to until the next call.

• You will need to use the same xlwings version for the Python package and the JavaScript module,
otherwise, the server will raise an error.

• For users with no experience in web development, this documentation may not be quite good enough
just yet.

Platform-specific limitations:

150 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

Excel on the web

• xlwings relies on the fetch command in Office Scripts that cannot be used via Power Automate and
that can be disabled by your Microsoft 365 administrator.

• While Excel on the web feels generally slow, it seems to have an extreme lag depending on where in the
world you open the browser with Excel on the web. For example, a hello world call takes ~4.5s if you
open a browser in Amsterdam/Netherlands while it takes ~8.5s if you do it Buenos Aires/Argentina.

• Platform limits with Office Scripts apply.

Google Sheets

• Quotas for Google Services apply.

27.1.12 Roadmap

• Complete the RunPython API by adding features that currently aren’t supported yet, e.g., charts,
shapes, etc.

• Perfomance improvements

27.2 Office.js Add-ins

Requirements

• xlwings edition: PRO

• Server OS: Windows, macOS, Linux

• Excel platform: Windows, macOS, Web

• Google Sheets: not supported

• Minimum xlwings version: 0.29.0

• Minimum Excel version: 2016 or 365

Office.js add-ins (officially called Office add-ins) are web apps that traditionally require you to use the Excel
JavaScript API by writing JavaScript or TypeScript code. Note that the Excel JavaScript API (“Office.js”)
is not to be confused with Office Scripts, which is a layer on top of Office.js. While Office Scripts is much
easier to use than Office.js, it only works for writing scripts that run via Excel’s Automate tab and can’t be
used to create add-ins. This documentation will teach you how to build Office.js add-ins with xlwings Server.

Note: Office.js add-ins are just one option to talk to xlwings Server. The other options are VBA, Office
Scripts, and Google Apps Script, see xlwings Server documentation.

27.2. Office.js Add-ins 151

https://docs.microsoft.com/en-us/office/dev/scripts/testing/platform-limits
https://developers.google.com/apps-script/guides/services/quotas
https://learn.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
https://learn.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
https://learn.microsoft.com/en-us/office/dev/scripts/overview/excel

xlwings - Make Excel Fly!, Release dev

27.2.1 Why is this useful?

Compared to using Office.js’ original Node.js implementation, using Office.js with xlwings has the following
advantages:

• No need to learn JavaScript and the Excel JavaScript API. Instead, use the familiar xlwings syntax in
Python.

• No need to install Node.js or use any JavaScript build tool such as Webpack.

• The Python source code stays on your server and can’t be accessed by the end-user.

• xlwings alerts saves you from having to use the Office dialog API and from designing your own HTML
for simple pop-ups.

• Error handling is built-in.

Note: While xlwings will reduce the amount of JavaScript code to almost zero, you still have to use HTML
and CSS if you want to use a task pane. However, task panes aren’t mandatory as you can link your function
directly to a Ribbon button, see Commands.

27.2.2 Introduction to Office.js add-ins

Office.js add-ins are web apps that can interact with Excel. In their simplest form, they consist of just two
files:

• Manifest XML file: This is a configuration file that is loaded in Excel (either manually during devel-
opment or via the add-in store for production). It defines the Ribbon buttons and includes the URL to
the backend/web server.

• HTML file: The HTML file has to be served by a web server and defines the layout and functionality
of the task pane as well as commands (commands are functions that are directly linked to Ribbon
buttons).

To get a better understanding about how the simplest possible add-in works (without Python or xlwings), have
a look at the following repo: https://github.com/xlwings/officejs-helloworld. Follow the repo’s README
to load the add-in in development mode, a process that is called sideloading.

Now that you know the basic structure of an Office.js add-in, let’s see how we can replace the Excel JavaScript
API with xlwings.runPython() calls!

152 Chapter 27. xlwings Server

https://learn.microsoft.com/en-us/office/dev/add-ins/develop/dialog-api-in-office-add-ins
https://github.com/xlwings/officejs-helloworld

xlwings - Make Excel Fly!, Release dev

27.2.3 Quickstart

This quickstart shows you how you can call Python both from a button on the task pane and directly from a
Ribbon button. xlwings can be used with any web framework and the quickstart repo therefore contains var-
ious implementations such as app/server_fastapi.py or app/server_starlette.py: you only need
to use one of them. At the end of this quickstart, you’ll have a working environment for local development.

1. Download quickstart repo: Use Git to clone the following repository: https://github.com/xlwings/
xlwings-officejs-quickstart. If you don’t want to use Git, you could also download the repo by clicking
on the green Code button, followed by Download ZIP, then unzipping it locally.

2. Update manifest: If you want to build your own add-in based off this quick-
start repo, replace <Id>xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx</Id> in
manifest-xlwings-officejs-quickstart.xml with a unique ID that you can create by
visiting https://www.guidgen.com or by running the following command in Python: import
uuid;print(uuid.uuid4()).

3. Create certificates: Generate development certificates as the development server needs to be accessed
via https instead of http (even on localhost). Otherwise, icons and alerts won’t work and Excel on the
web won’t load the manifest at all. Download mkcert (pick the correct file according to your platform),
rename the file to mkcert, then run the following commands from a Terminal/Command Prompt (make
sure you’re in the same directory as mkcert):

$./mkcert -install
$./mkcert localhost 127.0.0.1 ::1

This will generate two files localhost+2.pem and localhost+2-key.pem: move them to the certs
directory in the root of the xlwings-officejs-quickstart quickstart repo.

4. Install Python dependencies:

• Local Python installation: create a virtual or Conda environment and install the Python depen-
dencies by running: pip install -r requirements.txt.

• Docker: skip this step.

5. xlwings license key:

Get a free trial license key and install it as follows:

• Local Python installation: xlwings license update -k your-license-key

• Docker: set the license key as XLWINGS_LICENSE_KEY environment variable. The easiest way
to do this is to run cp .env.template .env in a Terminal/Command Prompt and fill in the
license key in the .env file.

6. Start web app:

• Local Python installation: with the previously created virtual/Conda env activated, start the
Python development server by running the Python file with the desired implementation. For
example, to run the backend with FastAPI, run the following: python app/server_fastapi.
py. You could also run the file via the capabilities offered by your editor.

27.2. Office.js Add-ins 153

https://github.com/xlwings/xlwings-officejs-quickstart
https://github.com/xlwings/xlwings-officejs-quickstart
https://www.guidgen.com
https://github.com/FiloSottile/mkcert/releases
https://www.xlwings.org/trial

xlwings - Make Excel Fly!, Release dev

• Docker: run docker compose up instead. Note that Docker by default uses the FastAPI imple-
mentation, so you’ll need to edit docker-compose.yaml if you want to change that.

If you see the following, the server is up and running:

$ python app/server_fastapi.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/
→˓xlwings-officejs-quickstart']
INFO: Uvicorn running on https://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [56708] using WatchFiles
INFO: Started server process [56714]
INFO: Waiting for application startup.
INFO: Application startup complete.

7. Sideload the add-in: Manually load manifest-xlwings-officejs-quickstart.xml in Excel.
This is called sideloading and the process differs depending on the platform you’re using, see Office.js
docs for instructions. Once you’ve sideloaded the manifest, you’ll see the Quickstart tab in the
Ribbon.

8. Time to play: You’re now ready to play around with the add-in in Excel and make changes to the
source code under app/server_fastapi.py or under the respective file of your framework. Every
time you edit and save the Python code, the development server will restart automatically so that you
can instantly try out the code changes in Excel. If you make changes to the HTML file, you’ll need to
right-click on the task pane and select Reload.

With a working development environment, let’s see how everything works step-by-step. Let’s start with
looking at the Python backend server.

27.2.4 Backend

The backend exposes your Python functions by using a Python web framework: you need to handle a POST
request as shown in the following sample. Please have a look at the respective Python file in the app directory
for the full context:

FastAPI

from fastapi import Body, FastAPI

app = FastAPI()

@app.post("/hello")
async def hello(data: dict = Body):

Instantiate a Book object with the deserialized request body
book = xw.Book(json=data)

Use xlwings as usual
sheet = book.sheets[0]

(continues on next page)

154 Chapter 27. xlwings Server

https://learn.microsoft.com/en-us/office/dev/add-ins/testing/test-debug-office-add-ins#sideload-an-office-add-in-for-testing
https://learn.microsoft.com/en-us/office/dev/add-ins/testing/test-debug-office-add-ins#sideload-an-office-add-in-for-testing

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

cell = sheet["A1"]
if cell.value == "Hello xlwings!":

cell.value = "Bye xlwings!"
else:

cell.value = "Hello xlwings!"

Pass the following back as the response
return book.json()

Flask

from flask import Flask, jsonify, request

app = Flask(__name__)

@app.route("/hello", methods=["POST"])
def hello():

Instantiate a Book object with the deserialized request body
book = xw.Book(json=request.json)

Use xlwings as usual
sheet = book.sheets[0]
cell = sheet["A1"]
if cell.value == "Hello xlwings!":

cell.value = "Bye xlwings!"
else:

cell.value = "Hello xlwings!"

Pass the following back as the response
return jsonify(book.json())

Starlette

from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route

async def hello(request):
Instantiate a Book object with the deserialized request body
data = await request.json()
book = xw.Book(json=data)

Use xlwings as usual
(continues on next page)

27.2. Office.js Add-ins 155

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

sheet = book.sheets[0]
cell = sheet["A1"]
if cell.value == "Hello xlwings!":

cell.value = "Bye xlwings!"
else:

cell.value = "Hello xlwings!"

Pass the following back as the response
return JSONResponse(book.json())

routes = [
Route("/hello", hello, methods=["POST"]),

]

app = Starlette(debug=True, routes=routes)

Let’s now move over to the frontend to learn how we can call these Python functions from the Office.js add-in!

27.2.5 Frontend

In the following code snippet (an excerpt from app/taskpane.html), the highlighted lines represent the
relevant ones—the rest is just HTML boilerplate.

Listing 1: app/taskpane.html (excerpt)

<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>My Task Pane</title>
<!-- Load office.js and xlwings.min.js -->
<script type="text/javascript" src="https://appsforoffice.microsoft.com/lib/

→˓1/hosted/office.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/xlwings/

→˓xlwings@0.30.1/xlwingsjs/dist/xlwings.min.js"></script>
</head>

<body>
<!-- Put a button on the task pane -->
<button id="btn-hello-taskpane" type="button">Run hello</button>
<script>

// Initialize Office.js
Office.onReady(function (info) { });

(continues on next page)

156 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

// Add click event listeners to button
document.getElementById("btn-hello-taskpane").addEventListener("click",␣

→˓helloTaskpane);

// Use runPython with the desired endpoint of your web app
function helloTaskpane() {

xlwings.runPython(window.location.origin + "/hello");
}

</script>
</body>

</html>

Let’s see what’s happening here by walking through the numbered sections!

Load JavaScript libraries

Before anything else, we need to load office.js and xlwings.min.js in the head of the HTML
file. While office.js is giving us access to the Excel JavaScript API, xlwings.min.js will make the
runPython function available.

For xlwings.min.js, make sure to adjust the version number after the @ sign to match the version of the
xlwings Python package you’re using on the backend. In the quickstart repo, this would have to correspond
to the version of xlwings defined in requirements.txt.

While xlwings.min.js is not available via npm package manager at the moment, you could also download
the file and its corresponding map file (by adding .map to the URL). Then refer to the file path of xlwings.
min.js instead of using the URL of the CDN.

Note, however, that office.js requires you to use the CDN version in case you want to distribute the add-in
publicly via the add-in store.

27.2. Office.js Add-ins 157

xlwings - Make Excel Fly!, Release dev

Put a button on the task pane

Putting a button on the task pane is a single line of HTML. Note the id that we will need under to attach a
click event handler to it. To keep things as simple as possible, the button isn’t styled in any way using CSS,
so it will look spectacularly boring.

Initialize Office.js

In the body, as the first line in your script tag, you have to initialize Office.js.

Usually, this is all you need to worry about, but if you want to block your addin from running on certain
versions of Excel, Office.onReady() is where you would handle this, see the official docs.

Add click event listeners

To define what should happen when you click the button, you need to attach an event listener to it.
In our case, we’re telling the event listener to call the helloTaskpane function when the button with
id=btn-hello-taskpane is clicked.

Use runPython

To call a function of your backend, you have to provide the xlwings.runPython() function the respec-
tive URL. Use window.location.origin + "/myendpoint" instead of hardcoding the full URL. This
will ensure that everything still works when you change the URL, e.g., when moving from development to
production. Note that runPython accepts optional arguments, such as auth to send an Authorization header:

function hello() {
xlwings.runPython(window.location.origin + "/hello", { auth: "mytoken" });

}

• For more details on the optional runPython arguments, see xlwings Server Config.

• For more details on authentication, see xlwings Server Auth.

27.2.6 Task pane

To have a Ribbon button show the task pane, you’ll need to configure it properly in the mani-
fest. The relevant blocks are the following (these lines are out of context, so search for them in
manifest-xlwings-officejs-quickstart.xml):

<!-- ... -->

<Control xsi:type="Button" id="TaskpaneButton">
<!-- ... -->
<!-- Action type must be ShowTaskpane -->
<Action xsi:type="ShowTaskpane">

(continues on next page)

158 Chapter 27. xlwings Server

https://learn.microsoft.com/en-us/office/dev/add-ins/develop/initialize-add-in

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

<TaskpaneId>ButtonId1</TaskpaneId>
<!-- resid must point to a Url Resource -->
<SourceLocation resid="Taskpane.Url"/>

</Action>
</Control>

<!-- ... -->

<!-- This must point to the HTML document with the task pane -->
<bt:Url id="Taskpane.Url" DefaultValue="https://127.0.0.1:8000/taskpane.html"/>

27.2.7 Commands

To understand how you can call xlwings.runPython() directly from a Ribbon button, have a look at
Sample 2 in app/taskpane.html in the quickstart repo. Its body reads as follows:

function helloRibbon(event) {
xlwings.runPython(window.location.origin + "/hello");
event.completed();

}
Office.actions.associate("hello-ribbon", helloRibbon);

The code looks almost the same as when you call it from a button on the task pane with these differences:

• You need to provide event as argument

• You need to call event.completed() at the end of the function

• You have to associate the function (helloRibbon) with the id (hello-ribbon) that you use in the
manifest via Office.actions.associate()

The relevant blocks in the manifest are the following (again, these lines are out of context, so search for them
in manifest-xlwings-officejs-quickstart.xml). Note that compared to task panes, you need the
additional reference to FunctionFile:

<!-- ... -->

<!-- resid must point to a Url Resource -->
<FunctionFile resid="Taskpane.Url"/>

<!-- ... -->

<Control xsi:type="Button" id="MyFunctionButton">
<!-- ... -->
<!-- Action type must be ExecuteFunction -->
<Action xsi:type="ExecuteFunction">
<!-- This is the name that you use in Office.actions.associate()

(continues on next page)

27.2. Office.js Add-ins 159

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

to connect it to a function -->
<FunctionName>hello-ribbon</FunctionName>

</Action>
</Control>

Having seen how you can call Python from task panes and Ribbon buttons, let’s move on with alerts!

27.2.8 Alerts

Alerts require a bit of boilerplate on the Python side. Because alerts are used for unhandled exceptions, you
should implement the boilerplate code even if you don’t use alerts in your own code. The quickstart repo
already contains all the code.

Alerts boilerplate

The boilerplate consists of:

• Implementing the /xlwings/alert endpoint

• Giving your templating engine access to the xlwings-alert.html template, which is included in
the xlwings Python package under xlwings.html

Here is the relevant code. As usual, have a look at app/server_fastapi.py for the full context.

FastAPI + Jinja2

import jinja2
import markupsafe # This is a dependency of Jinja2
from fastapi import Request
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates

@app.get("/xlwings/alert", response_class=HTMLResponse)
async def alert(

request: Request, prompt: str, title: str, buttons: str, mode: str,␣
→˓callback: str
):

"""This endpoint is required by myapp.alert() and to show unhandled␣
→˓exceptions"""
return templates.TemplateResponse(

"xlwings-alert.html",
{

"request": request,
"prompt": markupsafe.Markup(prompt.replace("\n", "
")),
"title": title,

(continues on next page)

160 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

"buttons": buttons,
"mode": mode,
"callback": callback,

},
)

Add the xlwings alert template as source by making use of an additional␣
→˓template loader
loader = jinja2.ChoiceLoader(

[
jinja2.FileSystemLoader("mytemplates"), # this is your default␣

→˓templates folder
jinja2.PackageLoader("xlwings", "html"),

]
)
templates = Jinja2Templates(directory="mytemplates", loader=loader)

Starlette + Jinja2

import jinja2
import markupsafe # This is a dependency of Jinja2
from starlette.templating import Jinja2Templates

async def alert(request):
"""Boilerplate required by book.app.alert() and to show unhandled exceptions"

→˓""
params = request.query_params
return templates.TemplateResponse(

"xlwings-alert.html",
{

"request": request,
"prompt": markupsafe.Markup(params["prompt"].replace("\n", "
")),
"title": params["title"],
"buttons": params["buttons"],
"mode": params["mode"],
"callback": params["callback"],

},
)

Add xlwings.html as additional source for templates so the /xlwings/alert␣
→˓endpoint
will find xlwings-alert.html. "mytemplates" can be a dummy if the app doesn't␣
→˓use
own templates

(continues on next page)

27.2. Office.js Add-ins 161

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

loader = jinja2.ChoiceLoader(
[

jinja2.FileSystemLoader("mytemplates"),
jinja2.PackageLoader("xlwings", "html"),

]
)
templates = Jinja2Templates(directory="mytemplates", loader=loader)

routes = [
Route("/xlwings/alert", alert),

]

With the boilerplate in place, you’re now ready to use alerts, as we’ll see next.

Showing alerts

Note: Except in Excel on the web, alerts are non-modal, i.e., allow the user to continue using Excel while
the alert is open. This is a limitation of Office.js.

Calling an alert with an OK button is as simple as:

book is an xlwings Book object
book.app.alert(

"Some text",
title="Some Title", # optional

)

Clicking either the “x” at the top right or the OK button will close the alert and you’re done with it.

However, if you need to react differently depending on whether the user clicks on OK or Cancel, you can
supply a callback argument that accepts the name of a JavaScript function. To understand how this works,
consider the following example:

book.app.alert(
prompt="This will capitalize all sheet names!",
title="Are you sure?",
buttons="ok_cancel",
callback="capitalizeSheetNames",

)

When the user clicks a button, it will call the JavaScript function capitalizeSheetNames with the name
of the clicked button as argument in lower case. For example, if the user clicks on Cancel, it would
call capitalizeSheetNames("cancel"). Depending on the answer, you can run another xlwings.
runPython() call or do something directly in JavaScript. To make this work, we’ll need to add our callback

162 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

function to the script tag in the body of our HTML file. You’ll also need to register that function using the
xlwings.registerCallback function:

function capitalizeSheetNames(arg) {
if (arg == "ok") {

xlwings.runPython(window.location.origin + "/capitalize-sheet-names");
} else {

// cancel
}

}
// Make sure to register the callback function
xlwings.registerCallback(capitalizeSheetNames);

As usual, to get a better understanding, check out app/taskpane.html and app/server_fastapi.py for
the full context and play around with the respective button on the task pane.

27.2.9 Debugging

If you need to debug errors on the client side, you’ll need to open the developer tools of the browser that’s
being used so you can inspect the error messages in the console. Depending on the platform and version of
Excel, the process is different:

• Excel on the web: open the developer tools of the browser you’re using. For example, in Chrome you
can type Ctrl+Shift+I (Windows) or Cmd-Option-I (macOS), then switch to the Console tab.

• Desktop Excel on Windows: right-click on the task pane and select Inspect, then switch to the Con-
sole tab.

• Desktop Excel on macOS: to be able to get the Web Inspector showing up, you’ll need to run the
following command in a Terminal once:

defaults write com.microsoft.Excel OfficeWebAddinDeveloperExtras -bool true

Then, after restarting Excel, right-click on the task pane and select Inspect Element and switch to
the Console tab. Note that after running this command, you’ll also see an empty page loaded when
you call a command from the Ribbon button directly. To hide it, you would need to disable debugging
again by running the same command in the Terminal with false instead of true.

27.2.10 Production deployment

• Make sure that the Id in the manifest is your own unique UUID.

• Make sure you have authentication implemented.

• The Python backend can be deployed anywhere you like, there are some suggestions under xlwings
Server production deployment.

• Once you have your backend deployed, you’ll need to replace https://127.0.0.1:8000 with your
production URL. You may want to keep multiple copies of the manifest, one for local development
and one for each environment like production.

27.2. Office.js Add-ins 163

xlwings - Make Excel Fly!, Release dev

• Depending on whether you want to deploy your add-in within your company or to the whole
world, there’s a different process for deploying the manifest XML:

– Company-internal (must be done by a Microsoft 365 admin): on office.com, click on Ad-
min > Show all > Settings > Integrated Apps > Add-ins. There, click on the Deploy Add-in
button which allows you to upload the manifest or point to it via URL.

– Public: you’ll need to submit your add-in for approval to Microsoft AppSource, see: https:
//learn.microsoft.com/en-us/azure/marketplace/submit-to-appsource-via-partner-center

27.2.11 Workaround for missing features

In the classic version of xlwings, you can use the .api property to fall back to the underlying automation
library and work around missing features in xlwings. That’s not possible with xlwings Server.

Instead, call the book.app.macro() method to run functions in JavaScript. The first parameter will have
to be the request context, which gives you access to the Excel JavaScript API. Note that you have to register
JavaScript functions that you want to call from Python via xlwings.registerCallback() (last line):

async function wrapText(context, sheetName, cellAddress) {
// The first parameter has to be the request context, the others
// are those parameters that you will provide via Python
const range = context.workbook.worksheets
.getItem(sheetName)
.getRange(cellAddress);

range.format.wrapText = true;
await context.sync();

}
// Make sure to register the function as callback
xlwings.registerCallback(wrapText);

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("wrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

27.2.12 Limitations

• Currently, only a subset of the xlwings API is covered, mainly the Range and Sheet classes with a
focus on reading and writing values. This, however, includes full support for type conversion including
pandas DataFrames, NumPy arrays, datetime objects, etc.

• Excel 2016 and 2019 won’t support automatic Date conversion when reading from Excel to Python.
It works properly though on Excel 2021 and Excel 365 and for previous versions, you can use ei-
ther xw.to_datetime() or the datetime.date or datetime.datetime converters. For pandas
DataFrames, you can use the parse_dates converter.

164 Chapter 27. xlwings Server

https://learn.microsoft.com/en-us/azure/marketplace/submit-to-appsource-via-partner-center
https://learn.microsoft.com/en-us/azure/marketplace/submit-to-appsource-via-partner-center

xlwings - Make Excel Fly!, Release dev

• You are moving within the web’s request/response cycle, meaning that values that you write to a range
will only be written back to Google Sheets/Excel once the function call returns. Put differently, you’ll
get the state of the sheets at the moment the call was initiated, but you can’t read from a cell you’ve
just written to until the next call.

• You will need to use the same xlwings version for the Python package and the JavaScript module,
otherwise, the server will raise an error.

27.3 Office.js Custom Functions

Requirements

• xlwings edition: PRO

• Server OS: Windows, macOS, Linux

• Excel platform: Windows, macOS, Web

• Google Sheets: not supported (planned)

• Minimum xlwings version: 0.30.0

• Minimum Excel version: 2021 or 365

27.3.1 Quickstart

Custom functions are based on Office.js add-ins. It’s therefore a good idea to revisit the Office.js Add-in docs.

1. Follow the full Office.js Add-in Quickstart. At the end of it, you should have the backend server running
and the manifest sideloaded.

2. That’s it! You can now use the custom functions that are defined in the quickstart project under app/
custom_functions.py: e.g., type =HELLO("xlwings") into a cell and hit Enter—you’ll be greeted
by Hello xlwings!.

As long as you don’t change the name or arguments of the function, you can edit the code in the app/
custom_functions.py file and see the effect immediately by recalculating your formula. You can re-
calculate by either editing the cell and hitting Enter again, or by hitting Ctrl-Alt-F9 (Windows) or
Ctrl-Option-F9 (macOS). If you add new functions or make changes to function names or arguments
of existing functions, you’ll need to sideload the add-in again.

27.3. Office.js Custom Functions 165

xlwings - Make Excel Fly!, Release dev

27.3.2 Basic syntax

As you could see in the quickstart sample, the simplest custom function only requires the @pro.func deco-
rator:

from xlwings import pro

@pro.func
def hello(name):

return f"Hello {name}!"

Note: The decorators for Office.js are imported from xlwings.pro instead of xlwings and therefore read
pro.func instead of xw.func. See also Custom functions vs. legacy UDFs.

27.3.3 Python modules

By default, xlwings expects the functions to live in a module called custom_functions.py.

• If you want to call your module differently, import it like so: import your_module as
custom_functions

• If you want to store your custom functions across different modules/packages, import them into
custom_functions.py:

custom_functions.py
from mypackage.subpackage import func1, func2
from mymodule import func3, func4

Note that custom_functions needs to be imported where you define the required endpoints in your web
framework, see Backend and Manifest.

27.3.4 pandas DataFrames

By using the @pro.arg and @pro.ret decorators, you can apply converters and options to arguments and
the return value, respectively.

For example, to read in the values of a range as pandas DataFrame and return the correlations without writing
out the header and the index, you would write:

from xlwings import pro

@pro.func
@pro.arg("df", pd.DataFrame, index=False, header=False)
@pro.ret(index=False, header=False)
def correl2(df):

return df.corr()

166 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

For an overview of the available converters and options, have a look at Converters and Options.

27.3.5 Doc strings

To describe your function and its arguments, you can use a function docstring or the arg decorator, respec-
tively:

from xlwings import pro

@pro.func
@pro.arg("name", doc='A name such as "World"')
def hello(name):

"""This is a classic Hello World example"""
return f"Hello {name}!"

These doc strings will appear in Excel’s function wizard/formula builder. Note that the name of the arguments
will automatically be shown when typing the formula into a cell (intellisense).

27.3.6 Date and time

Depending on whether you’re reading from Excel or writing to Excel, there are different tools available to
work with date and time.

Reading

In the context of custom functions, xlwings will detect numbers, strings, and booleans but not cells with a
date/time format. Hence, you need to use converters. For single datetime arguments do this:

import datetime as dt
from xlwings import pro

@pro.func
@pro.arg("date", dt.datetime)
def isoformat(date):

return date.isoformat()

Instead of dt.datetime, you can also use dt.date to get a date object instead.

If you have multiple values that you need to convert, you can use the xlwings.to_datetime() function:

import datetime as dt
import xlwings as xw
from xlwings import pro

@pro.func
def isoformat(dates):

dates = [xw.to_datetime(d) for d in dates]
return [d.isoformat() for d in dates]

27.3. Office.js Custom Functions 167

xlwings - Make Excel Fly!, Release dev

And if you are dealing with pandas DataFrames, you can simply use the parse_dates option. It behaves
the same as with pandas.read_csv():

import pandas as pd
from xlwings import pro

@pro.func
@pro.arg("df", pd.DataFrame, parse_dates=[0])
def timeseries_start(df):

return df.index.min()

Like pandas.read_csv(), you could also provide parse_dates with a list of columns names instead of
indices.

Writing

When writing datetime object to Excel, xlwings automatically formats the cells as date if your version of
Excel supports data types, so no special handling is required:

import xlwings as xw
import datetime as dt

@pro.func
def pytoday():

return dt.date.today()

By default, it will format the date according to the content language of your Excel instance, but you can also
override this by explicitly providing the date_format option:

import xlwings as xw
import datetime as dt

@pro.func
@pro.ret(date_format="yyyy-m-d")
def pytoday():

return dt.date.today()

For the accepted date_format string, consult the official Excel documentation.

Note: Some older builds of Excel don’t support date formatting and will display the date as date serial
instead, requiring you format it manually. See also Limitations.

168 Chapter 27. xlwings Server

https://support.microsoft.com/en-us/office/format-numbers-as-dates-or-times-418bd3fe-0577-47c8-8caa-b4d30c528309

xlwings - Make Excel Fly!, Release dev

27.3.7 Namespace

A namespace groups related custom functions together by prepending the namespace to the function name,
separated with a dot. For example, to have NumPy-related functions show up under the numpy namespace,
you would do:

import numpy as np
from xlwings import pro

@pro.func(namespace="numpy")
def standard_normal(rows, columns):

rng = np.random.default_rng()
return rng.standard_normal(size=(rows, columns))

This function will be shown as NUMPY.STANDARD_NORMAL in Excel.

Sub-namespace

You can create sub-namespaces by including a dot like so:

@pro.func(namespace="numpy.random")

This function will be shown as NUMPY.RANDOM.STANDARD_NORMAL in Excel.

Default namespace

If you want all your functions to appear under a common namespace, you can include the following line
under the ShortStrings sections in the manifest XML:

<bt:String id="Functions.Namespace" DefaultValue="XLWINGS"/>

Have a look at manifest-xlwings-officejs-quickstart.xml where the respective line is commented
out.

If you define a namespace as part of the function decorator while also having a default namespace defined,
the namespace from the function decorator will define the sub-namespace.

27.3.8 Array Dimensions

If you want your function to accept arguments of any dimensions (as single cell or one- or two-dimensional
ranges), you may need to use the ndim option to make your code work in every case. Likewise, there’s an
easy trick to return a simple list in a vertical orientation by using the transpose option.

Arguments

Depending on the dimensionality of the function parameters, xlwings either delivers a scalar, a list, or a
nested list:

• Single cells (e.g., A1) arrive as scalar, i.e., number, string, or boolean: 1 or "text", or True

• A one-dimensional (vertical or horizontal!) range (e.g. A1:B1 or A1:A2) arrives as list: [1, 2]

• A two-dimensional range (e.g., A1:B2) arrives as nested list: [[1, 2], [3, 4]]

27.3. Office.js Custom Functions 169

xlwings - Make Excel Fly!, Release dev

This behavior is not only consistent in itself, it’s also in line with how NumPy works and is often what you
want: for example, you can directly loop over a vertical 1-dimensional range of cells.

However, if the argument can be anything from a single cell to a one- or two-dimensional range, you’ll want
to use the ndim option: this allows you to always get the inputs as a two-dimensional list, no matter what the
input dimension is:

@pro.func
@pro.arg("x", ndim=2)
def add_one(x):

return [[cell + 1 for cell in row] for row in data]

The above sample would raise an error if you’d leave away the ndim=2 and use a single cell as argument x.

Return value

If you need to write out a list in vertical orientation, the transpose option comes in handy:

@pro.func
@pro.ret(transpose=True)
def vertical_list():

return [1, 2, 3, 4]

27.3.9 Error handling and error cells

Error cells in Excel such as #VALUE! are used to display an error from Python. xlwings reads error cells as
None by default but also allows you to read them as strings. When writing to Excel, you can Excel have an
cell formatted as error. Let’s get into the details!

Error handling

Whenever there’s an error in Python, the cell value will show #VALUE!. To understand what’s going on, click
on the cell with the error, then hover (don’t click!) on the exclamation mark that appears: you’ll see the error
message.

If you see Internal Server Error, you need to consult the Python server logs or you can add an exception
handler for the type of Exception that you’d like to see in more detail on the frontend, see the function
xlwings_exception_handler in the quickstart project under app/server_fastapi.py.

Writing NaN values

np.nan and pd.NA will be converted to Excel’s #NUM! error type.

170 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

Error cells

Reading

By default, error cells are converted to None (scalars and lists) or np.nan (NumPy arrays and pandas
DataFrames). If you’d like to get them in their string representation, use err_to_str option:

@pro.func
@pro.arg("x", err_to_str=True)
def myfunc(x):

...

Writing

To format cells as proper error cells in Excel, simply use their string representation (#DIV/0!, #N/A, #NAME?,
#NULL!, #NUM!, #REF!, #VALUE!):

@pro.func
def myfunc(x):

return ["#N/A", "#VALUE!"]

Note: Some older builds of Excel don’t support proper error types and will display the error as string instead,
see also Limitations.

27.3.10 Dynamic arrays

If your return value is not just a single value but a one- or two-dimensional list, Excel will automatically spill
the values into the surrounding cells by using the native dynamic arrays. There are no code changes required:

Returning a simple list:

from xlwings import pro

@pro.func
def programming_languages():

return ["Python", "JavaScript"]

Returning a NumPy array with standard normally distributed random numbers:

import numpy as np
from xlwings import pro

@pro.func
def standard_normal(rows, columns):

rng = np.random.default_rng()
return rng.standard_normal(size=(rows, columns))

27.3. Office.js Custom Functions 171

xlwings - Make Excel Fly!, Release dev

Returning a pandas DataFrame:

import pandas as pd
from xlwings import pro

@pro.func
def get_dataframe():

df = pd.DataFrame({"Language": ["Python", "JavaScript"], "Year": [1991,␣
→˓1995]})
return df

27.3.11 Volatile functions

Volatile functions are recalculated whenever Excel calculates something, even if none of the function argu-
ments have changed. To mark a function as volatile, use the volatile argument in the func decorator:

import datetime as dt
from xlwings import pro

@pro.func(volatile=True)
def last_calculated():

return f"Last calculated: {dt.datetime.now()}"

27.3.12 Asynchronous functions

Custom functions are always asynchronous, meaning that the cell will show #BUSY! during calculation,
allowing you to continue using Excel: custom function don’t block Excel’s user interface.

27.3.13 Backend and Manifest

This section highlights which part of the code in app/server_fastapi.py, app/taskpane.html and
manifest-xlwings-officejs-quickstart.xml are responsible for handling custom functions. They
are already implemented in the quickstart project.

Backend

The backend needs to implement the following three endpoints to support custom functions. You can check
them out under app/server_fastapi.py or in one of the other framework implementations.

172 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

FastAPI

import xlwings as xw
import custom_functions

@app.get("/xlwings/custom-functions-meta")
async def custom_functions_meta():

return xw.pro.custom_functions_meta(custom_functions)

@app.get("/xlwings/custom-functions-code")
async def custom_functions_code():

return PlainTextResponse(xw.pro.custom_functions_code(custom_functions))

@app.post("/xlwings/custom-functions-call")
async def custom_functions_call(data: dict = Body):

rv = await xw.pro.custom_functions_call(data, custom_functions)
return {"result": rv}

Starlette

import xlwings as xw
import custom_functions

async def custom_functions_meta(request):
return JSONResponse(xw.pro.custom_functions_meta(custom_functions))

async def custom_functions_code(request):
return PlainTextResponse(xw.pro.custom_functions_code(custom_functions))

async def custom_functions_call(request):
data = await request.json()
rv = await xw.pro.custom_functions_call(data, custom_functions)
return JSONResponse({"result": rv})

You’ll also need to load the custom functions by adding the following line at the end of the head element in
your HTML file, see app/taskpane.html in the quickstart project:

<head>
<!-- ... -->
<script type="text/javascript" src="/xlwings/custom-functions-code"></script>

</head>

27.3. Office.js Custom Functions 173

xlwings - Make Excel Fly!, Release dev

Manifest

The relevant parts in the manifest XML are:

<Requirements>
<Sets DefaultMinVersion="1.1">
<Set Name="SharedRuntime" MinVersion="1.1"/>
</Sets>

</Requirements>

And:

<Runtimes>
<Runtime resid="Taskpane.Url" lifetime="long"/>

</Runtimes>
<AllFormFactors>

<ExtensionPoint xsi:type="CustomFunctions">
<Script>

<SourceLocation resid="Functions.Script.Url"/>
</Script>
<Page>

<SourceLocation resid="Taskpane.Url"/>
</Page>
<Metadata>

<SourceLocation resid="Functions.Metadata.Url"/>
</Metadata>
<Namespace resid="Functions.Namespace"/>
</ExtensionPoint>

</AllFormFactors>

As mentioned under Namespace: if you want to set a default namespace for your functions, you’d do that
with this line:

<bt:String id="Functions.Namespace" DefaultValue="XLWINGS"/>

As usual, for the full context, have a look at manifest-xlwings-officejs-quickstart.xml in the quick-
start sample.

27.3.14 Authentication

To authenticate (and possibly authorize) the users of your custom functions, you’ll need to implement a global
getAuth() function under app/taskpane.html. In the quickstart project, it’s set up to give back an empty
string:

globalThis.getAuth = async function () {
return ""

};

174 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

The string that this functions returns will be provided as Authorization header whenever a custom function
executes so the backend can authenticate the user. Hence, to activate authentication, you’ll need to change
this function to give back the desired token/credentials.

Note: The getAuth function is required for custom functions to work, even if you don’t want to authenticate
users, so don’t delete it.

SSO / AzureAD authentication

The most convenient way to authenticate users is to use single-sign on (SSO) based on Azure AD, which
will use the identity of the signed-in Office user (requires Microsoft 365):

globalThis.getAuth = async function () {
try {
let accessToken = await Office.auth.getAccessToken({

allowSignInPrompt: true,
});
return "Bearer " + accessToken;

} catch (error) {
return "Error: " + error.message;

}
};

• This requires you to set up an Azure AD app as well as adjusting the manifest accordingly, see
SSO/Azure AD for Excel 365.

• You’ll also need to verify the AzureAD access token on the backend. For an example on how to do
that, have a look at https://github.com/xlwings/xlwings-server-auth-azuread

27.3.15 Deployment

To deploy your custom functions, please refer to Production deployment in the Office.js Add-ins docs.

27.3. Office.js Custom Functions 175

https://github.com/xlwings/xlwings-server-auth-azuread

xlwings - Make Excel Fly!, Release dev

27.3.16 Custom functions vs. legacy UDFs

While Office.js-based custom functions are mostly compatible with the VBA-based UDFs, there are a few
differences, which you should be aware of when switching from UDFs to custom functions or vice versa:

176 Chapter 27. xlwings Server

xlwings - Make Excel Fly!, Release dev

Custom functions (Office.js-
based)

User-defined functions UDFs
(VBA-based)

Supported platforms
• Windows
• macOS
• Excel on the web

• Windows

Empty cells are converted to 0 => If you want None, you have
to set the following formula in
Excel: =""

None

Cells with integers are converted
to

Integers Floats

Reading Date/Time-formatted
cells

Requires the use of dt.
datetime or parse_dates
in the arg decorators

Automatic conversion

Writing datetime objects Automatic cell formatting No cell formatting
Can write proper Excel cell error Yes No
Writing NaN (np.nan or pd.NA)
arrives in Excel as

#NUM! Empty cell

Functions are bound to Add-in Workbook
Asynchronous functions Always and automatically Requires @xw.

func(async_mode="threading")
Decorators from xlwings import pro,

then pro.func etc.
import xlwings as xw, then
xw.func etc.

Formula Intellisense Yes No
Supports namespaces e.g.,
NAMESPACE.FUNCTION

Yes No

Capitalization of function name Excel formula gets automatically
capitalized

Excel formula has same capital-
ization as Python function

Supports (SSO) Authentication Yes No
caller function argument N/A Returns Range object of calling

cell
@xw.arg(vba=...) N/A Allows to access Excel VBA ob-

jects
Supports pictures No Yes
Requires a local installation of
Python

No Yes

Python code must be shared with
end-user

No Yes

Requires License Key Yes No
License PolyForm Noncommercial Li-

cense 1.0.0 or xlwings PRO
License

BSD 3-clause Open Source Li-
cense

27.3. Office.js Custom Functions 177

xlwings - Make Excel Fly!, Release dev

27.3.17 Limitations

• The Office.js Custom Functions API was introduced in 2018 and therefore requires at least Excel 2021
or Excel 365.

• Note that some functionality requires specific build versions, such as error cells and date formatting, but
if your version of Excel doesn’t support these features, xlwings will fall back to either string-formatted
error messages or unformatted date serials. For more details on which builds support which function,
see Custom Functions requirement sets.

• xlwings custom functions must be run with the shared runtime, i.e., the runtime that comes with a task
pane add-in. The JavaScript-only runtime is not supported.

27.3.18 Roadmap

• Streaming functions

• Object handlers

• Client-side caching

• Add support for Google Sheets

27.4 Server Authentication

This feature requires xlwings PRO.

Authentication (and potentially authorization) is an important step in securing your xlwings Server app. On
the server side, you can handle authentication

• within your app (via your web framework)

• outside of your app (via e.g. a reverse proxy such as nginx or oauth2-proxy that sits in front of your
app)

Furthermore, you can use different authentication techniques such as HTTP Basic Auth or Bearer tokens in
the form of API keys or OAuth2 access tokens. The most reliable and comfortable authentication is available
for Office.js add-ins in connection with Excel 365 as this allows you to leverage the built-in SSO capabilities,
see SSO/Azure AD for Excel 365.

On the client side, you set the Authorization header when you make a request from Excel or Google Sheets
to your xlwings backend. To set the Authorization header, xlwings offers the auth parameter:

178 Chapter 27. xlwings Server

https://learn.microsoft.com/en-us/javascript/api/requirement-sets/excel/custom-functions-requirement-sets

xlwings - Make Excel Fly!, Release dev

VBA

Sub Main()
RunRemotePython "url", auth:="mytoken"

End Sub

Office Scripts

async function main(workbook: ExcelScript.Workbook) {
await runPython(workbook, "url", { auth: "mytoken" });

}

Office.js

async function hello {
// This requires getAuth to be properly implemented, see below under SSO
let token = await globalThis.getAuth();
xlwings.runPython("your-url", { auth: token });

}

Google Apps Script

function main() {
let accessToken = ScriptApp.getOAuthToken()
runPython("url", { auth: "Bearer " + accessToken });

}

Your backend will then have to validate the Authorization header. Let’s get started with the simplest imple-
mentation of an API key before looking at HTTP Basic Auth and more advanced options like Azure AD/SSO
and Google access tokens (for Google Sheets).

27.4.1 API Key

Generate a secure random string, for example by running the following from a Terminal/Command Prompt:

python -c "import secrets; print(secrets.token_hex(32))"

Provide this value as your auth argument in the RunRemotePython or runPython, respectively, and validate
it on your backend along the following lines (these are changes meant to be introduced to a quickstart project
or https://github.com/xlwings/xlwings-server-helloworld-fastapi):

27.4. Server Authentication 179

https://github.com/xlwings/xlwings-server-helloworld-fastapi

xlwings - Make Excel Fly!, Release dev

Only showing additional imports
import os
import secrets
from fastapi import HTTPException, Security, status
from fastapi.security.api_key import APIKeyHeader

async def authenticate(api_key: str = Security(APIKeyHeader(name="Authorization
→˓"))):
"""Validate the Authorization header"""

if not secrets.compare_digest(api_key, os.environ["APP_API_KEY"]):
raise HTTPException(

status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API Key",

)

If you want to require the API Key for every endpoint
app = FastAPI(dependencies=[Security(authenticate)])

This sample assumes that you have a single APP_API_KEY key set as an environment variable on your back-
end: if you provide the same key as auth parameter in your RunRemotePython or runPython call, ev-
erybody with the workbook gets anonymous access. So this approach merely protects your backend from
unauthorized access, but it isn’t really secure, as there is no secure way to store the API key in the workbook
securely, so everybody with the workbook can look up the API key.

If you use the VBA client, you could use a solution where users have to store an individual API Key in an
external config file and read it from there. This way, users with the workbook alone would not be able to run
the xlwings functionality and you could search for the individual API keys in a database to identify the user.

A much more secure approach is to use Azure AD authentication, see below.

27.4.2 HTTP Basic Auth

Basic auth is a simple and popular method that sends the username and password via the Authorization
header. Reverse proxies such as nginx allow you to easily protect your app with HTTP Basic Auth but you
can also handle it directly in your app.

With your username and password, run the following Python script to get the value that you need to provide
for auth:

import base64
username = "myusername"
password = "mypassword"
print("Basic " + base64.b64encode(f"{username}:{password}".encode()).decode())

In this case, you’d provide "Basic bXl1c2VybmFtZTpteXBhc3N3b3Jk" as your auth argument.

• To validate HTTP Basic Auth with FastAPI, see: https://fastapi.tiangolo.com/advanced/security/
http-basic-auth/

180 Chapter 27. xlwings Server

https://fastapi.tiangolo.com/advanced/security/http-basic-auth/
https://fastapi.tiangolo.com/advanced/security/http-basic-auth/

xlwings - Make Excel Fly!, Release dev

• If you use ngrok, there’s an easy way to protect the exposed URL via Basic auth:

ngrok http 8000 -auth='myusername:mypassword'

Warning: ngrok HTTP Basic auth will NOT work with Excel via Office Scripts as it doesn’t
support CORS. It’s, however, an easy method for protecting your app during development if you
use xlwings via VBA or Google Sheets.

27.4.3 SSO/Azure AD for Excel 365

New in version 0.29.0.

Single Sign-on (SSO) means that users who are signed into Office 365 get access to an add-in’s Azure AD-
protected backend and to Microsoft Graph without needing to sign-in again. Start by reading the official
Microsoft documentation:

• Overview of authentication and authorization in Office Add-ins

• Enable single sign-on (SSO) in an Office Add-in

As a summary, here are the components needed to enable SSO:

1. SSO is only available for Office.js add-ins

2. You must use Excel 365 so users can login into Office

3. Register your add-in as an app on the Microsoft Identity Platform

4. Add the following to the end of the <VersionOverrides ...
xsi:type="VersionOverridesV1_0"> section of your manifest XML:

<WebApplicationInfo>
<Id>Your Client ID</Id>
<Resource>api://.../Your Client ID</Resource>
<Scopes>

<Scope>openid</Scope>
<Scope>profile</Scope>
<Scope>...</Scope>
<Scope>...</Scope>

</Scopes>
</WebApplicationInfo>

5. Acquire an access token in your client-side code and send it as Authorization header to your backend
where you can parse it and/or use it to authenticate with Microsoft Graph API. The officejs quickstart
repo has a dummy global function globalThis.getAuth() in the app/taskpane.html file that you
can implement as follows:

globalThis.getAuth = async function () {
try {

(continues on next page)

27.4. Server Authentication 181

https://learn.microsoft.com/en-us/office/dev/add-ins/develop/overview-authn-authz
https://learn.microsoft.com/en-us/office/dev/add-ins/develop/sso-in-office-add-ins
https://learn.microsoft.com/en-us/office/dev/add-ins/develop/register-sso-add-in-aad-v2

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

let accessToken = await Office.auth.getAccessToken({
allowSignInPrompt: true,

});
return "Bearer " + accessToken;

} catch (error) {
return "Error: " + error.message;

}
};

This then allows you to call runPython like so (note that custom functions do this automatically):

async function hello {
let token = await globalThis.getAuth();
xlwings.runPython("your-url", { auth: token })

}

• For a sample implementation on how to validate the token on the backend, have a look at https://github.
com/xlwings/xlwings-server-auth-azuread

• A good walkthrough is also Create a Node.js Office Add-in that uses single sign-on, but as the title
says, it uses Node.js on the backend instead of Python.

27.4.4 Azure AD for Excel VBA

New in version 0.28.6:

Note: Azure AD authentication is only available for Desktop Excel via VBA.

Azure Active Directory (Azure AD) is Microsoft’s enterprise identity service. If you’re using the xlwings
add-in or VBA standalone module, xlwings allows you to comfortably log in users on their desktops, allow-
ing you to securely validate their identity on the server and optionally implement role-base access control
(RBAC).

Download xlwings.exe, the standalone xlwings CLI, from the GitHub Release page and place it in
a specific folder, e.g., under C:\Program and Files\xlwings\xlwings.exe or %LOCALAPPDATA%\
xlwings\xlwings.exe.

Now you can call the following function in VBA:

Sub Main()
RunRemotePython "url", _
auth:="Bearer " & GetAzureAdAccessToken(_
tenantId:="...", _
clientId:="...", _
scopes:="...", _
port:="...", _

(continues on next page)

182 Chapter 27. xlwings Server

https://github.com/xlwings/xlwings-server-auth-azuread
https://github.com/xlwings/xlwings-server-auth-azuread
https://learn.microsoft.com/en-us/office/dev/add-ins/develop/create-sso-office-add-ins-nodejs
https://azure.microsoft.com/en-us/products/active-directory
https://github.com/xlwings/xlwings/releases

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

username:="...", _
cliPath:="C:\Program and Files\xlwings\xlwings.exe" _

)
End Sub

port and username are optional:

• Use port if the randomly assigned default port causes issues

• Use username if the user is logged in with multiple Microsoft accounts

Note: Instead of relying on xlwings.exe, you could also use a normal Python installation with xlwings
and msal installed. In this case, simply leave away the cliPath argument.

You can also use the xlwings.conf file or xlwings.conf sheet for configuration. In this case, the settings
are the following:

AZUREAD_TENANT_ID
AZUREAD_CLIENT_ID
AZUREAD_SCOPES
AZUREAD_USERNAME
AZUREAD_PORT
CLI_PATH

Note that if you use the xlwings add-in rather than relying on the xlwings standalone VBA module, you will
need to make sure that there’s a reference set to xlwings in the VBA editor under Tools > References.

When you now call the Main function the very first time, a browser Window will open where the user needs
to login to Azure AD. The acquired OAuth2 access token is then cached for 60-90 minutes. Once an access
token has expired, a new one will be requested using the refresh token, i.e., without user intervention, but it
will slow that that request.

For a complete walk-through on how to set up an app on Azure AD and how to validate the access token on
the backend, see: https://github.com/xlwings/xlwings-server-auth-azuread

27.4.5 OAuth2 Access Token for Google Sheets

Google makes it easy to verify the logged-in user via OAuth2 access token. Simply provide the following as
your auth argument:

ScriptApp.getOAuthToken()

To see how you can validate that token on the backend, see:
https://github.com/xlwings/xlwings-server-auth-google

27.4. Server Authentication 183

https://github.com/xlwings/xlwings-server-auth-azuread
https://github.com/xlwings/xlwings-server-auth-google

xlwings - Make Excel Fly!, Release dev

xlwings Server turns the Python dependency into a web app that runs on the server (in the form of a serverless
function, a fully managed container, etc.). It can be used from various clients:

• VBA: Desktop Excel (Windows and macOS)

• Office Scripts: Desktop Excel (Windows and macOS) and Excel on the web

• Office.js Add-ins: Desktop Excel (Windows and macOS), Excel on the web, and Excel on iPad

• Google Apps Scripts: Google Sheets

184 Chapter 27. xlwings Server

CHAPTER

TWENTYEIGHT

CHANGELOG

28.1 v0.30.6 (May 5, 2023)

• Bug Fix PRO xlwings Server (Office Scripts client): named ranges with sheet scope were ignored (GH
2245).

• Bug Fix PRO xlwings Server (Office.js client): excluded sheets were still loading sheet values (GH
2251).

28.2 v0.30.5 (Apr 25, 2023)

• Enhancement PRO xlwings Server: this version adds picture support for Office Scripts and Office.js,
meaning that pictures are now supported across all clients (GH 2235 and GH 2238).

• Enhancement PRO xlwings Server: Excel tables can now be accessed via the mysheet['MyTable']
syntax in addition to mysheet.tables (GH 2229).

• Bug Fix PRO Stability fixes with xw.apps.cleanup() (GH 2225 and GH 2239).

28.3 v0.30.4 (Mar 31, 2023)

• Bug Fix Fixed a bug that could cause a CoInitialize has not been called error on Windows
when xlwings was used inside a web framework (GH 2213).

• Bug Fix PRO xlwings.min.js: Fixed a regression introduced with 0.30.3 that caused a pop-up error
to show when calling xlwings.runPython (GH 2214).

• Bug Fix PRO Fixed a regression introduced with 0.30.3 that was causing the xlwings license CLI
command to fail on Linux (GH 2211).

185

https://github.com/xlwings/xlwings/issues/2245
https://github.com/xlwings/xlwings/issues/2245
https://github.com/xlwings/xlwings/issues/2251
https://github.com/xlwings/xlwings/issues/2251
https://github.com/xlwings/xlwings/issues/2235
https://github.com/xlwings/xlwings/issues/2238
https://github.com/xlwings/xlwings/issues/2229
https://github.com/xlwings/xlwings/issues/2225
https://github.com/xlwings/xlwings/issues/2239
https://github.com/xlwings/xlwings/issues/2213
https://github.com/xlwings/xlwings/issues/2214
https://github.com/xlwings/xlwings/issues/2211

xlwings - Make Excel Fly!, Release dev

28.4 v0.30.3 (Mar 26, 2023)

• Enhancement PRO xlwings Server now supports Excel tables (GH 2072), range.insert() (GH
2073), and range.copy() (GH 2204).

• Enhancement Improved error message when no engines is available either because of missing depen-
dencies (OSS) or a missing license key (PRO) (GH 2072).

• Breaking Change range.insert() now requires the shift argument. The previous default was to
let Excel guess the shift direction (GH 2073).

28.5 v0.30.2 (Mar 16, 2023)

• Enhancement On Windows, xlwings now actively cleans up Excel zombie processes when quitting or
killing App objects and when exiting the Python process. You can also remove zombies manually by
calling xw.apps.cleanup() (GH 2001).

• Bug Fix PRO xlwings Reports: fixed a regression introduced with 0.30.1 that was causing issues when
using Excel tables in frames (GH 2192).

28.6 v0.30.1 (Mar 6, 2023)

• Enhancement Added support for Range.autofill() (interactive engines on Windows and macOS)
(GH 2180).

• Bug Fix PRO xlwings Reports: improved stability of dynamic range formatting by removing the use
of the clipboard (GH 2175).

28.7 v0.30.0 (Mar 2, 2023)

• Feature PRO xlwings Server now supports custom functions (a.k.a. user-defined functions or UDFs)
on Windows, macOS, and Web via the Office.js add-ins. See Office.js Custom Functions (GH 2177).

• Bug Fix PRO xlwings Reports: fixed render_template() on Windows when the template had hid-
den sheets (GH 2166).

28.8 v0.29.1 (Feb 5, 2023)

• Enhancement PRO xlwings Server (VBA client): the default timeout for RunRemotePython has been
increased from 5s to 30s (GH 2153).

• Enhancement PRO xlwings Server (all clients): added support for app.macro() (GH 2157).

• Enhancement PRO xlwings Server (all clients): added support for range.delete() (GH 2157).

186 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/2072
https://github.com/xlwings/xlwings/issues/2073
https://github.com/xlwings/xlwings/issues/2073
https://github.com/xlwings/xlwings/issues/2204
https://github.com/xlwings/xlwings/issues/2072
https://github.com/xlwings/xlwings/issues/2073
https://github.com/xlwings/xlwings/issues/2001
https://github.com/xlwings/xlwings/issues/2192
https://github.com/xlwings/xlwings/issues/2180
https://github.com/xlwings/xlwings/issues/2175
https://github.com/xlwings/xlwings/issues/2177
https://github.com/xlwings/xlwings/issues/2166
https://github.com/xlwings/xlwings/issues/2153
https://github.com/xlwings/xlwings/issues/2157
https://github.com/xlwings/xlwings/issues/2157

xlwings - Make Excel Fly!, Release dev

28.9 v0.29.0 (Jan 29, 2023)

• Feature PRO xlwings Server now supports Office.js add-ins! Check out the comprehensive documen-
tation (GH 2151).

28.10 v0.28.9 (Jan 21, 2023)

• Enhancement PRO xlwings Server: add full support for named ranges when called from VBA.
JavaScript client implementations are still pending (GH 2145).

• Bug Fix On macOS, opening a file was turning its name into lower case (GH 2052).

• Bug Fix The xlwings CLI was removing the xlwings addin when the remove command was called
with the --dir flag. Also, the xlwings.exe builds are now 32-bit (GH 2142).

28.11 v0.28.8 (Jan 13, 2023)

• Bug Fix PRO xlwings Server: make include/exclude parameters respect all objects in a sheet, not
just values (GH 2139).

• Bug Fix PRO xlwings Server (VBA client): ignore shapes that aren’t real pictures in the pictures
collection (GH 2140).

28.12 v0.28.7 (Dec 27, 2022)

• Enhancement New CLI commands xlwings copy vba and xlwings copy vba --addin: They
can help you to upgrade existing standalone projects and custom add-ins more easily (GH 2129).

• Bug Fix PRO xlwings Server: Google Sheets was failing when cells contained a Date, caused by a
recent Chromium V8 bug (GH 2126).

• Bug Fix PRO xlwings Server: Writing datetime objects from Python to Google Sheets (with a time
part not being zero) weren’t formatting the cell properly as Date Time (GH 2126).

28.13 v0.28.6 (Dec 15, 2022)

• Feature xlwings now allows to authenticate and authorize users via Azure AD in connection with the
Ribbon add-in or VBA standalone module. This is useful in connection with a server component, such
as xlwings Server, where the acquired access tokens can be validated, see Server Auth (GH 2122).

• Enhancement PRO xlwings Server: added support for reading the Names collection via mybook.
names and mysheet.names (GH 2123).

• Feature The xlwings CLI (command-line interface) is now also available as a standalone executable for
a limited set of uses cases. It can be downloaded from the GitHub Release page and can be useful to run

28.9. v0.29.0 (Jan 29, 2023) 187

https://github.com/xlwings/xlwings/issues/2151
https://github.com/xlwings/xlwings/issues/2145
https://github.com/xlwings/xlwings/issues/2052
https://github.com/xlwings/xlwings/issues/2142
https://github.com/xlwings/xlwings/issues/2139
https://github.com/xlwings/xlwings/issues/2140
https://github.com/xlwings/xlwings/issues/2129
https://github.com/xlwings/xlwings/issues/2126
https://github.com/xlwings/xlwings/issues/2126
https://github.com/xlwings/xlwings/issues/2122
https://github.com/xlwings/xlwings/issues/2123
https://github.com/xlwings/xlwings/releases

xlwings - Make Excel Fly!, Release dev

xlwings vba ..., xlwings auth ..., and xlwings addin ... -f without having to install a
full Python installation (GH 2121).

• Breaking Change PRO: xlwings Server: auth replaces the apiKey argument in the runPython and
RunRemotePython calls respectively. Technically it’s only a deprecation, so apiKey still works for
now (GH 2104).

• Bug Fix PRO xlwings Server: Fixed an error with setting custom headers in VBA (GH 2081).

28.14 v0.28.4 and v0.28.5 (Oct 29, 2022)

• Enhancement Added possibility to install the add-in globally for all users via xlwings addin
install -g (GH 2075).

• Enhancement Added App.path property (GH 2074).

• Enhancement Build wheels for Python 3.11 (GH 2071).

• Bug Fix 0.28.5 fixes an issue with the global add-in install (GH 2076).

28.15 v0.28.3 (Oct 21, 2022)

• Bug Fix PRO xlwings File Reader: To be in line with the rest of the API, integers are now delivered
as floats (GH 2066).

• Bug Fix PRO xlwings File Reader: Fixed a bug that sometimes read in incorrect decimals with the
legacy xls file formats (GH 2062).

• Bug Fix PRO Fixed a bug introduced with 0.28.1 when xlwings code embed was run with the
--file flag and a relative path (GH 2061).

28.16 v0.28.2 (Oct 17, 2022)

• Breaking Change PRO xlwings File Reader: The reader was including Chartsheets etc. in mybook.
sheets, which was inconsistent with the rest of the API. Accordingly, it now only shows Worksheets
(GH 2058).

• Bug Fix PRO xlwings File Reader: With xlsb formats, slightly unusual defined names caused the
reader to fail (GH 2057).

• Enhancement PRO xlwings Reports: the imports have been flattened. What previously was available
via xlwings.pro.reports is now also available via xlwings.reports (GH 2055).

• Enhancement PRO xlwings Reports: the registration of formatters for use with templates has been
simplified by allowing you to use the @formatter decorator instead of having to register the function
via register_formatter(myfunc) (GH 2055).

188 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/2121
https://github.com/xlwings/xlwings/issues/2104
https://github.com/xlwings/xlwings/issues/2081
https://github.com/xlwings/xlwings/issues/2075
https://github.com/xlwings/xlwings/issues/2074
https://github.com/xlwings/xlwings/issues/2071
https://github.com/xlwings/xlwings/issues/2076
https://github.com/xlwings/xlwings/issues/2066
https://github.com/xlwings/xlwings/issues/2062
https://github.com/xlwings/xlwings/issues/2061
https://github.com/xlwings/xlwings/issues/2058
https://github.com/xlwings/xlwings/issues/2057
https://github.com/xlwings/xlwings/issues/2055
https://github.com/xlwings/xlwings/issues/2055

xlwings - Make Excel Fly!, Release dev

28.17 v0.28.1 (Oct 10, 2022)

• Feature You can now use formatters to format the data you write to Excel or Google Sheets in a very
flexible manner (see also Default Converter):

import pandas as pd
import xlwings as xw

sheet = xw.Book().sheets[0]

def table(rng: xw.Range, df: pd.DataFrame):
"""This is the formatter function"""
Header
rng[0, :].color = "#A9D08E"

Rows
for ix, row in enumerate(rng.rows[1:]):

if ix % 2 == 0:
row.color = "#D0CECE" # Even rows

Columns
for ix, col in enumerate(df.columns):

if "two" in col:
rng[1:, ix].number_format = "0.0%"

df = pd.DataFrame(data={"one": [1, 2, 3, 4], "two": [5, 6, 7, 8]})
sheet["A1"].options(formatter=table, index=False).value = df

• Feature PRO Formatters are also available for xlwings Reports via filters: {{ df |
formatter("myformatter") }}, see DataFrames Filters.

• Feature You can now export a sheet to an HTML page via mysheet.to_html()

• Feature New convenience property to get a list of the sheet names: mybook.sheet_names

28.17. v0.28.1 (Oct 10, 2022) 189

xlwings - Make Excel Fly!, Release dev

• Enhancement PRO The Excel File Reader now supports the Names collection. I.e., you can now run
code like this:

with xw.Book("myfile.xlsx", mode="r") as book:
for name in book.names:

print(name.refers_to_range.value)

• Enhancement PRO Code embedding via xlwings release or xlwings code embed now allows
you to work with Python packages, i.e., nested directories.

28.18 v0.28.0 (Oct 4, 2022)

• Feature PRO xlwings PRO adds an ultra fast file reader, allowing you to read Excel files much faster
than via pandas.read_excel():

with xw.Book("myfile.xlsx", mode="r") as book:
sheet1 = book.sheets[0]
df = sheet1["A1:B2"].options("df", index=False).value

For all the details, see Excel File Reader.

• Enhancement Book can now be used as context manager (i.e., with the with statement, see previous
bullet point), which will close the book automatically when leaving the body of the with statement.

• Enhancement The new option err_to_str allows you to deliver cell errors like #N/A as strings instead
of None (default): xw.Book("mybook.xlsx").options(err_to_str=True).value.

• Breaking Change PRO xlwings Server used to deliver cell errors as strings, which wasn’t consistent
with the rest of xlwings. This has now been fixed by delivering them as None by default. To get the
previous behavior, use the err_to_str option, see the previous bullet point.

• Enhancement PRO The Remote Interpreter has been rebranded to xlwings Server.

28.19 v0.27.15 (Sep 16, 2022)

• Enhancement PRO Reports: Added new vmerge filter to vertically merge cells with the same values,
for details, see vmerge (GH 2020).

28.20 v0.27.14 (Aug 26, 2022)

• Enhancement Allow to install/remove the addin via xlwings addin installwhile Excel is running
(GH 1999).

190 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/2020
https://github.com/xlwings/xlwings/issues/1999

xlwings - Make Excel Fly!, Release dev

28.21 v0.27.13 (Aug 22, 2022)

• Feature Add support for alerts: myapp.alert("Hello World"), see myapp.alert() for more de-
tails (GH 756).

• Enhancement Handle Timedelta dtypes in pandas DataFrames and Series (GH 1991).

• Enhancement PRO Remove the cryptography dependency from xlwings PRO (GH 1992).

28.22 v0.27.12 (Aug 8, 2022)

• Enhancement PRO: xlwings Server: added support for named ranges via mysheet["myname"] or
mysheet.range("myname") (GH 1975).

• Enhancement PRO: xlwings Server: in addition to Google Sheets, pictures.add() is now also sup-
ported on Desktop Excel (Windows and macOS). This includes support for Matplotlib plots (GH 1974).

• Enhancement Faster UDFs (GH 1976).

• Bug Fix Made myapp.range() behave the same as mysheet.range() (GH 1982).

• Bug Fix PRO: xlwings Server: cell errors were causing a bug with Desktop Excel (GH 1968).

• Bug Fix PRO: xlwings Server: sending large payloads with Desktop Excel on macOS is now possible
(GH 1977).

28.23 v0.27.11 (Jul 6, 2022)

• Enhancement Added support for pandas pd.NA (GH 1939).

• Bug Fix Empty cells in UDFs are now properly returned as None / NaN instead of an empty string (GH
1947).

• Bug Fix Resolved an issue with OneDrive/SharePoint files that are unsynced locally (GH 1946).

28.24 v0.27.10 (Jun 8, 2022)

• Bug Fix PRO This release fixes a FileNotFound error that could sometimes happen with embedded
code (GH 1931).

28.21. v0.27.13 (Aug 22, 2022) 191

https://github.com/xlwings/xlwings/issues/756
https://github.com/xlwings/xlwings/issues/1991
https://github.com/xlwings/xlwings/issues/1992
https://github.com/xlwings/xlwings/issues/1975
https://github.com/xlwings/xlwings/issues/1974
https://github.com/xlwings/xlwings/issues/1976
https://github.com/xlwings/xlwings/issues/1982
https://github.com/xlwings/xlwings/issues/1968
https://github.com/xlwings/xlwings/issues/1977
https://github.com/xlwings/xlwings/issues/1939
https://github.com/xlwings/xlwings/issues/1947
https://github.com/xlwings/xlwings/issues/1947
https://github.com/xlwings/xlwings/issues/1946
https://github.com/xlwings/xlwings/issues/1931

xlwings - Make Excel Fly!, Release dev

28.25 v0.27.9 (Jun 4, 2022)

• Bug Fix Fixes a bug on Windows that caused an Excel Zombie process with pywin32 > v301 (GH
1929).

28.26 v0.27.8 (May 22, 2022)

• Enhancement Smarter shrinking of Excel tables when using mytable.update(df) as it doesn’t delete
rows below the table anymore (GH 1908).

• Bug Fix Fixed a regression when RunPyhon was used with Use UDF Server = True (introduced in
v0.26.2) (GH 1912).

• Bug Fix PRO The xlwings release command would sometimes incorrectly show a version mis-
match error (GH 1918).

• Bug Fix PRO xlwings Reports now raises an explicit error when Jinja2 is missing (GH 1637).

28.27 v0.27.7 (May 1, 2022)

• Feature PRO Google Sheets now support pictures via mysheet.pictures.add() incl. Mat-
plotlib/Plotly (note that Excel on the web and Desktop Excel via xlwings Server are not yet supported).
Also note that Google Sheets allows a maximum of 1 million pixels as calculated by (width in inches
* dpi) * (height in inches * dpi), see also Matplotlib & Plotly Charts (GH 1906).

• Breaking Change Matplotlib plots are now written to Excel/Google Sheets with a default of
200 dpi instead of 300 dpi. You can change this (and all other options that Matplotlib’s
savefig() and Plotly’s write_image() offer via sheet.pictures.add(image=myfigure,
export_options={"bbox_inches": "tight", "dpi": 300}) (GH 665, GH 519).

28.28 v0.27.6 (Apr 11, 2022)

• Bug Fix macOS: Python modules on OneDrive Personal are now found again in the default setup even
if they have been migrated to the new location (GH 1891).

• Enhancement PRO xlwings Server now shows nicely formatted error messages across all platforms
(GH 1889).

192 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1929
https://github.com/xlwings/xlwings/issues/1929
https://github.com/xlwings/xlwings/issues/1908
https://github.com/xlwings/xlwings/issues/1912
https://github.com/xlwings/xlwings/issues/1918
https://github.com/xlwings/xlwings/issues/1637
https://github.com/xlwings/xlwings/issues/1906
https://github.com/xlwings/xlwings/issues/665
https://github.com/xlwings/xlwings/issues/519
https://github.com/xlwings/xlwings/issues/1891
https://github.com/xlwings/xlwings/issues/1889

xlwings - Make Excel Fly!, Release dev

28.29 v0.27.5 (Apr 1, 2022)

• Enhancement PRO xlwings Server: added support for setting the number format of a range via
myrange.number_format = "..." (GH 1887).

• Bug Fix PRO xlwings Server: Google Sheets/Excel on the web were formatting strings like "1" as
date (GH 1885).

28.30 v0.27.4 (Mar 29, 2022)

• Enhancement Further SharePoint enhancements on Windows, increasing the chance that mybook.
fullname returns the proper local filepath (by taking into account the info in the registry) (GH 1829).

• Enhancement The ribbon, i.e., the config, now allows you to uncheck the box Add workbook to
PYTHONPATH to not automatically add the directory of your workbook to the PYTHONPATH. The
respective config is called ADD_WORKBOOK_TO_PYTHONPATH. This can be helpful if you experience
issues with OneDrive/SharePoint: uncheck this box and provide the path where your source file is
manually via the PYTHONPATH setting (GH 1873).

• Enhancement PRO Added support for myrange.add_hyperlink() with remote interpreter (GH
1882).

• Enhancement PRO Added a new optional parameter include in connection with runPython (JS) and
RunRemotePython (VBA), respectively. It’s the counterpart to exclude and allows you to submit the
names of the sheets that you want to send to the server. Like exclude, include accepts a comma-
delimited string, e.g., “Sheet1,Sheet2” (GH 1882).

• Enhancement PRO On Google Sheets, the xlwings JS module now automatically asks for the proper
permission to allow authentication based on OAuth Token (GH 1876).

28.31 v0.27.3 (Mar 18, 2022)

• Bug Fix PRO Fixes an issue with Date formatting on Google Sheets in case you’re not using the U.S.
locale (GH 1866).

• Bug Fix PRO Fixes the truncating of ranges with xlwings Server in case the range was partly outside
the used range (GH 1822).

28.32 v0.27.2 (Mar 11, 2022)

• Bug Fix PRO Fixes an issue with xlwings Server that occurred on 64-bit versions of Excel.

28.29. v0.27.5 (Apr 1, 2022) 193

https://github.com/xlwings/xlwings/issues/1887
https://github.com/xlwings/xlwings/issues/1885
https://github.com/xlwings/xlwings/issues/1829
https://github.com/xlwings/xlwings/issues/1873
https://github.com/xlwings/xlwings/issues/1882
https://github.com/xlwings/xlwings/issues/1882
https://github.com/xlwings/xlwings/issues/1882
https://github.com/xlwings/xlwings/issues/1876
https://github.com/xlwings/xlwings/issues/1866
https://github.com/xlwings/xlwings/issues/1822

xlwings - Make Excel Fly!, Release dev

28.33 v0.27.0 and v0.27.1 (Mar 8, 2022)

• Feature PRO This release adds support for xlwings Server to the Excel Desktop apps on both Windows
and macOS. The new VBA function RunRemotePython is equivalent to runPython in the JavaScript
modules of Google Sheets and Excel on the web, see xlwings Server (GH 1841).

• Enhancement The xlwings package is now uploaded as wheel to PyPI in addition to the source format
(GH 1855).

• Enhancement The xlwings package is now compatible with Poetry (GH 1265).

• Enhancement The add-in and the dll files are now code signed (GH 1848).

• Breaking Change PRO The JavaScript modules (Google Sheet/Excel on the web) changed the param-
eters in runPython, see xlwings Server (GH 1852).

• Breaking Change xlwings vba edit has been refactored and there is an additional command
xlwings vba import to edit your VBA code outside of the VBA editor, e.g., in VS Code or any
other editor, see Command Line Client (CLI) (GH 1843).

• Breaking Change The --unprotected flag has been removed from the xlwings addin install
command. You can still manually remove the password (xlwings) though (GH 1850).

• Bug Fix PRO The Markdown class has been fixed in case the first line was empty (GH 1856).

• Bug Fix PRO 0.27.1 fixes an issue with the version string in the new RunRemotePython VBA call (GH
1859).

28.34 v0.26.3 (Feb 19, 2022)

• Feature If you still have to write VBA code, you can now use the new CLI command xlwings vba
edit: this will export all the VBA modules locally so that you can edit them with any editor like e.g.,
VS Code. Every local change is synced back whenever you save the local file, see Command Line
Client (CLI) (GH 1839).

• Enhancement PRO The permissioning feature now allows you to send an Authorization header via the
new PERMISSION_CHECK_AUTHORIZATION setting (GH 1840).

28.35 v0.26.2 (Feb 10, 2022)

• Feature Added support for myrange.clear_formats and mysheet.clear_formats (GH 1802).

• Feature Added support for mychart.to_pdf() and myrange.to_pdf() (GH 1708).

• Feature PRO xlwings Server: added support for mybook.selection (GH 1819).

• Enhancement The quickstart command now makes sure that the project name is a valid Python
module name (GH 1773).

• Enhancement The to_pdf method now accepts an additional parameter quality that defaults to
"standard" but can be set to "minimum" for smaller PDFs (GH 1697).

194 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1841
https://github.com/xlwings/xlwings/issues/1855
https://github.com/xlwings/xlwings/issues/1265
https://github.com/xlwings/xlwings/issues/1848
https://github.com/xlwings/xlwings/issues/1852
https://github.com/xlwings/xlwings/issues/1843
https://github.com/xlwings/xlwings/issues/1850
https://github.com/xlwings/xlwings/issues/1856
https://github.com/xlwings/xlwings/issues/1859
https://github.com/xlwings/xlwings/issues/1859
https://github.com/xlwings/xlwings/issues/1839
https://github.com/xlwings/xlwings/issues/1840
https://github.com/xlwings/xlwings/issues/1802
https://github.com/xlwings/xlwings/issues/1708
https://github.com/xlwings/xlwings/issues/1819
https://github.com/xlwings/xlwings/issues/1773
https://github.com/xlwings/xlwings/issues/1697

xlwings - Make Excel Fly!, Release dev

• Bug Fix Allow space in path to Python interpreter when using UDFs / UDF Server (GH 974).

• Bug Fix A few issues were fixed in case your files are synced with OneDrive or SharePoint (GH 1813
and GH 1810).

• Bug Fix PRO Reports: fixed the aggsmall filter to work without the optional min_rows parameter
(GH 1824).

28.36 v0.26.0 and v0.26.1 (Feb 1, 2022)

• PRO Feature Added experimental support for Google Sheets and Excel on the web via a remote Python
interpreter. For all the details, see xlwings Server.

• PRO Bug Fix 0.26.1 fixes an issue with the xlwings copy gs command.

• xlwings PRO is now free for noncommercial usage under the PolyForm Noncommercial License 1.0.0,
see xlwings PRO for the details.

28.37 Older Releases

v0.25.3 (Dec 16, 2021)

• PRO Bug Fix The xlwings Reports filters aggsmall and maxrows don’t fail with empty DataFrames
anymore (GH 1788).

v0.25.2 (Dec 3, 2021)

• PRO Enhancement xlwings Reports now ignores sheets whose name start with ## for both rendering
and printing to PDF (GH 1779).

• PRO Enhancement The aggsmall filter in xlwings Reports now accepts a new parameter min_rows
(GH 1780).

v0.25.1 (Nov 21, 2021)

• Enhancement mybook.save() now supports the password parameter (GH 1568).

• PRO Bug Fix xlwings Reports would sometimes cause a Could not activate App instance er-
ror (GH 1764).

• PRO Enhancement xlwings now warns about expiring developer license keys 30 days before they expire
(GH 1758).

v0.25.0 (Oct 27, 2021)

• Bug Fix Finally, xlwings adds proper support for OneDrive, OneDrive for Business, and SharePoint.
This means that the quickstart setup (Excel file and Python file in the same folder with the same
name) works even if the files are stored on OneDrive/SharePoint—as long as they are being synced
locally. It also makes mybook.fullname return the local file path instead of a URL. Sometimes, this
requires editing the configuration, see: OneDrive and SharePoint for the details (GH 1630).

28.36. v0.26.0 and v0.26.1 (Feb 1, 2022) 195

https://github.com/xlwings/xlwings/issues/974
https://github.com/xlwings/xlwings/issues/1813
https://github.com/xlwings/xlwings/issues/1810
https://github.com/xlwings/xlwings/issues/1824
https://polyformproject.org/licenses/noncommercial/1.0.0
https://github.com/xlwings/xlwings/issues/1788
https://github.com/xlwings/xlwings/issues/1779
https://github.com/xlwings/xlwings/issues/1780
https://github.com/xlwings/xlwings/issues/1568
https://github.com/xlwings/xlwings/issues/1764
https://github.com/xlwings/xlwings/issues/1758
https://github.com/xlwings/xlwings/issues/1630

xlwings - Make Excel Fly!, Release dev

• Feature The update()method of Excel tables has been moved from PRO to open source. You can now
easily update an existing table in Excel with the data from a new pandas DataFrame without messing
up any formulas that reference that table: mytable.update(df), see: Table.update() (GH 1751).

• PRO Breaking Change: Reports: create_report() is now deprecated in favor of
render_template() that is available via app, book (new), and sheet objects, see: Quickstart (GH
1738).

• Bug Fix Running UDFs from other Office apps has been fixed (GH 1729).

• Bug Fix Writing to a protected sheet or using an invalid sheet name etc. caused xlwings to hang instead
of raising an Exception (GH 1725).

v0.24.9 (Aug 26, 2021)

• Bug Fix Fixed a regression introduced with 0.24.8 that was causing an error with pandas DataFrames
that have repeated column headers (GH 1711).

v0.24.8 (Aug 25, 2021)

• Feature New methods mychart.to_png(), myrange.to_png() and myrange.copy_picture()
(GH 1707 and GH 582).

• Enhancement You can now use the alias 'df' to convert to a pandas DataFrame:
mysheet['A1:C3'].options('df').value is equivalent to import pandas as pd;
mysheet['A1:C3'].options(pd.DataFrame).value (GH 1533).

• Enhancement Added --dir option to xlwings addin install to allow the installation of all files
in a directory as add-ins (GH 1702).

• Bug Fix Pandas DataFrames now properly work with PeriodIndex / PeriodDtype (GH 1084).

• PRO Reports: If there’s just one Frame, keep height of rows (GH 1698).

v0.24.7 (Aug 5, 2021)

• PRO Breaking Change: Reports: Changed the order of the arguments of the arithmetic DataFrame
filters: sum, div, mul and div to align them with the other filters. E.g., to multiply column 2 by 100,
you now have to write your filter as {{ df | mul(100, 2) }} (GH 1696).

• PRO Bug Fix Reports: Fixed an issue with images when pillow wasn’t installed (GH 1695).

v0.24.6 (Jul 31, 2021)

• Enhancement You can now also define the color of cells, shapes and font objects with a hex string
instead of just an RGB tuple, e.g., mysheet["A1"].color = "#efefef" (GH 1535).

• Enhancement When you print a workbook or sheet to a pdf, you can now automatically open the PDF
document via the new show argument: mybook.to_pdf(show=True) (GH 1683).

• Bug Fix: This release includes another round of fixing the cleanup actions of the App() context manager
(GH 1687).

• PRO Enhancement Reports: New filter fontcolor, allowing you to write text in black and turn it into
e.g., white for the report. This gets around the issue that white text isn’t visible in Excel on a white
background: {{ myplaceholder | fontcolor("white") }}. Alternatively, you can also use a
hex color (GH 1692).

196 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1751
https://github.com/xlwings/xlwings/issues/1738
https://github.com/xlwings/xlwings/issues/1738
https://github.com/xlwings/xlwings/issues/1729
https://github.com/xlwings/xlwings/issues/1725
https://github.com/xlwings/xlwings/issues/1711
https://github.com/xlwings/xlwings/issues/1707
https://github.com/xlwings/xlwings/issues/582
https://github.com/xlwings/xlwings/issues/1533
https://github.com/xlwings/xlwings/issues/1702
https://github.com/xlwings/xlwings/issues/1084
https://github.com/xlwings/xlwings/issues/1698
https://github.com/xlwings/xlwings/issues/1696
https://github.com/xlwings/xlwings/issues/1695
https://github.com/xlwings/xlwings/issues/1535
https://github.com/xlwings/xlwings/issues/1683
https://github.com/xlwings/xlwings/issues/1687
https://github.com/xlwings/xlwings/issues/1692

xlwings - Make Excel Fly!, Release dev

• PRO Bug Fix Positioning shapes wasn’t always respecting the top/left filters (GH 1687).

• PRO Bug Fix Fixed a bug with non-string headers when calling table.update (GH 1687).

v0.24.5 (Jul 27, 2021)

• PRO Bug Fix Reports: Using the header filter in a Frame was causing rows to be inserted (GH 1681).

v0.24.4 (Jul 26, 2021)

• Feature myapp.properties is a new context manager that allows you to easily change the app’s
properties temporarily. Once the code leaves the with block, the properties are changed back to their
previous state (GH 254). For example:

import xlwings as xw
app = App()

with app.properties(display_alerts=False):
Alerts are disabled until you leave the with block again

• Enhancement The app properties myapp.enable_events and myapp.interactive are now sup-
ported (GH 254).

• Enhancement mybook.to_pdf now ignores sheet names that start with a #. This can be changed by
setting the new parameter exclude_start_string (GH 1667).

• Enhancement New method mytable.resize() (GH 1662).

• Bug Fix The new App context manager introduced with v0.24.3 was sometimes causing an error on
Windows during the cleanup actions (GH 1668).

PRO xlwings.pro.reports:

• Breaking Change: DataFrame placeholders will now ignore the DataFrame’s index. If you need
the index, reset it via : df.reset_index() before passing the DataFrame to create_report or
render_template. This was required as the same column index used in filters would point to seem-
ingly different columns in Excel depending on whether the index was included or not. This also means
that the noindex and body filters are no obsolete and have been removed (GH 1676).

• Enhancement Dataframe filters now respect the order in which they are called and can be used multiple
times (GH 1675).

• Enhancement New filters: format (to apply f-string like formatting), datetime (to format datetime
objects), top and left (to position graphics outside of the grid structure) header, add, sub, mul, div
(to only return the header of a DataFrame or apply an arithmetic operation, respectively) (GH 1666,
GH 1660, GH 1677).

• Enhancement: create_report can now be accessed as method of the app object like so: myapp.
create_report (GH 1665).

• Bug Fix: Excel tables that had the Header Row unchecked were sometimes causing row shifts in the
template (GH 1663).

• Bug Fix: Rendering a template was sometimes causing the following error PasteSpecial method
of Range class failed (GH 1672).

28.37. Older Releases 197

https://github.com/xlwings/xlwings/issues/1687
https://github.com/xlwings/xlwings/issues/1687
https://github.com/xlwings/xlwings/issues/1681
https://github.com/xlwings/xlwings/issues/254
https://github.com/xlwings/xlwings/issues/254
https://github.com/xlwings/xlwings/issues/1667
https://github.com/xlwings/xlwings/issues/1662
https://github.com/xlwings/xlwings/issues/1668
https://github.com/xlwings/xlwings/issues/1676
https://github.com/xlwings/xlwings/issues/1675
https://github.com/xlwings/xlwings/issues/1666
https://github.com/xlwings/xlwings/issues/1660
https://github.com/xlwings/xlwings/issues/1677
https://github.com/xlwings/xlwings/issues/1665
https://github.com/xlwings/xlwings/issues/1663
https://github.com/xlwings/xlwings/issues/1672

xlwings - Make Excel Fly!, Release dev

v0.24.3 (Jul 15, 2021)

• Enhancement xlwings.App() can now be used as context manager, making sure that there are no
zombie processes left over on Windows, even if you use a hidden instance and your code fails. It is
therefore recommended to use it whenever you can, like so:

with xw.App(visible=True) as app:
print(app.books)

• Enhancement mysheet.pictures.add now accepts a new anchor argument that you can use as an
alternative to top/left to position the picture by providing an anchor range object, e.g.: mysheet.
pictures.add(img, anchor=mysheet['A1']) (GH 1648).

• Bug Fix macOS: Plots are now sent to Excel in PDF format when you set format='vector' which
is supporting transparency unlike the previously used eps format (GH 1647).

• PRO Enhancement mybook.to_pdf now accepts a layout parameter so you can “print” your reports
onto a PDF with your corporate layout including headers, footers and borderless graphics. See PDF
Layout.

v0.24.2 (Jul 6, 2021)

• Feature Added very basic support for mysheet.page_setup and myrange.note (GH 1551 and GH
896).

• Enhancement DataFrames are now displayed in Excel tables with empty column names if the
DataFrame doesn’t have a column or index name. This effect is e.g. visible when using xw.view()
(GH 1643).

• Enhancement mysheet.pictures.add() now supports format='vector' which translates to
'svg' on Windows and 'eps' on macOS (GH 1640).

• PRO Enhancement: The reports package now offers the additional DataFrame filters rowslice and
colslice, see xlwings Reports (GH 1645).

• PRO Bug Fix: Bug fix with handling Excel tables without headers.

Breaking Change

• PRO Enhancement: <frame>markers now have to be defined as cell notes in the first row, see Frames:
Multi-column Layout. This has the advantage that the Layout view corresponds to the print view (GH
1641). Also, the print area is now preserved even if you use Frames.

v0.24.1 (Jun 27, 2021)

• PRO Enhancement: The reports package now offers the additional DataFrame filters head and tail,
see xlwings Reports (GH 1633).

v0.24.0 (Jun 25, 2021)

• Enhancement pictures.add() now accepts every picture format (including vector-based formats)
that your Excel version supports. For example, on Windows you can use the svg format (only supported
with Excel that comes with Microsoft 365) and on macOS, you can use eps (GH 1624).

• [Enhancements] Support for Plotly images was moved from PRO to the Open Source version, i.e. you
can now provide a Plotly image directly to pictures.add().

198 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1648
https://github.com/xlwings/xlwings/issues/1647
https://github.com/xlwings/xlwings/issues/1551
https://github.com/xlwings/xlwings/issues/896
https://github.com/xlwings/xlwings/issues/896
https://github.com/xlwings/xlwings/issues/1643
https://github.com/xlwings/xlwings/issues/1640
https://github.com/xlwings/xlwings/issues/1645
https://github.com/xlwings/xlwings/issues/1641
https://github.com/xlwings/xlwings/issues/1641
https://github.com/xlwings/xlwings/issues/1633
https://github.com/xlwings/xlwings/issues/1624

xlwings - Make Excel Fly!, Release dev

• Enhancement Matplotlib and Plotly plots can now be sent to Excel in a vector-based format by provid-
ing the format argument, e.g. svg on Windows or eps on macOS.

• Enhancement Removed dependency on pillow/PIL to properly size images via pictures.add().

• Bug Fix Various fixes with scaling and positioning images via pictures.add() (GH 1491).

• Feature New methods mypicture.lock_aspect_ratio and myapp.cut_copy_mode (GH 1622
and GH 1625).

• PRO Feature: Reports: DataFrames and Images are now offering various filters to influence the behav-
ior of how DataFrames and Images are displayed, giving the template designer the ability to change a
lot of things that previously had to be taken care of by the Python developer. For example, to hide a
DataFrame’s index, you can now do {{ df | noindex }} or to scale the image to double its size, you
can do {{ img | scale(2) }}. You’ll find all available filters under xlwings Reports (GH 1602).

Breaking Change

• Enhancement: When using pictures.add(), pictures arrive now in Excel in the same size as if you
would manually add them via the Excel UI and setting width/height now behaves consistently during
initial adding and resizing. Consequently, you may have to fix your image sizes when you upgrade.
(GH 1491).

• PRO The default MarkdownStyle removed the empty space after a h1 heading. You can always rein-
troduce it by applying a custom style (GH 1628).

v0.23.4 (Jun 15, 2021)

• Bug Fix Windows: Fixed the ImportUDFs function in the VBA standalone module (GH 1601).

• Bug Fix Fixed configuration hierarchy: if you have a setting with an empty value in the xlwings.conf
sheet, it will not be overridden by the same key in the directory or user config file anymore. If you
wanted it to be overridden, you’d have to get the key out of the “xlwings.conf” sheet (GH 1617).

• PRO Feature Added the ability to block the execution of Python modules based on the file hash and/or
machine name (GH 1586).

• PRO Feature Added the xlwings release command for an easy release management in connection
with the one-click installer, see 1-click Installer/Embedded Code. (GH 1429).

v0.23.3 (May 17, 2021)

• Bug Fix Windows: UDFs returning a pandas.NaT were causing a #VALUE! error (GH 1590).

v0.23.2 (May 7, 2021)

• Feature Added support for myrange.wrap_text (GH 173).

• Enhancement xlwings.view() and xlwings.load() now use chunking by default (GH 1570).

• Bug Fix Allow to save non-Excel file formats (GH 1569)

• Bug Fix Calculate formulas by default in the Function Wizard (GH 1574).

• PRO Bug Fix Properly embed code with unicode characters (GH 1575).

v0.23.1 (Apr 19, 2021)

• Feature You can now save your workbook in any format you want, simply by specifying its extension:

28.37. Older Releases 199

https://github.com/xlwings/xlwings/issues/1491
https://github.com/xlwings/xlwings/issues/1622
https://github.com/xlwings/xlwings/issues/1625
https://github.com/xlwings/xlwings/issues/1602
https://github.com/xlwings/xlwings/issues/1491
https://github.com/xlwings/xlwings/issues/1628
https://github.com/xlwings/xlwings/issues/1601
https://github.com/xlwings/xlwings/issues/1617
https://github.com/xlwings/xlwings/issues/1586
https://github.com/xlwings/xlwings/issues/1429
https://github.com/xlwings/xlwings/issues/1590
https://github.com/xlwings/xlwings/issues/173
https://github.com/xlwings/xlwings/issues/1570
https://github.com/xlwings/xlwings/issues/1569
https://github.com/xlwings/xlwings/issues/1574
https://github.com/xlwings/xlwings/issues/1575

xlwings - Make Excel Fly!, Release dev

mybook.save('binaryfile.xlsb')
mybook.save('macroenabled.xlsm')

• Feature Added support for the chunksize option: when you read and write from or to big ranges,
you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will
depend on your system and size of the array, so you will have to try out a few different chunksizes to
find one that works well (GH 77):

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

• Enhancement xw.load() now expands to the current_region instead of relying on expand() (GH
1565).

• Enhancement The OneDrive setting has been split up into a Windows and macOS-specific paths:
ONEDRIVE_WIN and ONEDRIVE_MAC (GH 1556).

• Bug Fix macOS: There are no more timeouts when opening or saving large workbooks that take longer
than 60 seconds (GH 618).

• Bug Fix RunPython was failing when there was a & in the Excel file name (GH 1557).

v0.23.0 (Mar 5, 2021)

• PRO Feature: This release adds support for Markdown-based formatting of text, both in cells as well as
in shapes, see Markdown Formatting for the details. This is also supported for template-based reports.

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title
(continues on next page)

200 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/77
https://github.com/xlwings/xlwings/issues/1565
https://github.com/xlwings/xlwings/issues/1565
https://github.com/xlwings/xlwings/issues/1556
https://github.com/xlwings/xlwings/issues/618
https://github.com/xlwings/xlwings/issues/1557

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]
sheet['A1'].value = Markdown(mytext)
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text, but you can also define your own style to match
your corporate style guide as explained under Markdown Formatting:

• Feature Added support for the Font object via range or shape objects, see Font (GH 897 and GH
559).

• Feature Added support for the Characters object via range or shape objects, see Characters.

v0.22.3 (Mar 3, 2021)

• Enhancement As a convenience method, you can now directly export sheets to PDF instead of having
to go through the book: mysheet.to_pdf() (GH 1517).

• PRO Bug Fix Running RunPython with embedded code was broken in 0.22.0 (GH 1530).

v0.22.2 (Feb 8, 2021)

• Bug Fix Windows: If the path of the Excel file included a single quote, UDFs were failing (GH 1511).

• Bug Fix macOS: Prevent Excel from showing up when using hidden Excel instances via xw.
App(visible=False) (GH 1508).

v0.22.1 (Feb 4, 2021)

• PRO Bug Fix: Table.update has been fixed so it also works when the table is the data source of a
chart (GH 1507).

• PRO [Docs]: New documentation about how to work with Excel charts in templates; see Quickstart.

28.37. Older Releases 201

https://github.com/xlwings/xlwings/issues/897
https://github.com/xlwings/xlwings/issues/559
https://github.com/xlwings/xlwings/issues/559
https://github.com/xlwings/xlwings/issues/1517
https://github.com/xlwings/xlwings/issues/1530
https://github.com/xlwings/xlwings/issues/1511
https://github.com/xlwings/xlwings/issues/1508
https://github.com/xlwings/xlwings/issues/1507

xlwings - Make Excel Fly!, Release dev

v0.22.0 (Jan 29, 2021)

• Feature While it’s always been possible to somehow create your own xlwings-based add-ins, this release
adds a toolchain to make it a lot easier to create your own white-labeled add-in, see Custom Add-ins
(GH 1488).

• Enhancement xw.view now formats the pandas DataFrames as Excel table and with the new xw.load
function, you can easily load a DataFrame from your active workbook into a Jupyter notebook. See
Jupyter Notebooks: Interact with Excel for a full tutorial (GH 1487).

• Feature New method mysheet.copy() (GH 123).

• PRO Feature: in addition to xw.create_report(), you can now also work within a workbook by
using the new mysheet.render_template() method, see also Quickstart (GH 1478).

v0.21.4 (Nov 23, 2020)

• Enhancement New property Shape.text to read and write text to the text frame of shapes (GH 1456).

• PRO Feature: xlwings Reports now supports template text in shapes, see xlwings Reports.

v0.21.3 (Nov 22, 2020)

• PRO Breaking Change: The Table.update method has been changed to treat the DataFrame’s index
consistently whether or not it’s being written to an Excel table: by default, the index is now transferred
to Excel in both cases.

v0.21.2 (Nov 15, 2020)

• Bug Fix The default quickstart setup now also works when you store your workbooks on OneDrive
(GH 1275)

• Bug Fix Excel files that have single quotes in their paths are now working correctly (GH 1021)

v0.21.1 (Nov 13, 2020)

• Enhancement Added new method Book.to_pdf() to easily export PDF reports. Needless to say, this
integrates very nicely with xlwings Reports (GH 1363).

• Enhancement Added support for Sheet.visible (GH 1459).

v0.21.0 (Nov 9, 2020)

• Enhancement Added support for Excel tables, see: Table and Tables and range.table (GH 47 and
GH 1364)

• Enhancement: When using UDFs, you can now use 'range' for the convert argument where you
would use before xw.Range. The latter will be removed in a future version (GH 1455).

• Enhancement Windows: The comtypes requirement has been dropped (GH 1443).

• PRO Feature: Table.update offers an easy way to keep your Excel tables in sync with your
DataFrame source (GH 1454).

• PRO Enhancement: The reports package now supports Excel tables in the templates. This is e.g.
helpful to style the tables with striped rows, see Excel Tables (GH 1364).

v0.20.8 (Oct 18, 2020)

202 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1488
https://github.com/xlwings/xlwings/issues/1487
https://github.com/xlwings/xlwings/issues/123
https://github.com/xlwings/xlwings/issues/1478
https://github.com/xlwings/xlwings/issues/1456
https://github.com/xlwings/xlwings/issues/1275
https://github.com/xlwings/xlwings/issues/1021
https://github.com/xlwings/xlwings/issues/1363
https://github.com/xlwings/xlwings/issues/1459
https://github.com/xlwings/xlwings/issues/47
https://github.com/xlwings/xlwings/issues/1364
https://github.com/xlwings/xlwings/issues/1455
https://github.com/xlwings/xlwings/issues/1443
https://github.com/xlwings/xlwings/issues/1454
https://github.com/xlwings/xlwings/issues/1364

xlwings - Make Excel Fly!, Release dev

• Enhancement Windows: With UDFs, you can now get easy access to the caller (an xlwings range
object) by using caller as a function argument (GH 1434). In that sense, caller is now a reserved
argument by xlwings and if you have any existing arguments with this name, you’ll need to rename
them:

@xw.func
def get_caller_address(caller):

caller will not be exposed in Excel, so use it like so:
=get_caller_address()
return caller.address

• Bug Fix Windows: The setting Show Console now also shows/hides the command prompt properly
when using the UDF server with Conda. There is no more switching between python and pythonw
required (GH 1435 and GH 1421).

• Bug Fix Windows: Functions called via RunPython with Use UDF Server activated don’t require
the xw.sub decorator anymore (GH 1418).

v0.20.7 (Sep 3, 2020)

• Bug Fix Windows: Fix a regression introduced with 0.20.0 that would cause an AttributeError:
Range.CLSID with async and legacy dynamic array UDFs (GH 1404).

• Enhancement: Matplotlib figures are now converted to 300 dpi pictures for better quality when using
them with pictures.add (GH 1402).

v0.20.6 (Sep 1, 2020)

• Bug Fix macOS: App(visible=False) has been fixed (GH 652).

• Bug Fix macOS: The regression with Book.fullname that was introduced with 0.20.1 has been fixed
(GH 1390).

• Bug Fix Windows: The retry mechanism has been improved (GH 1398).

v0.20.5 (Aug 27, 2020)

• Bug Fix The conda version check was failing with spaces in the installation path (GH 1396).

• Bug Fix Windows: when running app.quit(), the application is now properly closed without leaving
a zombie process behind (GH 1397).

v0.20.4 (Aug 20, 2020)

• Enhancement The add-in can now optionally be installed without the password protection: xlwings
addin install --unprotected (GH 1392).

v0.20.3 (Aug 15, 2020)

• Bug Fix The conda version check was erroneously triggered when importing UDFs on systems without
conda. (GH 1389).

v0.20.2 (Aug 13, 2020)

• PRO Feature: Code can now be embedded by calling the new xlwings code embed [--file] CLI
command (GH 1380).

28.37. Older Releases 203

https://github.com/xlwings/xlwings/issues/1434
https://github.com/xlwings/xlwings/issues/1435
https://github.com/xlwings/xlwings/issues/1421
https://github.com/xlwings/xlwings/issues/1418
https://github.com/xlwings/xlwings/issues/1404
https://github.com/xlwings/xlwings/issues/1402
https://github.com/xlwings/xlwings/issues/652
https://github.com/xlwings/xlwings/issues/1390
https://github.com/xlwings/xlwings/issues/1398
https://github.com/xlwings/xlwings/issues/1396
https://github.com/xlwings/xlwings/issues/1397
https://github.com/xlwings/xlwings/issues/1392
https://github.com/xlwings/xlwings/issues/1389
https://github.com/xlwings/xlwings/issues/1380

xlwings - Make Excel Fly!, Release dev

• Bug Fix Made the import UDFs functionality more robust to prevent an Automation 440 error that
some users would see (GH 1381).

• Enhancement The standalone Excel file now includes all VBA dependencies to make it work on Win-
dows and macOS (GH 1349).

• Enhancement xlwings now blocks the call if the Conda Path/Env settings are used with legacy Conda
installations (GH 1384).

v0.20.1 (Aug 7, 2020)

• Bug Fix macOS: password-protected sheets caused an alert when calling xw.Book (GH 1377).

• Bug Fix macOS: calling wb.save('newname.xlsx') wasn’t updating the wb object properly and
caused an alert (GH 1129 and GH 626 and GH 957).

v0.20.0 (Jul 22, 2020)

This version drops support for Python 3.5

• Feature New property xlwings.App.status_bar (GH 1362).

• Enhancement xlwings.view() now becomes the active window, making it easier to work with in
interactive workflows (please speak up if you feel differently) (GH 1353).

• Bug Fix The UDF server has received a serious upgrade by njwhite, getting rid of the many issues that
were around with using a combination of async functions and legacy dynamic arrays. You can now also
call functions defined via async def, although for the time being they are still called synchronously
from Excel (GH 1010 and GH 1164).

v0.19.5 (Jul 5, 2020)

• Enhancement When you install the add-in via xlwings addin install, it autoconfigures the add-in
if it can’t find an existing user config file (GH 1322).

• Feature New xlwings config create [--force] command that autogenerates the user config file
with the Python settings from which you run the command. Can be used to reset the add-in settings
with the --force option (GH 1322).

• Feature: There is a new option to show/hide the console window. Note that with Conda Path and
Conda Env set, the console always pops up when using the UDF server. Currently only available on
Windows (GH 1182).

• Enhancement The Interpreter setting has been deprecated in favor of platform-specific settings:
Interpreter_Win and Interpreter_Mac, respectively. This allows you to use the sheet config
unchanged on both platforms (GH 1345).

• Enhancement On macOS, you can now use a few environment-like variables in your settings: $HOME,
$APPLICATIONS, $DOCUMENTS, $DESKTOP (GH 615).

• Bug Fix: Async functions sometimes caused an error on older Excel versions without dynamic arrays
(GH 1341).

v0.19.4 (May 20, 2020)

• Feature xlwings addin install is now available on macOS. On Windows, it has been fixed so it
should now work reliably (GH 704).

204 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1381
https://github.com/xlwings/xlwings/issues/1349
https://github.com/xlwings/xlwings/issues/1384
https://github.com/xlwings/xlwings/issues/1377
https://github.com/xlwings/xlwings/issues/1129
https://github.com/xlwings/xlwings/issues/626
https://github.com/xlwings/xlwings/issues/957
https://github.com/xlwings/xlwings/issues/1362
https://github.com/xlwings/xlwings/issues/1353
https://github.com/njwhite
https://github.com/xlwings/xlwings/issues/1010
https://github.com/xlwings/xlwings/issues/1164
https://github.com/xlwings/xlwings/issues/1322
https://github.com/xlwings/xlwings/issues/1322
https://github.com/xlwings/xlwings/issues/1182
https://github.com/xlwings/xlwings/issues/1345
https://github.com/xlwings/xlwings/issues/615
https://github.com/xlwings/xlwings/issues/1341
https://github.com/xlwings/xlwings/issues/704

xlwings - Make Excel Fly!, Release dev

• Bug Fix Fixed a dll load failed issue with pywin32 when installed via pip on Python 3.8 (GH
1315).

v0.19.3 (May 19, 2020)

• PRO Feature: Added possibility to create deployment keys.

v0.19.2 (May 11, 2020)

• Feature New methods xlwings.Shape.scale_height() and xlwings.Shape.scale_width()
(GH 311).

• Bug Fix Using Pictures.add is not distorting the proportions anymore (GH 311).

• PRO Feature: Added support for Plotly static charts (GH 1309).

v0.19.1 (May 4, 2020)

• Bug Fix Fixed an issue with the xlwings PRO license key when there was no xlwings.conf file (GH
1308).

28.37. Older Releases 205

https://github.com/xlwings/xlwings/issues/1315
https://github.com/xlwings/xlwings/issues/1315
https://github.com/xlwings/xlwings/issues/311
https://github.com/xlwings/xlwings/issues/311
https://github.com/xlwings/xlwings/issues/1309
https://github.com/xlwings/xlwings/issues/1308
https://github.com/xlwings/xlwings/issues/1308

xlwings - Make Excel Fly!, Release dev

v0.19.0 (May 2, 2020)

• Bug Fix Native dynamic array formulas can now be used with async formulas (GH 1277)

• Enhancement Quickstart references the project’s name when run from Python instead of the active
book (GH 1307)

Breaking Change:

• Conda Base has been renamed into Conda Path to reduce the confusion with the Conda Env called
base. Please adjust your settings accordingly! (GH 1194)

v0.18.0 (Feb 15, 2020)

• Feature Added support for merged cells: xlwings.Range.merge_area, xlwings.Range.
merge_cells, xlwings.Range.merge() xlwings.Range.unmerge() (GH 21).

• Bug Fix RunPython now works properly with files that have a URL as fullname, i.e. OneDrive and
SharePoint (GH 1253).

• Bug Fix Fixed a bug with wb.names['...'].refers_to_range on macOS (GH 1256).

v0.17.1 (Jan 31, 2020)

• Bug Fix Handle np.float64('nan') correctly (GH 1116).

v0.17.0 (Jan 6, 2020)

This release drops support for Python 2.7 in xlwings CE. If you still rely on Python 2.7, you will need to stick
to v0.16.6.

v0.16.6 (Jan 5, 2020)

• Enhancement CLI changes with respect to xlwings license (GH 1227).

v0.16.5 (Dec 30, 2019)

• Enhancement Improvements with regards to the Run main ribbon button (GH 1207 and GH 1222).

v0.16.4 (Dec 17, 2019)

• Enhancement Added support for xlwings.Range.copy() (GH 1214).

• Enhancement Added support for xlwings.Range.paste() (GH 1215).

• Enhancement Added support for xlwings.Range.insert() (GH 80).

• Enhancement Added support for xlwings.Range.delete() (GH 862).

v0.16.3 (Dec 12, 2019)

• Bug Fix Sometimes, xlwings would show an error of a previous run. Moreover, 0.16.2 introduced an
issue that would not show errors at all on non-conda setups (GH 1158 and GH 1206)

• Enhancement The xlwings CLI now prints the version number (GH 1200)

Breaking Change

• LOG FILE has been retired and removed from the configuration/add-in.

v0.16.2 (Dec 5, 2019)

206 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1277
https://github.com/xlwings/xlwings/issues/1307
https://github.com/xlwings/xlwings/issues/1194
https://github.com/xlwings/xlwings/issues/21
https://github.com/xlwings/xlwings/issues/1253
https://github.com/xlwings/xlwings/issues/1256
https://github.com/xlwings/xlwings/issues/1116
https://github.com/xlwings/xlwings/issues/1227
https://github.com/xlwings/xlwings/issues/1207
https://github.com/xlwings/xlwings/issues/1222
https://github.com/xlwings/xlwings/issues/1214
https://github.com/xlwings/xlwings/issues/1215
https://github.com/xlwings/xlwings/issues/80
https://github.com/xlwings/xlwings/issues/862
https://github.com/xlwings/xlwings/issues/1158
https://github.com/xlwings/xlwings/issues/1206
https://github.com/xlwings/xlwings/issues/1200

xlwings - Make Excel Fly!, Release dev

• Bug Fix RunPython can now be called in parallel from different Excel instances (GH 1196).

v0.16.1 (Dec 1, 2019)

• Enhancement xlwings.Book() and myapp.books.open() now accept parameters like
update_links, password etc. (GH 1189).

• Bug Fix Conda Env now works correctly with base for UDFs, too (GH 1110).

• Bug Fix Conda Base now allows spaces in the path (GH 1176).

• Enhancement The UDF server timeout has been increased to 2 minutes (GH 1168).

v0.16.0 (Oct 13, 2019)

This release adds a small but very powerful feature: There’s a new Run main button in the add-in. With that,
you can run your Python scripts from standard xlsx files - no need to save your workbook as macro-enabled
anymore!

The only condition to make that work is that your Python script has the same name as your workbook and
that it contains a function called main, which will be called when you click the Run button. All settings
from your config file or config sheet are still respected, so this will work even if you have the source file in a
different directory than your workbook (as long as that directory is added to the PYTHONPATH in your config).

The xlwings quickstart myproject has been updated accordingly. It still produces an xlsm file at the
moment but you can save it as xlsx file if you intend to run it via the new Run button.

v0.15.10 (Aug 31, 2019)

• Bug Fix Fixed a Python 2.7 incompatibility introduced with 0.15.9.

v0.15.9 (Aug 31, 2019)

• Enhancement The sql extension now uses the native dynamic arrays if available (GH 1138).

• Enhancement xlwings now support Path objects from pathlib for all file paths (GH 1126).

• Bug Fix Various bug fixes: (GH 1118), (GH 1131), (GH 1102).

v0.15.8 (May 5, 2019)

• Bug Fix Fixed an issue introduced with the previous release that always showed the command prompt
when running UDFs, not just when using conda envs (GH 1098).

v0.15.7 (May 5, 2019)

• Bug Fix Conda Base and Conda Env weren’t stored correctly in the config file from the ribbon (GH
1090).

28.37. Older Releases 207

https://github.com/xlwings/xlwings/issues/1196
https://github.com/xlwings/xlwings/issues/1189
https://github.com/xlwings/xlwings/issues/1110
https://github.com/xlwings/xlwings/issues/1176
https://github.com/xlwings/xlwings/issues/1168
https://github.com/xlwings/xlwings/issues/1138
https://github.com/xlwings/xlwings/issues/1126
https://github.com/xlwings/xlwings/issues/1118
https://github.com/xlwings/xlwings/issues/1131
https://github.com/xlwings/xlwings/issues/1102
https://github.com/xlwings/xlwings/issues/1098
https://github.com/xlwings/xlwings/issues/1090
https://github.com/xlwings/xlwings/issues/1090

xlwings - Make Excel Fly!, Release dev

• Bug Fix UDFs now work correctly with Conda Base and Conda Env. Note, however, that currently
there is no way to hide the command prompt in that configuration (GH 1090).

• Enhancement Restart UDF Server now actually does what it says: it stops and restarts the server.
Previously it was only stopping the server and only when the first call to Python was made, it was
started again (GH 1096).

v0.15.6 (Apr 29, 2019)

• Feature New default converter for OrderedDict (GH 1068).

• Enhancement Import Functions now restarts the UDF server to guarantee a clean state after im-
porting. (GH 1092)

• Enhancement The ribbon now shows tooltips on Windows (GH 1093)

• Bug Fix RunPython now properly supports conda environments on Windows (they started to require
proper activation with packages like numpy etc). Conda >=4.6. required. A fix for UDFs is still
pending (GH 954).

Breaking Change

• Bug Fix RunFronzenPython now accepts spaces in the path of the executable, but in turn requires to
be called with command line arguments as a separate VBA argument. Example: RunFrozenPython
"C:\path\to\frozen_executable.exe", "arg1 arg2" (GH 1063).

v0.15.5 (Mar 25, 2019)

• Enhancement wb.macro() now accepts xlwings objects as arguments such as range, sheet etc.
when the VBA macro expects the corresponding Excel object (e.g. Range, Worksheet etc.) (GH 784
and GH 1084)

Breaking Change

• Cells that contain a cell error such as #DIV/0!, #N/A, #NAME?, #NULL!, #NUM!, #REF!, #VALUE!
return now None as value in Python. Previously they were returned as constant on Windows (e.g.
-2146826246) or k.missing_value on Mac.

v0.15.4 (Mar 17, 2019)

• [Win] BugFix: The ribbon was not showing up in Excel 2007. (GH 1039)

• Enhancement: Allow to install xlwings on Linux even though it’s not a supported platform: export
INSTALL_ON_LINUX=1; pip install xlwings (GH 1052)

v0.15.3 (Feb 23, 2019)

Bug Fix release:

• [Mac] RunPython was broken by the previous release. If you install via conda, make sure to run
xlwings runpython install again! (GH 1035)

• [Win] Sometimes, the ribbon was throwing errors (GH 1041)

v0.15.2 (Feb 3, 2019)

Better support and docs for deployment, see Deployment:

• You can now package your python modules into a zip file for easier distribution (GH 1016).

208 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/1090
https://github.com/xlwings/xlwings/issues/1096
https://github.com/xlwings/xlwings/issues/1068
https://github.com/xlwings/xlwings/issues/1092
https://github.com/xlwings/xlwings/issues/1093
https://github.com/xlwings/xlwings/issues/954
https://github.com/xlwings/xlwings/issues/1063
https://github.com/xlwings/xlwings/issues/784
https://github.com/xlwings/xlwings/issues/1084
https://github.com/xlwings/xlwings/issues/1039
https://github.com/xlwings/xlwings/issues/1052
https://github.com/xlwings/xlwings/issues/1035
https://github.com/xlwings/xlwings/issues/1041
https://github.com/xlwings/xlwings/issues/1016

xlwings - Make Excel Fly!, Release dev

• RunFrozenPython now allows to includes arguments, e.g. RunFrozenPython "C:\path\to\my.
exe arg1 arg2" (GH 588).

Breaking Change

• Accessing a not existing PID in the apps collection raises now a KeyError instead of an Exception
(GH 1002).

v0.15.1 (Nov 29, 2018)

Bug Fix release:

• [Win] Calling Subs or UDFs from VBA was causing an error (GH 998).

v0.15.0 (Nov 20, 2018)

Dynamic Array Refactor

While we’re all waiting for the new native dynamic arrays, it’s still going to take another while until the
majority can use them (they are not yet part of Office 2019).

In the meantime, this refactor improves the current xlwings dynamic arrays in the following way:

• Use of native (“legacy”) array formulas instead of having a normal formula in the top left cell and
writing around it

• It’s up to 2x faster

• There’s no empty row/col required outside of the dynamic array anymore

• It continues to overwrite existing cells (no change there)

• There’s a small breaking change in the unlikely case that you were assigning values with the expand
option: myrange.options(expand='table').value = [['b'] * 3] * 3. This was previously
clearing contiguous cells to the right and bottom (or one of them depending on the option), now you
have to do that explicitly.

Bug Fixes:

• Importing multiple UDF modules has been fixed (GH 991).

v0.14.1 (Nov 9, 2018)

This is a bug fix release:

• [Win] Fixed an issue when the new async_mode was used together with numpy arrays (GH 984)

• [Mac] Fixed an issue with multiple arguments in RunPython (GH 905)

• [Mac] Fixed an issue with the config file (GH 982)

v0.14.0 (Nov 5, 2018)

Features:

This release adds support for asynchronous functions (like all UDF related functionality, this is only available
on Windows). Making a function asynchronous is as easy as:

28.37. Older Releases 209

https://github.com/xlwings/xlwings/issues/588
https://github.com/xlwings/xlwings/issues/1002
https://github.com/xlwings/xlwings/issues/998
https://github.com/xlwings/xlwings/issues/991
https://github.com/xlwings/xlwings/issues/984
https://github.com/xlwings/xlwings/issues/905
https://github.com/xlwings/xlwings/issues/982

xlwings - Make Excel Fly!, Release dev

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):

time.sleep(5) # long running tasks
return a

See Asynchronous UDFs for the full docs.

Bug Fixes:

• See GH 970 and GH 973.

v0.13.0 (Oct 22, 2018)

Features:

This release adds a REST API server to xlwings, allowing you to easily expose your workbook over the
internet.

Enhancements:

• Dynamic arrays are now more robust. Before, they often didn’t manage to write everything when there
was a lot going on in the workbook (GH 880)

• Jagged arrays (lists of lists where not all rows are of equal length) now raise an error (GH 942)

• xlwings can now be used with threading, see the docs: Threading (GH 759).

• [Win] xlwings now enforces pywin32 224 when installing xlwings on Python 3.7 (GH 959)

• New xlwings.Sheet.used_range property (GH 112)

Bug Fixes:

• The current directory is now inserted in front of everything else on the PYTHONPATH (GH 958)

• The standalone files had an issue in the VBA module (GH 960)

Breaking Change

• Members of the xw.apps collection are now accessed by key (=PID) instead of index, e.g.: xw.
apps[12345] instead of xw.apps[0]. The apps collection also has a new xw.apps.keys()method.
(GH 951)

v0.12.1 (Oct 7, 2018)

[Py27] Bug Fix for a Python 2.7 glitch.

v0.12.0 (Oct 7, 2018)

Features:

This release adds support to call Python functions from VBA in all Office apps (e.g. Access, Outlook etc.),
not just Excel. As this uses UDFs, it is only available on Windows. See the docs: xlwings with other Office
Apps.

210 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/970
https://github.com/xlwings/xlwings/issues/973
https://github.com/xlwings/xlwings/issues/880
https://github.com/xlwings/xlwings/issues/942
https://github.com/xlwings/xlwings/issues/759
https://github.com/xlwings/xlwings/issues/959
https://github.com/xlwings/xlwings/issues/112
https://github.com/xlwings/xlwings/issues/958
https://github.com/xlwings/xlwings/issues/960
https://github.com/xlwings/xlwings/issues/951

xlwings - Make Excel Fly!, Release dev

Breaking Change

Previously, Python functions were always returning 2d arrays when called from VBA, no matter whether it
was actually a 2d array or not. Now you get the proper dimensionality which makes it easier if the return
value is e.g. a string or scalar as you don’t have to unpack it anymore.

Consider the following example using the VBA Editor’s Immediate Window after importing UDFs from a
project created using by xlwings quickstart:

Old behaviour

?TypeName(hello("xlwings"))
Variant()
?hello("xlwings")(0,0)
hello xlwings

New behaviour

?TypeName(hello("xlwings"))
String
?hello("xlwings")
hello xlwings

Bug Fixes:

• [Win] Support expansion of environment variables in config values (GH 615)

• Other bug fixes: GH 889, GH 939, GH 940, GH 943.

v0.11.8 (May 13, 2018)

• [Win] pywin32 is now automatically installed when using pip (GH 827)

• xlwings.bas has been readded to the python package. This facilitates e.g. the use of xlwings within
other addins (GH 857)

v0.11.7 (Feb 5, 2018)

• [Win] This release fixes a bug introduced with v0.11.6 that wouldn’t allow to open workbooks by name
(GH 804)

v0.11.6 (Jan 27, 2018)

Bug Fixes:

• [Win] When constantly writing to a spreadsheet, xlwings now correctly resumes after clicking into
cells, previously it was crashing. (GH 587)

• Options are now correctly applied when writing to a sheet (GH 798)

v0.11.5 (Jan 7, 2018)

This is mostly a bug fix release:

• Config files can now additionally be saved in the directory of the workbooks, overriding the global
Ribbon config, see Making use of Environment Variables (GH 772)

28.37. Older Releases 211

https://github.com/xlwings/xlwings/issues/615
https://github.com/xlwings/xlwings/issues/889
https://github.com/xlwings/xlwings/issues/939
https://github.com/xlwings/xlwings/issues/940
https://github.com/xlwings/xlwings/issues/943
https://github.com/xlwings/xlwings/issues/827
https://github.com/xlwings/xlwings/issues/857
https://github.com/xlwings/xlwings/issues/804
https://github.com/xlwings/xlwings/issues/587
https://github.com/xlwings/xlwings/issues/798
https://github.com/xlwings/xlwings/issues/772

xlwings - Make Excel Fly!, Release dev

• Reading Pandas DataFrames with a simple index was creating a MultiIndex with Pandas > 0.20 (GH
786)

• [Win] The xlwings dlls are now properly versioned, allowing to use pre 0.11 releases in parallel with
>0.11 releases (GH 743)

• [Mac] Sheet.names.add() was always adding the names on workbook level (GH 771)

• [Mac] UDF decorators now don’t cause errors on Mac anymore (GH 780)

v0.11.4 (Jul 23, 2017)

This release brings further improvements with regards to the add-in:

• The add-in now shows the version on the ribbon. This makes it easy to check if you are using the
correct version (GH 724):

• [Mac] On Mac Excel 2016, the ribbon now only shows the available functionality (GH 723):

• [Mac] Mac Excel 2011 is now supported again with the new add-in. However, since Excel 2011 doesn’t
support the ribbon, the config file has been created/edited manually, see Making use of Environment
Variables (GH 714).

Also, some new docs:

• [Win] How to use imported functions in VBA, see Call UDFs from VBA.

• For more up-to-date installations via conda, use the conda-forge channel, see Installation.

• A troubleshooting section: Troubleshooting.

v0.11.3 (Jul 14, 2017)

• Bug Fix: When using the xlwings.conf sheet, there was a subscript out of range error (GH 708)

• Enhancement: The add-in is now password protected (pw: xlwings) to declutter the VBA editor (GH
710)

212 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/786
https://github.com/xlwings/xlwings/issues/786
https://github.com/xlwings/xlwings/issues/743
https://github.com/xlwings/xlwings/issues/771
https://github.com/xlwings/xlwings/issues/780
https://github.com/xlwings/xlwings/issues/724
https://github.com/xlwings/xlwings/issues/723
https://github.com/xlwings/xlwings/issues/714
https://github.com/xlwings/xlwings/issues/708
https://github.com/xlwings/xlwings/issues/710
https://github.com/xlwings/xlwings/issues/710

xlwings - Make Excel Fly!, Release dev

You need to update your xlwings add-in to get the fixes!

v0.11.2 (Jul 6, 2017)

• Bug Fix: The sql extension was sometimes not correctly assigning the table aliases (GH 699)

• Bug Fix: Permission errors during pip installation should be resolved now (GH 693)

v0.11.1 (Jul 5, 2017)

• Bug Fix: The sql extension installs now correctly (GH 695)

v0.11.0 (Jul 2, 2017)

Big news! This release adds a full blown add-in! We also throw in a great In-Excel SQL Extension and a
few bug fixes:

Add-in

A few highlights:

• Settings don’t have to be manipulated in VBA code anymore, but can be either set globally via Rib-
bon/config file or for the workbook via a special worksheet

• UDF server can be restarted directly from the add-in

• You can still use a VBA module instead of the add-in, but the recommended way is the add-in

• Get all the details here: Add-in & Settings

In-Excel SQL Extension

The add-in can be extended with own code. We throw in an sql function, that allows you to perform SQL
queries on data in your spreadsheets. It’s pretty awesome, get the details here: Extensions.

Bug Fixes

• [Win]: Running Debug > Compile is not throwing errors anymore (GH 678)

• Pandas deprecation warnings have been fixed (GH 675 and GH 664)

• [Mac]: Errors are again shown correctly in a pop up (GH 660)

• [Mac]: Like Windows, Mac now also only shows errors in a popup. Before it was including stdout,
too (GH 666)

Breaking Change

• RunFrozenPython now requires the full path to the executable.

• The xlwings CLI xlwings template functionality has been removed. Use quickstart instead.

28.37. Older Releases 213

https://github.com/xlwings/xlwings/issues/699
https://github.com/xlwings/xlwings/issues/693
https://github.com/xlwings/xlwings/issues/695
https://github.com/xlwings/xlwings/issues/678
https://github.com/xlwings/xlwings/issues/675
https://github.com/xlwings/xlwings/issues/664
https://github.com/xlwings/xlwings/issues/660
https://github.com/xlwings/xlwings/issues/666

xlwings - Make Excel Fly!, Release dev

Migrate to v0.11 (Add-in)

This migration guide shows you how you can start using the new xlwings add-in as opposed to the old xlwings
VBA module (and the old add-in that consisted of just a single import button).

Upgrade the xlwings Python package

1. Check where xlwings is currently installed

>>> import xlwings
>>> xlwings.__path__

2. If you installed xlwings with pip, for once, you should first uninstall xlwings: pip uninstall
xlwings

3. Check the directory that you got under 1): if there are any files left over, delete the xlwings folder
and the remaining files manually

4. Install the latest xlwings version: pip install xlwings

5. Verify that you have >= 0.11 by doing

>>> import xlwings
>>> xlwings.__version__

Install the add-in

1. If you have the old xlwings addin installed, find the location and remove it or overwrite it with the new
version (see next step). If you installed it via the xlwings command line client, you should be able to
do: xlwings addin remove.

2. Close Excel. Run xlwings addin install from a command prompt. Reopen Excel and check if
the xlwings Ribbon appears. If not, copy xlwings.xlam (from your xlwings installation folder under
addin\xlwings.xlam manually into the XLSTART folder. You can find the location of this folder
under Options > Trust Center > Trust Center Settings. . . > Trusted Locations, under the description
Excel default location: User StartUp. Restart Excel and you should see the add-in.

Upgrade existing workbooks

1. Make a backup of your Excel file

2. Open the file and go to the VBA Editor (Alt-F11)

3. Remove the xlwings VBA module

4. Add a reference to the xlwings addin, see Installation

5. If you want to use workbook specific settings, add a sheet xlwings.conf, see Workbook Config:
xlwings.conf Sheet

Note: To import UDFs, you need to have the reference to the xlwings add-in set!

v0.10.4 (Feb 19, 2017)

• [Win] Bug Fix: v0.10.3 introduced a bug that imported UDFs by default with volatile=True, this has
now been fixed. You will need to reimport your functions after upgrading the xlwings package.

214 Chapter 28. Changelog

xlwings - Make Excel Fly!, Release dev

v0.10.3 (Jan 28, 2017)

This release adds new features to User Defined Functions (UDFs):

• categories

• volatile option

• suppress calculation in function wizard

Syntax:

import xlwings as xw
@xw.func(category="xlwings", volatile=False, call_in_wizard=True)
def myfunction():

return ...

For details, check out the (also new) and comprehensive API docs about the decorators: UDF decorators

v0.10.2 (Dec 31, 2016)

• [Win] Python 3.6 is now supported (GH 592)

v0.10.1 (Dec 5, 2016)

• Writing a Pandas Series with a MultiIndex header was not writing out the header (GH 572)

• [Win] Docstrings for UDF arguments are now working (GH 367)

• [Mac] Range.clear_contents() has been fixed (it was doing clear() instead) (GH 576)

• xw.Book(...) and xw.books.open(...) raise now the same error in case the file doesn’t exist (GH
540)

v0.10.0 (Sep 20, 2016)

Dynamic Array Formulas

This release adds an often requested & powerful new feature to User Defined Functions (UDFs): Dynamic
expansion for array formulas. While Excel offers array formulas, you need to specify their dimensions up
front by selecting the result array first, then entering the formula and finally hitting Ctrl-Shift-Enter.
While this makes sense from a data integrity point of view, in practice, it often turns out to be a cumbersome
limitation, especially when working with dynamic arrays such as time series data.

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):

return np.random.randn(int(r), int(c))

Note: Expanding array formulas will overwrite cells without prompting and leave an empty border around
them, i.e. they will clear the row to the bottom and the column to the right of the array.

Bug Fixes

28.37. Older Releases 215

https://github.com/xlwings/xlwings/issues/592
https://github.com/xlwings/xlwings/issues/572
https://github.com/xlwings/xlwings/issues/367
https://github.com/xlwings/xlwings/issues/576
https://github.com/xlwings/xlwings/issues/540
https://github.com/xlwings/xlwings/issues/540

xlwings - Make Excel Fly!, Release dev

216 Chapter 28. Changelog

xlwings - Make Excel Fly!, Release dev

• The int converter works now always as you would expect (e.g.: xw.Range('A1').
options(numbers=int).value). Before, it could happen that the number was off by 1 due
to floating point issues (GH 554).

v0.9.3 (Aug 22, 2016)

• [Win] App.visible wasn’t behaving correctly (GH 551).

• [Mac] Added support for the new 64bit version of Excel 2016 on Mac (GH 549).

• Unicode book names are again supported (GH 546).

• xlwings.Book.save() now supports relative paths. Also, when saving an existing book under a new
name without specifying the full path, it’ll be saved in Python’s current working directory instead of
in Excel’s default directory (GH 185).

v0.9.2 (Aug 8, 2016)

Another round of bug fixes:

• [Mac]: Sometimes, a column was referenced instead of a named range (GH 545)

• [Mac]: Python 2.7 was raising a LookupError: unknown encoding: mbcs (GH 544)

• Fixed docs regarding set_mock_caller (GH 543)

v0.9.1 (Aug 5, 2016)

This is a bug fix release: As to be expected after a rewrite, there were some rough edges that have now been
taken care of:

• [Win] Opening a file via xw.Book() was causing an additional Book1 to be opened in case Excel was
not running yet (GH 531)

• [Win] Some users were getting an ImportError (GH 533)

• [PY 2.7] RunPython was broken with Python 2.7 (GH 537)

• Some corrections in the docs (GH 538 and GH 536)

v0.9.0 (Aug 2, 2016)

Exciting times! v0.9.0 is a complete rewrite of xlwings with loads of syntax changes (hence the version
jump). But more importantly, this release adds a ton of new features and bug fixes that would have otherwise
been impossible. Some of the highlights are listed below, but make sure to check out the full migration guide
for the syntax changes in details. Note, however, that the syntax for user defined functions (UDFs) did not
change. At this point, the API is fairly stable and we’re expecting only smaller changes on our way towards
a stable v1.0 release.

• Active book instead of current book: xw.Range('A1') goes against the active sheet of the active
book like you’re used to from VBA. Instantiating an explicit connection to a Book is not necessary
anymore:

>>> import xlwings as xw
>>> xw.Range('A1').value = 11
>>> xw.Range('A1').value
11.0

28.37. Older Releases 217

https://github.com/xlwings/xlwings/issues/554
https://github.com/xlwings/xlwings/issues/551
https://github.com/xlwings/xlwings/issues/549
https://github.com/xlwings/xlwings/issues/546
https://github.com/xlwings/xlwings/issues/185
https://github.com/xlwings/xlwings/issues/545
https://github.com/xlwings/xlwings/issues/544
https://github.com/xlwings/xlwings/issues/543
https://github.com/xlwings/xlwings/issues/531
https://github.com/xlwings/xlwings/issues/533
https://github.com/xlwings/xlwings/issues/537
https://github.com/xlwings/xlwings/issues/538
https://github.com/xlwings/xlwings/issues/536

xlwings - Make Excel Fly!, Release dev

• Excel Instances: Full support of multiple Excel instances (even on Mac!)

>>> app1 = xw.App()
>>> app2 = xw.App()
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

• New powerful object model based on collections and close to Excel’s original, allowing to fully qualify
objects: xw.apps[0].books['MyBook.xlsx'].sheets[0].range('A1:B2').value

It supports both Python indexing (square brackets) and Excel indexing (round brackets):

xw.books[0].sheets[0] is the same as xw.books(1).sheets(1)

It also supports indexing and slicing of range objects:

>>> rng = xw.Range('A1:E10')
>>> rng[1]
<Range [Workbook1]Sheet1!B1>
>>> rng[:2, :2]
<Range [Workbook1]Sheet1!A1:B2>

For more details, see Syntax Overview.

• UDFs can now also be imported from packages, not just modules (GH 437)

• Named Ranges: Introduction of full object model and proper support for sheet and workbook scope
(GH 256)

• Excel doesn’t become the active window anymore so the focus stays on your Python environment (GH
414)

• When writing to ranges while Excel is busy, xlwings is now retrying until Excel is idle again (GH 468)

• xlwings.view() has been enhanced to accept an optional sheet object (GH 469)

• Objects like books, sheets etc. can now be compared (e.g. wb1 == wb2) and are properly hashable

• Note that support for Python 2.6 has been dropped

Some of the new methods/properties worth mentioning are:

• xlwings.App.display_alerts

• xlwings.App.macro() in addition to xlwings.Book.macro()

• xlwings.App.kill()

• xlwings.Sheet.cells

• xlwings.Range.rows

• xlwings.Range.columns

• xlwings.Range.end()

• xlwings.Range.raw_value

218 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/437
https://github.com/xlwings/xlwings/issues/256
https://github.com/xlwings/xlwings/issues/414
https://github.com/xlwings/xlwings/issues/414
https://github.com/xlwings/xlwings/issues/468
https://github.com/xlwings/xlwings/issues/469

xlwings - Make Excel Fly!, Release dev

Bug Fixes

• See here for details about which bugs have been fixed.

Migrate to v0.9

The purpose of this document is to enable you a smooth experience when upgrading to xlwings v0.9.0 and
above by laying out the concept and syntax changes in detail. If you want to get an overview of the new
features and bug fixes, have a look at the release notes. Note that the syntax for User Defined Functions
(UDFs) didn’t change.

Full qualification: Using collections

The new object model allows to specify the Excel application instance if needed:

• old: xw.Range('Sheet1', 'A1', wkb=xw.Workbook('Book1'))

• new: xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')

See Syntax Overview for the details of the new object model.

Connecting to Books

• old: xw.Workbook()

• new: xw.Book() or via xw.books if you need to control the app instance.

See Connect to a Book for the details.

Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sht = xw.sheets.active # in active book
>>> sht = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

Round vs. Square Brackets

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based
indexing/slicing.

As an example, the following all reference the same range:

xw.apps[0].books[0].sheets[0].range('A1')
xw.apps(1).books(1).sheets(1).range('A1')

(continues on next page)

28.37. Older Releases 219

https://github.com/xlwings/xlwings/issues?q=is%3Aclosed+is%3Aissue+milestone%3Av0.9.0+label%3Abug

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(1).books('Book1').sheets('Sheet1').range('A1')

Access the underlying Library/Engine

• old: xw.Range('A1').xl_range and xl_sheet etc.

• new: xw.Range('A1').api, same for all other objects

This returns a pywin32 COM object on Windows and an appscript object on Mac.

Cheat sheet

Note that sht stands for a sheet object, like e.g. (in 0.9.0 syntax): sht = xw.books['Book1'].sheets[0]

v0.9.0 v0.7.2
Active Excel instance xw.apps.active unsupported
New Excel instance app = xw.App() unsupported
Get app from book app = wb.app app = xw.Application(wb)
Target installation (Mac) app = xw.App(spec=...) wb = xw.Workbook(app_target=...)
Hide Excel Instance app = xw.App(visible=False) wb = xw.Workbook(app_visible=False)
Selected Range app.selection wb.get_selection()
Calculation mode app.calculation = 'manual' app.calculation = xw.constants.Calculation.xlCalculationManual
All books in app app.books unsupported

Fully qualified book app.books['Book1'] unsupported
Active book in active app xw.books.active xw.Workbook.active()
New book in active app wb = xw.Book() wb = xw.Workbook()
New book in specific app wb = app.books.add() unsupported
All sheets in book wb.sheets xw.Sheet.all(wb)
Call a macro in an addin app.macro('MacroName') unsupported

First sheet of book wb wb.sheets[0] xw.Sheet(1, wkb=wb)
Active sheet wb.sheets.active xw.Sheet.active(wkb=wb) or wb.active_sheet
Add sheet wb.sheets.add() xw.Sheet.add(wkb=wb)
Sheet count wb.sheets.count or len(wb.sheets) xw.Sheet.count(wb)

Add chart to sheet chart = wb.sheets[0].charts.add() chart = xw.Chart.add(sheet=1, wkb=wb)
Existing chart wb.sheets['Sheet 1'].charts[0] xw.Chart('Sheet 1', 1)
Chart Type chart.chart_type = '3d_area' chart.chart_type = xw.constants.ChartType.xl3DArea

Add picture to sheet wb.sheets[0].pictures.add('path/to/pic') xw.Picture.add('path/to/pic', sheet=1, wkb=wb)
Existing picture wb.sheets['Sheet 1'].pictures[0] xw.Picture('Sheet 1', 1)
Matplotlib sht.pictures.add(fig, name='x', update=True) xw.Plot(fig).show('MyPlot', sheet=sht, wkb=wb)

Table expansion sht.range('A1').expand('table') xw.Range(sht, 'A1', wkb=wb).table
Vertical expansion sht.range('A1').expand('down') xw.Range(sht, 'A1', wkb=wb).vertical

continues on next page

220 Chapter 28. Changelog

xlwings - Make Excel Fly!, Release dev

Table 1 – continued from previous page
v0.9.0 v0.7.2

Horizontal expansion sht.range('A1').expand('right') xw.Range(sht, 'A1', wkb=wb).horizontal

Set name of range sht.range('A1').name = 'name' xw.Range(sht, 'A1', wkb=wb).name = 'name'
Get name of range sht.range('A1').name.name xw.Range(sht, 'A1', wkb=wb).name

mock caller xw.Book('file.xlsm').set_mock_caller() xw.Workbook.set_mock_caller('file.xlsm')

v0.7.2 (May 18, 2016)

Bug Fixes

• [Win] UDFs returning Pandas DataFrames/Series containing nan were failing (GH 446).

• [Win] RunFrozenPython was not finding the executable (GH 452).

• The xlwings VBA module was not finding the Python interpreter if PYTHON_WIN or PYTHON_MAC
contained spaces (GH 461).

v0.7.1 (April 3, 2016)

Enhancements

• [Win]: User Defined Functions (UDFs) support now optional/default arguments (GH 363)

• [Win]: User Defined Functions (UDFs) support now multiple source files, see also under API changes
below. For example (VBA settings): UDF_MODULES="common;myproject"

• VBA Subs & Functions are now callable from Python:

As an example, this VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> wb = xw.Workbook.active()
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3.0

• New xw.view method: This opens a new workbook and displays an object on its first sheet. E.g.:

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
>>> xw.view(df)

28.37. Older Releases 221

https://github.com/xlwings/xlwings/issues/446
https://github.com/xlwings/xlwings/issues/452
https://github.com/xlwings/xlwings/issues/461
https://github.com/xlwings/xlwings/issues/363

xlwings - Make Excel Fly!, Release dev

• New docs about Matplotlib & Plotly Charts and Custom Converter

• New method: xlwings.Range.formula_array() (GH 411)

API changes

• VBA settings: PYTHON_WIN and PYTHON_MAC must now include the interpreter if you are not using
the default (PYTHON_WIN = "") (GH 289). E.g.:

PYTHON_WIN: "C:\Python35\pythonw.exe"
PYTHON_MAC: "/usr/local/bin/python3.5"

• [Win]: VBA settings: UDF_PATH has been replaced with UDF_MODULES. The default behaviour doesn’t
change though (i.e. if UDF_MODULES = "", then a Python source file with the same name as the Excel
file, but with .py ending will be imported from the same directory as the Excel file).

New:

UDF_MODULES: "mymodule"
PYTHONPATH: "C:\path\to"

Old:

UDF_PATH: "C:\path\to\mymodule.py"

Bug Fixes

• Numpy scalars issues were resolved (GH 415)

• [Win]: xlwings was failing with freezers like cx_Freeze (GH 413)

• [Win]: UDFs were failing if they were returning None or np.nan (GH 390)

• Multiindex Pandas Series have been fixed (GH 383)

• [Mac]: xlwings runpython install was failing (GH 424)

v0.7.0 (March 4, 2016)

This version marks an important first step on our path towards a stable release. It introduces converters,
a new and powerful concept that brings a consistent experience for how Excel Ranges and their values are
treated both when reading and writing but also across xlwings.Range objects and User Defined Functions
(UDFs).

As a result, a few highlights of this release include:

• Pandas DataFrames and Series are now supported for reading and writing, both via Range object and
UDFs

• New Range converter options: transpose, dates, numbers, empty, expand

• New dictionary converter

• New UDF debug server

• No more pyc files when using RunPython

222 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/411
https://github.com/xlwings/xlwings/issues/289
https://github.com/xlwings/xlwings/issues/415
https://github.com/xlwings/xlwings/issues/413
https://github.com/xlwings/xlwings/issues/390
https://github.com/xlwings/xlwings/issues/383
https://github.com/xlwings/xlwings/issues/424

xlwings - Make Excel Fly!, Release dev

Converters are accessed via the new options method when dealing with xlwings.Range objects or via the
@xw.arg and @xw.ret decorators when using UDFs. As an introductory sample, let’s look at how to read
and write Pandas DataFrames:

Range object:

>>> import xlwings as xw
>>> import pandas as pd
>>> wb = xw.Workbook()
>>> df = xw.Range('A1:D5').options(pd.DataFrame, header=2).value
>>> df

a b
c d e

ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> Range('A1').value = df

Writing back and changing some of the options, e.g. getting rid of the index:
>>> Range('B7').options(index=False).value = df

28.37. Older Releases 223

xlwings - Make Excel Fly!, Release dev

UDFs:

This is the same sample as above (starting in Range('A13') on screenshot). If you wanted to return a
DataFrame with the defaults, the @xw.ret decorator can be left away.

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):
x is a DataFrame, do something with it
return x

Enhancements

• Dictionary (dict) converter:

>>> Range('A1:B2').options(dict).value
{'a': 1.0, 'b': 2.0}
>>> Range('A4:B5').options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

• transpose option: This works in both directions and finally allows us to e.g. write a list in column
orientation to Excel (GH 11):

Range('A1').options(transpose=True).value = [1, 2, 3]

• dates option: This allows us to read Excel date-formatted cells in specific formats:

>>> import datetime as dt
>>> Range('A1').value
datetime.datetime(2015, 1, 13, 0, 0)
>>> Range('A1').options(dates=dt.date).value
datetime.date(2015, 1, 13)

• empty option: This allows us to override the default behavior for empty cells:

>>> Range('A1:B1').value
[None, None]
>>> Range('A1:B1').options(empty='NA')
['NA', 'NA']

• numbers option: This transforms all numbers into the indicated type.

224 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/11

xlwings - Make Excel Fly!, Release dev

>>> xw.Range('A1').value = 1
>>> type(xw.Range('A1').value) # Excel stores all numbers interally as␣
→˓floats
float
>>> type(xw.Range('A1').options(numbers=int).value)
int

• expand option: This works the same as the Range properties table, vertical and horizontal but
is only evaluated when getting the values of a Range:

>>> import xlwings as xw
>>> wb = xw.Workbook()
>>> xw.Range('A1').value = [[1,2], [3,4]]
>>> rng1 = xw.Range('A1').table
>>> rng2 = xw.Range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> xw.Range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

All these options work the same with decorators for UDFs, e.g. for transpose:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):

x will be returned unchanged as transposed both when reading and writing
return x

Note: These options (dates, empty, numbers) currently apply to the whole Range and can’t be selectively
applied to e.g. only certain columns.

• UDF debug server

The new UDF debug server allows you to easily debug UDFs: just set UDF_DEBUG_SERVER = True in
the VBA Settings, at the top of the xlwings VBA module (make sure to update it to the latest version!).
Then add the following lines to your Python source file and run it:

if __name__ == '__main__':
xw.serve()

When you recalculate the Sheet, the code will stop at breakpoints or print any statements that you may
have. For details, see: Debugging.

• pyc files: The creation of pyc files has been disabled when using RunPython, leaving your directory

28.37. Older Releases 225

xlwings - Make Excel Fly!, Release dev

in an uncluttered state when having the Python source file next to the Excel workbook (GH 326).

API changes

• UDF decorator changes (it is assumed that xlwings is imported as xw and numpy as np):

New Old
@xw.func @xw.xlfunc
@xw.arg @xw.xlarg
@xw.ret @xw.xlret
@xw.sub @xw.xlsub

Pay attention to the following subtle change:

New Old
@xw.arg("x", np.array) @xw.xlarg("x", "nparray")

• Samples of how the new options method replaces the old Range keyword arguments:

New Old
Range('A1:A2').options(ndim=2) Range('A1:A2', atleast_2d=True)
Range('A1:B2').options(np.array) Range('A1:B2', asarray=True)
Range('A1').options(index=False,
header=False).value = df

Range('A1', index=False,
header=False).value = df

• Upon writing, Pandas Series are now shown by default with their name and index name, if they exist.
This can be changed using the same options as for DataFrames (GH 276):

import pandas as pd

unchanged behaviour
Range('A1').value = pd.Series([1,2,3])

Changed behaviour: This will print a header row in Excel
s = pd.Series([1,2,3], name='myseries', index=pd.Index([0,1,2], name=
→˓'myindex'))
Range('A1').value = s

Control this behaviour like so (as with DataFrames):
Range('A1').options(header=False, index=True).value = s

• NumPy scalar values

Previously, NumPy scalar values were returned as np.atleast_1d. To keep the same behaviour, this
now has to be set explicitly using ndim=1. Otherwise they’re returned as numpy scalar values.

226 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/326
https://github.com/xlwings/xlwings/issues/276

xlwings - Make Excel Fly!, Release dev

New Old
Range('A1').options(np.array, ndim=1).
value

Range('A1', asarray=True).
value

Bug Fixes

A few bugfixes were made: GH 352, GH 359.

v0.6.4 (January 6, 2016)

API changes

None

Enhancements

• Quickstart: It’s now easier than ever to start a new xlwings project, simply use the command line client
(GH 306):

xlwings quickstart myproject will produce a folder with the following files, ready to be used
(see Command Line Client (CLI)):

myproject
|--myproject.xlsm
|--myproject.py

• New documentation about how to use xlwings with other languages like R and Julia.

Bug Fixes

• [Win]: Importing UDFs with the add-in was throwing an error if the filename was including characters
like spaces or dashes (GH 331). To fix this, close Excel completely and run xlwings addin update.

• [Win]: Workbook.caller() is now also accessible within functions that are decorated with @xlfunc.
Previously, it was only available with functions that used the @xlsub decorator (GH 316).

• Writing a Pandas DataFrame failed in case the index was named the same as a column (GH 334).

v0.6.3 (December 18, 2015)

Bug Fixes

• [Mac]: This fixes a bug introduced in v0.6.2: When using RunPython from VBA, errors were not
shown in a pop-up window (GH 330).

v0.6.2 (December 15, 2015)

API changes

• LOG_FILE: So far, the log file has been placed next to the Excel file per default (VBA settings). This
has been changed as it was causing issues for files on SharePoint/OneDrive and Mac Excel 2016: The
place where LOG_FILE = "" refers to depends on the OS and the Excel version.

Enhancements

28.37. Older Releases 227

https://github.com/xlwings/xlwings/issues/352
https://github.com/xlwings/xlwings/issues/359
https://github.com/xlwings/xlwings/issues/306
https://github.com/xlwings/xlwings/issues/331
https://github.com/xlwings/xlwings/issues/316
https://github.com/xlwings/xlwings/issues/334
https://github.com/xlwings/xlwings/issues/330

xlwings - Make Excel Fly!, Release dev

• [Mac]: This version adds support for the VBA module on Mac Excel 2016 (i.e. the RunPython com-
mand) and is now feature equivalent with Mac Excel 2011 (GH 206).

Bug Fixes

• [Win]: On certain systems, the xlwings dlls weren’t found (GH 323).

v0.6.1 (December 4, 2015)

Bug Fixes

• [Python 3]: The command line client has been fixed (GH 319).

• [Mac]: It now works correctly with psutil>=3.0.0 (GH 315).

v0.6.0 (November 30, 2015)

API changes

None

Enhancements

• User Defined Functions (UDFs) - currently Windows only

The ExcelPython project has been fully merged into xlwings. This means that on Windows, UDF’s
are now supported via decorator syntax. A simple example:

from xlwings import xlfunc

@xlfunc
def double_sum(x, y):

"""Returns twice the sum of the two arguments"""
return 2 * (x + y)

For array formulas with or without NumPy, see the docs: User Defined Functions (UDFs)

• Command Line Client

The new xlwings command line client makes it easy to work with the xlwings template and the de-
veloper add-in (the add-in is currently Windows-only). E.g. to create a new Excel spreadsheet from
the template, run:

xlwings template open

For all commands, see the docs: Command Line Client (CLI)

• Other enhancements:

– New method: xlwings.Sheet.delete()

– New method: xlwings.Range.top()

– New method: xlwings.Range.left()

v0.5.0 (November 10, 2015)

API changes

228 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/206
https://github.com/xlwings/xlwings/issues/323
https://github.com/xlwings/xlwings/issues/319
https://github.com/xlwings/xlwings/issues/315
https://github.com/ericremoreynolds/excelpython/

xlwings - Make Excel Fly!, Release dev

None

Enhancements

This version adds support for Matplotlib! Matplotlib figures can be shown in Excel as pictures in just 2 lines
of code:

1) Get a matplotlib figure object:

• via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

• via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

• via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

28.37. Older Releases 229

xlwings - Make Excel Fly!, Release dev

2) Show it in Excel as picture:

plot = Plot(fig)
plot.show('Plot1')

See the full API: xlwings.Plot(). There’s also a new example available both on GitHub and as download
on the homepage.

Other enhancements:

• New xlwings.Shape() class

• New xlwings.Picture() class

• The PYTHONPATH in the VBA settings now accepts multiple directories, separated by ; (GH 258)

• An explicit exception is raised when Range is called with 0-based indices (GH 106)

Bug Fixes

• Sheet.add was not always acting on the correct workbook (GH 287)

• Iteration over a Range only worked the first time (GH 272)

• [Win]: Sometimes, an error was raised when Excel was not running (GH 269)

• [Win]: Non-default Python interpreters (as specified in the VBA settings under PYTHON_WIN) were
not found if the path contained a space (GH 257)

v0.4.1 (September 27, 2015)

API changes

None

Enhancements

This release makes it easier than ever to connect to Excel from Python! In addition to the existing ways, you
can now connect to the active Workbook (on Windows across all instances) and if the Workbook is already
open, it’s good enough to refer to it by name (instead of having to use the full path). Accordingly, this is how
you make a connection to. . . (GH 30 and GH 226):

• a new workbook: wb = Workbook()

• the active workbook [New!]: wb = Workbook.active()

• an unsaved workbook: wb = Workbook('Book1')

• a saved (open) workbook by name (incl. xlsx etc.) [New!]: wb = Workbook('MyWorkbook.xlsx')

• a saved (open or closed) workbook by path: wb = Workbook(r'C:\\path\\to\\file.xlsx')

Also, there are some new docs:

• Connect to a Book

• Missing Features

Bug Fixes

230 Chapter 28. Changelog

https://github.com/xlwings/xlwings/tree/master/examples/matplotlib/
http://www.xlwings.org/examples
https://github.com/xlwings/xlwings/issues/258
https://github.com/xlwings/xlwings/issues/106
https://github.com/xlwings/xlwings/issues/287
https://github.com/xlwings/xlwings/issues/272
https://github.com/xlwings/xlwings/issues/269
https://github.com/xlwings/xlwings/issues/257
https://github.com/xlwings/xlwings/issues/30
https://github.com/xlwings/xlwings/issues/226

xlwings - Make Excel Fly!, Release dev

• The Excel template was updated to the latest VBA code (GH 234).

• Connections to files that are saved on OneDrive/SharePoint are now working correctly (GH 215).

• Various issues with timezone-aware objects were fixed (GH 195).

• [Mac]: A certain range of integers were not written to Excel (GH 227).

v0.4.0 (September 13, 2015)

API changes

None

Enhancements

The most important update with this release was made on Windows: The methodology used to make a
connection to Workbooks has been completely replaced. This finally allows xlwings to reliably connect to
multiple instances of Excel even if the Workbooks are opened from untrusted locations (network drives or
files downloaded from the internet). This gets rid of the dreaded Filename is already open... error
message that was sometimes shown in this context. It also allows the VBA hooks (RunPython) to work
correctly if the very same file is opened in various instances of Excel.

Note that you will need to update the VBA module and that apart from pywin32 there is now a new
dependency for the Windows version: comtypes. It should be installed automatically though when in-
stalling/upgrading xlwings with pip.

Other updates:

• Added support to manipulate named Ranges (GH 92):

>>> wb = Workbook()
>>> Range('A1').name = 'Name1'
>>> Range('A1').name
>>> 'Name1'
>>> del wb.names['Name1']

• New Range properties (GH 81):

– xlwings.Range.column_width()

– xlwings.Range.row_height()

– xlwings.Range.width()

– xlwings.Range.height()

• Range now also accepts Sheet objects, the following 3 ways are hence all valid (GH 92):

r = Range(1, 'A1')
r = Range('Sheet1', 'A1')
sheet1 = Sheet(1)
r = Range(sheet1, 'A1')

• [Win]: Error pop-ups show now the full error message that can also be copied with Ctrl-C (GH 221).

Bug Fixes

28.37. Older Releases 231

https://github.com/xlwings/xlwings/issues/234
https://github.com/xlwings/xlwings/issues/215
https://github.com/xlwings/xlwings/issues/195
https://github.com/xlwings/xlwings/issues/227
https://github.com/xlwings/xlwings/issues/92
https://github.com/xlwings/xlwings/issues/81
https://github.com/xlwings/xlwings/issues/92
https://github.com/xlwings/xlwings/issues/221

xlwings - Make Excel Fly!, Release dev

• The VBA module was not accepting lower case drive letters (GH 205).

• Fixed an error when adding a new Sheet that was already existing (GH 211).

v0.3.6 (July 14, 2015)

API changes

Application as attribute of a Workbook has been removed (wb is a Workbook object):

Correct Syntax (as before) Removed
Application(wkb=wb) wb.application

Enhancements

Excel 2016 for Mac Support (GH 170)

Excel 2016 for Mac is finally supported (Python side). The VBA hooks (RunPython) are currently not yet
supported. In more details:

• This release allows Excel 2011 and Excel 2016 to be installed in parallel.

• Workbook() will open the default Excel installation (usually Excel 2016).

• The new keyword argument app_target allows to connect to a different Excel installation, e.g.:

Workbook(app_target='/Applications/Microsoft Office 2011/Microsoft Excel')

Note that app_target is only available on Mac. On Windows, if you want to change the version
of Excel that xlwings talks to, go to Control Panel > Programs and Features and Repair the
Office version that you want as default.

• The RunPython calls in VBA are not yet available through Excel 2016 but Excel 2011 doesn’t get
confused anymore if Excel 2016 is installed on the same system - make sure to update your VBA
module!

Other enhancements

• New method: xlwings.Application.calculate() (GH 207)

Bug Fixes

• [Win]: When using the OPTIMIZED_CONNECTION on Windows, Excel left an orphaned process run-
ning after closing (GH 193).

Various improvements regarding unicode file path handling, including:

• [Mac]: Excel 2011 for Mac now supports unicode characters in the filename when called via VBA’s
RunPython (but not in the path - this is a limitation of Excel 2011 that will be resolved in Excel 2016)
(GH 154).

• [Win]: Excel on Windows now handles unicode file paths correctly with untrusted documents. (GH
154).

232 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/205
https://github.com/xlwings/xlwings/issues/211
https://github.com/xlwings/xlwings/issues/170
https://github.com/xlwings/xlwings/issues/207
https://github.com/xlwings/xlwings/issues/193
https://github.com/xlwings/xlwings/issues/154
https://github.com/xlwings/xlwings/issues/154
https://github.com/xlwings/xlwings/issues/154

xlwings - Make Excel Fly!, Release dev

v0.3.5 (April 26, 2015)

API changes

Sheet.autofit() and Range.autofit(): The integer argument for the axis has been removed (GH 186).
Use string arguments rows or r for autofitting rows and columns or c for autofitting columns (as before).

Enhancements

New methods:

• xlwings.Range.row() (GH 143)

• xlwings.Range.column() (GH 143)

• xlwings.Range.last_cell() (GH 142)

Example:

>>> rng = Range('A1').table
>>> rng.row, rng.column
(1, 1)
>>> rng.last_cell.row, rng.last_cell.column
(4, 5)

Bug Fixes

• The unicode bug on Windows/Python3 has been fixed (GH 161)

v0.3.4 (March 9, 2015)

Bug Fixes

• The installation error on Windows has been fixed (GH 160)

v0.3.3 (March 8, 2015)

API changes

None

Enhancements

• New class Application with quit method and properties screen_updating und calculation
(GH 101, GH 158, GH 159). It can be conveniently accessed from within a Workbook (on Windows,
Application is instance dependent). A few examples:

>>> from xlwings import Workbook, Calculation
>>> wb = Workbook()
>>> wb.application.screen_updating = False
>>> wb.application.calculation = Calculation.xlCalculationManual
>>> wb.application.quit()

• New headless mode: The Excel application can be hidden either during Workbook instantiation or
through the application object:

28.37. Older Releases 233

https://github.com/xlwings/xlwings/issues/186
https://github.com/xlwings/xlwings/issues/143
https://github.com/xlwings/xlwings/issues/143
https://github.com/xlwings/xlwings/issues/142
https://github.com/xlwings/xlwings/issues/161
https://github.com/xlwings/xlwings/issues/160
https://github.com/xlwings/xlwings/issues/101
https://github.com/xlwings/xlwings/issues/158
https://github.com/xlwings/xlwings/issues/159

xlwings - Make Excel Fly!, Release dev

>>> wb = Workbook(app_visible=False)
>>> wb.application.visible
False
>>> wb.application.visible = True

• Newly included Excel template which includes the xlwings VBA module and boilerplate code. This
is currently accessible from an interactive interpreter session only:

>>> from xlwings import Workbook
>>> Workbook.open_template()

Bug Fixes

• [Win]: datetime.date objects were causing an error (GH 44).

• Depending on how it was instantiated, Workbook was sometimes missing the fullname attribute (GH
76).

• Range.hyperlink was failing if the hyperlink had been set as formula (GH 132).

• A bug introduced in v0.3.0 caused frozen versions (eg. with cx_Freeze) to fail (GH 133).

• [Mac]: Sometimes, xlwings was causing an error when quitting the Python interpreter (GH 136).

v0.3.2 (January 17, 2015)

API changes

None

Enhancements

None

Bug Fixes

• The xlwings.Workbook.save() method has been fixed to show the expected behavior (GH 138):
Previously, calling save() without a path argument would always create a new file in the current working
directory. This is now only happening if the file hasn’t been previously saved.

v0.3.1 (January 16, 2015)

API changes

None

Enhancements

• New method xlwings.Workbook.save() (GH 110).

• New method xlwings.Workbook.set_mock_caller() (GH 129). This makes calling files from
both Excel and Python much easier:

import os
from xlwings import Workbook, Range

(continues on next page)

234 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/44
https://github.com/xlwings/xlwings/issues/76
https://github.com/xlwings/xlwings/issues/76
https://github.com/xlwings/xlwings/issues/132
https://github.com/xlwings/xlwings/issues/133
https://github.com/xlwings/xlwings/issues/136
https://github.com/xlwings/xlwings/issues/138
https://github.com/xlwings/xlwings/issues/110
https://github.com/xlwings/xlwings/issues/129

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

def my_macro():
wb = Workbook.caller()
Range('A1').value = 1

if __name__ == '__main__':
To run from Python, not needed when called from Excel.
Expects the Excel file next to this source file, adjust accordingly.
path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'myfile.

→˓xlsm'))
Workbook.set_mock_caller(path)
my_macro()

• The simulation example on the homepage works now also on Mac.

Bug Fixes

• [Win]: A long-standing bug that caused the Excel file to close and reopen under certain circumstances
has been fixed (GH 10): Depending on your security settings (Trust Center) and in connection with files
downloaded from the internet or possibly in connection with some add-ins, Excel was either closing
the file and reopening it or giving a “file already open” warning. This has now been fixed which
means that the examples downloaded from the homepage should work right away after downloading
and unzipping.

v0.3.0 (November 26, 2014)

API changes

• To reference the calling Workbook when running code from VBA, you now have to use Workbook.
caller(). This means that wb = Workbook() is now consistently creating a new Workbook,
whether the code is called interactively or from VBA.

New Old
Workbook.caller() Workbook()

Enhancements

This version adds two exciting but still experimental features from ExcelPython (Windows only!):

• Optimized connection: Set the OPTIMIZED_CONNECTION = True in the VBA settings. This will use a
COM server that will keep the connection to Python alive between different calls and is therefore much
more efficient. However, changes in the Python code are not being picked up until the pythonw.exe
process is restarted by killing it manually in the Windows Task Manager. The suggested workflow is
hence to set OPTIMIZED_CONNECTION = False for development and only set it to True for produc-
tion - keep in mind though that this feature is still experimental!

• User Defined Functions (UDFs): Using ExcelPython’s wrapper syntax in VBA, you can expose Python
functions as UDFs, see User Defined Functions (UDFs) for details.

Note: ExcelPython’s developer add-in that autogenerates the VBA wrapper code by simply using Python
decorators isn’t available through xlwings yet.

28.37. Older Releases 235

https://github.com/xlwings/xlwings/issues/10

xlwings - Make Excel Fly!, Release dev

Further enhancements include:

• New method xlwings.Range.resize() (GH 90).

• New method xlwings.Range.offset() (GH 89).

• New property xlwings.Range.shape (GH 109).

• New property xlwings.Range.size (GH 109).

• New property xlwings.Range.hyperlink and new method xlwings.Range.add_hyperlink()
(GH 104).

• New property xlwings.Range.color (GH 97).

• The len built-in function can now be used on Range (GH 109):

>>> len(Range('A1:B5'))
5

• The Range object is now iterable (GH 108):

for cell in Range('A1:B2'):
if cell.value < 2:

cell.color = (255, 0, 0)

• [Mac]: The VBA module finds now automatically the default Python installation as per PATH variable
on .bash_profile when PYTHON_MAC = "" (the default in the VBA settings) (GH 95).

• The VBA error pop-up can now be muted by setting SHOW_LOG = False in the VBA settings. To be
used with care, but it can be useful on Mac, as the pop-up window is currently showing printed log
messages even if no error occurred(GH 94).

Bug Fixes

• [Mac]: Environment variables from .bash_profile are now available when called from VBA, e.g.
by using: os.environ['USERNAME'] (GH 95)

v0.2.3 (October 17, 2014)

API changes

None

Enhancements

• New method Sheet.add() (GH 71):

>>> Sheet.add() # Place at end with default name
>>> Sheet.add('NewSheet', before='Sheet1') # Include name and position
>>> new_sheet = Sheet.add(after=3)
>>> new_sheet.index
4

• New method Sheet.count():

236 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/90
https://github.com/xlwings/xlwings/issues/89
https://github.com/xlwings/xlwings/issues/109
https://github.com/xlwings/xlwings/issues/109
https://github.com/xlwings/xlwings/issues/104
https://github.com/xlwings/xlwings/issues/97
https://github.com/xlwings/xlwings/issues/109
https://github.com/xlwings/xlwings/issues/108
https://github.com/xlwings/xlwings/issues/95
https://github.com/xlwings/xlwings/issues/94
https://github.com/xlwings/xlwings/issues/95
https://github.com/xlwings/xlwings/issues/71

xlwings - Make Excel Fly!, Release dev

>>> Sheet.count()
3

• autofit() works now also on Sheet objects, not only on Range objects (GH 66):

>>> Sheet(1).autofit() # autofit columns and rows
>>> Sheet('Sheet1').autofit('c') # autofit columns

• New property number_format for Range objects (GH 60):

>>> Range('A1').number_format
'General'
>>> Range('A1:C3').number_format = '0.00%'
>>> Range('A1:C3').number_format
'0.00%'

Works also with the Range properties table, vertical, horizontal:

>>> Range('A1').value = [1,2,3,4,5]
>>> Range('A1').table.number_format = '0.00%'

• New method get_address for Range objects (GH 7):

>>> Range((1,1)).get_address()
'A1'
>>> Range((1,1)).get_address(False, False)
'A1'
>>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, include_
→˓sheetname=True)
'Sheet1!A$1:C$3'
>>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, external=True)
'[Workbook1]Sheet1!A$1:C$3'

• New method Sheet.all() returning a list with all Sheet objects:

>>> Sheet.all()
[<Sheet 'Sheet1' of Workbook 'Book1'>, <Sheet 'Sheet2' of Workbook 'Book1'>]
>>> [i.name.lower() for i in Sheet.all()]
['sheet1', 'sheet2']
>>> [i.autofit() for i in Sheet.all()]

Bug Fixes

• xlwings works now also with NumPy < 1.7.0. Before, doing something like Range('A1').value =
'Foo' was causing a NotImplementedError: Not implemented for this type error when
NumPy < 1.7.0 was installed (GH 73).

• [Win]: The VBA module caused an error on the 64bit version of Excel (GH 72).

• [Mac]: The error pop-up wasn’t shown on Python 3 (GH 85).

28.37. Older Releases 237

https://github.com/xlwings/xlwings/issues/66
https://github.com/xlwings/xlwings/issues/60
https://github.com/xlwings/xlwings/issues/7
https://github.com/xlwings/xlwings/issues/73
https://github.com/xlwings/xlwings/issues/72
https://github.com/xlwings/xlwings/issues/85

xlwings - Make Excel Fly!, Release dev

• [Mac]: Autofitting bigger Ranges, e.g. Range('A:D').autofit() was causing a time out (GH 74).

• [Mac]: Sometimes, calling xlwings from Python was causing Excel to show old errors as pop-up alert
(GH 70).

v0.2.2 (September 23, 2014)

API changes

• The Workbook qualification changed: It now has to be specified as keyword argument. Assume we
have instantiated two Workbooks like so: wb1 = Workbook() and wb2 = Workbook(). Sheet,
Range and Chart classes will default to wb2 as it was instantiated last. To target wb1, use the new wkb
keyword argument:

New Old
Range('A1', wkb=wb1).value wb1.range('A1').value
Chart('Chart1', wkb=wb1) wb1.chart('Chart1')

Alternatively, simply set the current Workbook before using the Sheet, Range or Chart classes:

wb1.set_current()
Range('A1').value

• Through the introduction of the Sheet class (see Enhancements), a few methods moved from the
Workbook to the Sheet class. Assume the current Workbook is: wb = Workbook():

New Old
Sheet('Sheet1').activate() wb.activate('Sheet1')
Sheet('Sheet1').clear() wb.clear('Sheet1')
Sheet('Sheet1').clear_contents() wb.clear_contents('Sheet1')
Sheet.active().clear_contents() wb.clear_contents()

• The syntax to add a new Chart has been slightly changed (it is a class method now):

New Old
Chart.add() Chart().add()

Enhancements

• [Mac]: Python errors are now also shown in a Message Box. This makes the Mac version feature
equivalent with the Windows version (GH 57):

• New Sheet class: The new class handles everything directly related to a Sheet. See the Python API
section about Sheet for details (GH 62). A few examples:

238 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/74
https://github.com/xlwings/xlwings/issues/70
https://github.com/xlwings/xlwings/issues/57
https://github.com/xlwings/xlwings/issues/62

xlwings - Make Excel Fly!, Release dev

>>> Sheet(1).name
'Sheet1'
>>> Sheet('Sheet1').clear_contents()
>>> Sheet.active()
<Sheet 'Sheet1' of Workbook 'Book1'>

• The Range class has a new method autofit() that autofits the width/height of either columns, rows
or both (GH 33).

Arguments:

axis : string or integer, default None
- To autofit rows, use one of the following: 'rows' or 'r'
- To autofit columns, use one of the following: 'columns' or 'c'
- To autofit rows and columns, provide no arguments

Examples:

Autofit column A
Range('A:A').autofit()
Autofit row 1
Range('1:1').autofit()
Autofit columns and rows, taking into account Range('A1:E4')
Range('A1:E4').autofit()
AutoFit rows, taking into account Range('A1:E4')
Range('A1:E4').autofit('rows')

• The Workbook class has the following additional methods: current() and set_current(). They
determine the default Workbook for Sheet, Range or Chart. On Windows, in case there are various
Excel instances, when creating new or opening existing Workbooks, they are being created in the same
instance as the current Workbook.

28.37. Older Releases 239

https://github.com/xlwings/xlwings/issues/33

xlwings - Make Excel Fly!, Release dev

>>> wb1 = Workbook()
>>> wb2 = Workbook()
>>> Workbook.current()
<Workbook 'Book2'>
>>> wb1.set_current()
>>> Workbook.current()
<Workbook 'Book1'>

• If a Sheet, Range or Chart object is instantiated without an existing Workbook object, a user-friendly
error message is raised (GH 58).

• New docs about Debugging and Data Structures Tutorial.

Bug Fixes

• The atleast_2d keyword had no effect on Ranges consisting of a single cell and was raising an error
when used in combination with the asarray keyword. Both have been fixed (GH 53):

>>> Range('A1').value = 1
>>> Range('A1', atleast_2d=True).value
[[1.0]]
>>> Range('A1', atleast_2d=True, asarray=True).value
array([[1.]])

• [Mac]: After creating two new unsaved Workbooks with Workbook(), any Sheet, Range or Chart
object would always just access the latest one, even if the Workbook had been specified (GH 63).

• [Mac]: When xlwings was imported without ever instantiating a Workbook object, Excel would start
upon quitting the Python interpreter (GH 51).

• [Mac]: When installing xlwings, it now requires psutil to be at least version 2.0.0 (GH 48).

v0.2.1 (August 7, 2014)

API changes

None

Enhancements

• All VBA user settings have been reorganized into a section at the top of the VBA xlwings module:

PYTHON_WIN = ""
PYTHON_MAC = GetMacDir("Home") & "/anaconda/bin"
PYTHON_FROZEN = ThisWorkbook.Path & "\build\exe.win32-2.7"
PYTHONPATH = ThisWorkbook.Path
LOG_FILE = ThisWorkbook.Path & "\xlwings_log.txt"

• Calling Python from within Excel VBA is now also supported on Mac, i.e. Python functions
can be called like this: RunPython("import bar; bar.foo()"). Running frozen executables
(RunFrozenPython) isn’t available yet on Mac though.

Note that there is a slight difference in the way that this functionality behaves on Windows and Mac:

240 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/58
https://github.com/xlwings/xlwings/issues/53
https://github.com/xlwings/xlwings/issues/63
https://github.com/xlwings/xlwings/issues/51
https://github.com/xlwings/xlwings/issues/48

xlwings - Make Excel Fly!, Release dev

• Windows: After calling the Macro (e.g. by pressing a button), Excel waits until Python is done. In
case there’s an error in the Python code, a pop-up message is being shown with the traceback.

• Mac: After calling the Macro, the call returns instantly but Excel’s Status Bar turns into “Running. . . ”
during the duration of the Python call. Python errors are currently not shown as a pop-up, but need
to be checked in the log file. I.e. if the Status Bar returns to its default (“Ready”) but nothing has
happened, check out the log file for the Python traceback.

Bug Fixes

None

Special thanks go to Georgi Petrov for helping with this release.

v0.2.0 (July 29, 2014)

API changes

None

Enhancements

• Cross-platform: xlwings is now additionally supporting Microsoft Excel for Mac. The only function-
ality that is not yet available is the possibility to call the Python code from within Excel via VBA
macros.

• The clear and clear_contents methods of the Workbook object now default to the active sheet
(GH 5):

wb = Workbook()
wb.clear_contents() # Clears contents of the entire active sheet

Bug Fixes

• DataFrames with MultiHeaders were sometimes getting truncated (GH 41).

v0.1.1 (June 27, 2014)

API Changes

• If asarray=True, NumPy arrays are now always at least 1d arrays, even in the case of a single cell
(GH 14):

>>> Range('A1', asarray=True).value
array([34.])

• Similar to NumPy’s logic, 1d Ranges in Excel, i.e. rows or columns, are now being read in as flat lists
or 1d arrays. If you want the same behavior as before, you can use the atleast_2d keyword (GH 13).

Note: The table property is also delivering a 1d array/list, if the table Range is really a column or
row.

28.37. Older Releases 241

https://github.com/xlwings/xlwings/issues/5
https://github.com/xlwings/xlwings/issues/41
https://github.com/xlwings/xlwings/issues/14
https://github.com/xlwings/xlwings/issues/13

xlwings - Make Excel Fly!, Release dev

>>> Range('A1').vertical.value
[1.0, 2.0, 3.0, 4.0]
>>> Range('A1', atleast_2d=True).vertical.value
[[1.0], [2.0], [3.0], [4.0]]
>>> Range('C1').horizontal.value
[1.0, 2.0, 3.0, 4.0]
>>> Range('C1', atleast_2d=True).horizontal.value
[[1.0, 2.0, 3.0, 4.0]]
>>> Range('A1', asarray=True).table.value
array([1., 2., 3., 4.])
>>> Range('A1', asarray=True, atleast_2d=True).table.value
array([[1.],

[2.],
[3.],
[4.]])

• The single file approach has been dropped. xlwings is now a traditional Python package.

Enhancements

• xlwings is now officially suppported on Python 2.6-2.7 and 3.1-3.4

• Support for Pandas Series has been added (GH 24):

>>> import numpy as np
>>> import pandas as pd
>>> from xlwings import Workbook, Range
>>> wb = Workbook()
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.])
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
>>> Range('A1').value = s
>>> Range('D1', index=False).value = s

• Excel constants have been added under their original Excel name, but categorized under their enum

242 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/24

xlwings - Make Excel Fly!, Release dev

(GH 18), e.g.:

Extra long version
import xlwings as xl
xl.constants.ChartType.xlArea

Long version
from xlwings import constants
constants.ChartType.xlArea

Short version
from xlwings import ChartType
ChartType.xlArea

• Slightly enhanced Chart support to control the ChartType (GH 1):

>>> from xlwings import Workbook, Range, Chart, ChartType
>>> wb = Workbook()
>>> Range('A1').value = [['one', 'two'],[10, 20]]
>>> my_chart = Chart().add(chart_type=ChartType.xlLine,

name='My Chart',
source_data=Range('A1').table)

alternatively, the properties can also be set like this:

>>> my_chart = Chart().add() # Existing Charts: my_chart = Chart('My Chart')
>>> my_chart.name = 'My Chart'
>>> my_chart.chart_type = ChartType.xlLine
>>> my_chart.set_source_data(Range('A1').table)

• pytz is no longer a dependency as datetime object are now being read in from Excel as time-zone
naive (Excel doesn’t know timezones). Before, datetime objects got the UTC timezone attached.

• The Workbook class has the following additional methods: close()

• The Range class has the following additional methods: is_cell(), is_column(), is_row(),
is_table()

Bug Fixes

28.37. Older Releases 243

https://github.com/xlwings/xlwings/issues/18
https://github.com/xlwings/xlwings/issues/1

xlwings - Make Excel Fly!, Release dev

• Writing None or np.nan to Excel works now (GH 16 & GH 15).

• The import error on Python 3 has been fixed (GH 26).

• Python 3 now handles Pandas DataFrames with MultiIndex headers correctly (GH 39).

• Sometimes, a Pandas DataFrame was not handling nan correctly in Excel or numbers were being
truncated (GH 31) & (GH 35).

• Installation is now putting all files in the correct place (GH 20).

v0.1.0 (March 19, 2014)

Initial release of xlwings.

244 Chapter 28. Changelog

https://github.com/xlwings/xlwings/issues/16
https://github.com/xlwings/xlwings/issues/15
https://github.com/xlwings/xlwings/issues/26
https://github.com/xlwings/xlwings/issues/39
https://github.com/xlwings/xlwings/issues/31
https://github.com/xlwings/xlwings/issues/35
https://github.com/xlwings/xlwings/issues/20

CHAPTER

TWENTYNINE

LICENSE

29.1 xlwings (Open Source)

xlwings (Open Source) is a distributed under a BSD-3-Clause license. xlwings (Open Source) includes all
files in the xlwings package except the pro folder, i.e., the xlwings.pro subpackage.

• xlwings (Open Source) License

29.2 xlwings PRO

xlwings PRO is source available and dual-licensed under one of the following licenses:

• PolyForm Noncommercial License 1.0.0 (noncommercial use is free)

• xlwings PRO License (commercial use requires a paid plan)

29.3 Third-party Open Source Licenses

For the licenses of third-party Open Source dependencies, see Open Source Licenses.

245

https://github.com/xlwings/xlwings/blob/main/LICENSE.txt
https://en.wikipedia.org/wiki/Source-available_software
https://polyformproject.org/licenses/noncommercial/1.0.0
https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt
https://www.xlwings.org/pricing

xlwings - Make Excel Fly!, Release dev

246 Chapter 29. License

CHAPTER

THIRTY

OPEN SOURCE LICENSES

Depending on the platform and features that you use, xlwings requires various Open Source dependencies.

• The licenses of the compiled code are available in a separate document

• All other licenses are listed below

30.1 pywin32 (used for interactive mode on Windows)

com subpackage

Unless stated in the specific source file, this work is Copyright (c) 1996-2008, Greg Stein and Mark Ham-
mond. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither names of Greg Stein, Mark Hammond nor the name of contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

win32 subpackage

247

opensource_licenses2.html

xlwings - Make Excel Fly!, Release dev

Unless stated in the specfic source file, this work is Copyright (c) 1994-2008, Mark Hammond All rights
reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither name of Mark Hammond nor the name of contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Pythonwin subpackage

Unless stated in the specfic source file, this work is Copyright (c) 1994-2008, Mark Hammond All rights
reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither name of Mark Hammond nor the name of contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

248 Chapter 30. Open Source Licenses

xlwings - Make Excel Fly!, Release dev

30.2 psutil (used for interactive mode on macOS)

BSD 3-Clause License

Copyright (c) 2009, Jay Loden, Dave Daeschler, Giampaolo Rodola’ All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the psutil authors nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30.3 Appscript (used for interactive mode on macOS)

Appscript is released into the public domain, except for the following code:

• portions of ae.c, which are Copyright (C) the original authors:
Original code taken from _AEmodule.c, _CFmodule.c, _Launchmodule.c
Copyright (C) 2001-2008 Python Software Foundation.
License: https://docs.python.org/3/license.html.

• SendThreadSafe.h/SendThreadSafe.m, which are modified versions of Apple
code (https://developer.apple.com/library/archive/samplecode/AESendThreadSafe):
Written by: DTS
Copyright: Copyright (c) 2007 Apple Inc. All Rights Reserved.
Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc.

(“Apple”) in consideration of your agreement to the following terms, and your use, installation, mod-
ification or redistribution of this Apple software constitutes acceptance of these terms. If you do not
agree with these terms, please do not use, install, modify or redistribute this Apple software. In con-
sideration of your agreement to abide by the following terms, and subject to these terms, Apple grants
you a personal, non-exclusive license, under Apple’s copyrights in this original Apple software (the

30.2. psutil (used for interactive mode on macOS) 249

https://docs.python.org/3/license.html
https://developer.apple.com/library/archive/samplecode/AESendThreadSafe

xlwings - Make Excel Fly!, Release dev

“Apple Software”), to use, reproduce, modify and redistribute the Apple Software, with or without
modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in
its entirety and without modifications, you must retain this notice and the following text and disclaimers
in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos
of Apple Inc. may be used to endorse or promote products derived from the Apple Software without
specific prior written permission from Apple. Except as expressly stated in this notice, no other rights
or licenses, express or implied, are granted by Apple herein, including but not limited to any patent
rights that may be infringed by your derivative works or by other works in which the Apple Software
may be incorporated. The Apple Software is provided by Apple on an “AS IS” basis.

APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMI-
TATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE
AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT
SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DIS-
TRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER
THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTH-
ERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30.4 Mistune

BSD 3-Clause License

Copyright (c) 2014, Hsiaoming Yang

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the creator nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

250 Chapter 30. Open Source Licenses

xlwings - Make Excel Fly!, Release dev

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30.5 VBA-Dictionary (used in VBA add-in & modules)

The MIT License (MIT)

Copyright (c) 2020 Tim Hall

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

30.6 VBA-Web (used in VBA add-in & modules)

The MIT License (MIT)

Copyright (c) 2016-2019 Tim Hall

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

30.5. VBA-Dictionary (used in VBA add-in & modules) 251

xlwings - Make Excel Fly!, Release dev

30.7 watchgod (used in xlwings.exe)

The MIT License (MIT)

Copyright (c) 2017, 2018, 2019, 2020, 2021, 2022 Samuel Colvin

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

30.8 msal (used in xlwings.exe)

The MIT License (MIT)

Copyright (c) Microsoft Corporation. All rights reserved.

This code is licensed under the MIT License.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files(the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions :

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

252 Chapter 30. Open Source Licenses

xlwings - Make Excel Fly!, Release dev

30.9 core-js (used in xlwings.js)

Copyright (c) 2014-2023 Denis Pushkarev

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

30.10 Bootstrap (used in xlwings-alert.html in connection with xl-
wings.js)

The MIT License (MIT)

Copyright (c) 2011-2023 The Bootstrap Authors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

30.9. core-js (used in xlwings.js) 253

xlwings - Make Excel Fly!, Release dev

30.11 bootstrap-ie11 (used in xlwings-alert.html in connection with
xlwings.js)

The MIT License (MIT)

Copyright (c) 2022 Christian Oliff

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

30.12 Webpack (used in xlwings.js)

Copyright JS Foundation and other contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ‘Software’), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

254 Chapter 30. Open Source Licenses

CHAPTER

THIRTYONE

TOP-LEVEL FUNCTIONS

load(index=1, header=1, chunksize=5000)
Loads the selected cell(s) of the active workbook into a pandas DataFrame. If you select a single
cell that has adjacent cells, the range is auto-expanded (via current region) and turned into a pandas
DataFrame. If you don’t have pandas installed, it returns the values as nested lists.

Note: Only use this in an interactive context like e.g. a Jupyter notebook! Don’t use this in a script
as it depends on the active book.

31.1 Parameters

index
[bool or int, default 1] Defines the number of columns on the left that will be turned into the
DataFrame’s index

header
[bool or int, default 1] Defines the number of rows at the top that will be turned into the
DataFrame’s columns

chunksize
[int, default 5000] Chunks the loading of big arrays.

31.2 Examples

>>> import xlwings as xw
>>> xw.load()

See also: view

Changed in version 0.23.1.

view(obj, sheet=None, table=True, chunksize=5000)
Opens a new workbook and displays an object on its first sheet by default. If you provide a sheet object,
it will clear the sheet before displaying the object on the existing sheet.

255

xlwings - Make Excel Fly!, Release dev

Note: Only use this in an interactive context like e.g., a Jupyter notebook! Don’t use this in a script
as it depends on the active book.

31.3 Parameters

obj
[any type with built-in converter] the object to display, e.g. numbers, strings, lists, numpy arrays,
pandas DataFrames

sheet
[Sheet, default None] Sheet object. If none provided, the first sheet of a new workbook is used.

table
[bool, default True] If your object is a pandas DataFrame, by default it is formatted as an Excel
Table

chunksize
[int, default 5000] Chunks the loading of big arrays.

31.4 Examples

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
>>> xw.view(df)

See also: load

Changed in version 0.22.0.

256 Chapter 31. Top-level functions

CHAPTER

THIRTYTWO

UDF DECORATORS

xlwings.func(category='xlwings', volatile=False, call_in_wizard=True)
Functions decorated with xlwings.func will be imported as Function to Excel when running “Im-
port Python UDFs”.

Arguments:

category
[int or str, default “xlwings”] 1-14 represent built-in categories, for user-defined categories use
strings

New in version 0.10.3.

volatile
[bool, default False] Marks a user-defined function as volatile. A volatile function must be re-
calculated whenever calculation occurs in any cells on the worksheet. A nonvolatile function is
recalculated only when the input variables change. This method has no effect if it’s not inside a
user-defined function used to calculate a worksheet cell.

New in version 0.10.3.

call_in_wizard
[bool, default True] Set to False to suppress the function call in the function wizard.

New in version 0.10.3.

xlwings.sub()

Functions decorated with xlwings.sub will be imported as Sub (i.e. macro) to Excel when running
“Import Python UDFs”.

xlwings.arg(arg, convert=None, **options)
Apply converters and options to arguments, see also Range.options().

Examples:

Convert x into a 2-dimensional numpy array:

import xlwings as xw
import numpy as np

@xw.func
(continues on next page)

257

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

@xw.arg('x', np.array, ndim=2)
def add_one(x):

return x + 1

xlwings.ret(convert=None, **options)
Apply converters and options to return values, see also Range.options().

Examples

1) Suppress the index and header of a returned DataFrame:

import pandas as pd

@xw.func
@xw.ret(index=False, header=False)
def get_dataframe(n, m):

return pd.DataFrame(np.arange(n * m).reshape((n, m)))

2) Dynamic array:

Note: If your version of Excel supports the new native dynamic arrays, then you don’t have to do
anything special, and you shouldn’t use the expand decorator! To check if your version of Excel
supports it, see if you have the =UNIQUE() formula available. Native dynamic arrays were introduced
in Office 365 Insider Fast at the end of September 2018.

expand='table' turns the UDF into a dynamic array. Currently you must not use volatile functions
as arguments of a dynamic array, e.g. you cannot use =TODAY() as part of a dynamic array. Also note
that a dynamic array needs an empty row and column at the bottom and to the right and will overwrite
existing data without warning.

Unlike standard Excel arrays, dynamic arrays are being used from a single cell like a standard function
and auto-expand depending on the dimensions of the returned array:

import xlwings as xw
import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(n, m):

return np.arange(n * m).reshape((n, m))

New in version 0.10.0.

258 Chapter 32. UDF decorators

CHAPTER

THIRTYTHREE

APP

class App(visible=None, spec=None, add_book=True, impl=None)
An app corresponds to an Excel instance and should normally be used as context manager to make sure
that everything is properly cleaned up again and to prevent zombie processes. New Excel instances
can be fired up like so:

import xlwings as xw

with xw.App() as app:
print(app.books)

An app object is a member of the apps collection:

>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])
>>> xw.apps[1668] # get the available PIDs via xw.apps.keys()
<Excel App 1668>
>>> xw.apps.active
<Excel App 1668>

33.1 Parameters

visible
[bool, default None] Returns or sets a boolean value that determines whether the app is visible.
The default leaves the state unchanged or sets visible=True if the object doesn’t exist yet.

spec
[str, default None] Mac-only, use the full path to the Excel application, e.g. /Applications/
Microsoft Office 2011/Microsoft Excel or /Applications/Microsoft Excel

On Windows, if you want to change the version of Excel that xlwings talks to, go to Control
Panel > Programs and Features and Repair the Office version that you want as default.

Note: On Mac, while xlwings allows you to run multiple instances of Excel, it’s a feature that is not
officially supported by Excel for Mac: Unlike on Windows, Excel will not ask you to open a read-only

259

xlwings - Make Excel Fly!, Release dev

version of a file if it is already open in another instance. This means that you need to watch out yourself
so that the same file is not being overwritten from different instances.

activate(steal_focus=False)
Activates the Excel app.

33.1.1 Parameters

steal_focus
[bool, default False] If True, make frontmost application and hand over focus from Python
to Excel.

New in version 0.9.0.

alert(prompt, title=None, buttons='ok', mode=None, callback=None)
This corresponds to MsgBox in VBA, shows an alert/message box and returns the value of the
pressed button. For xlwings Server, instead of returning a value, the function accepts the name
of a callback to which it will supply the value of the pressed button.

33.1.2 Parameters

prompt
[str, default None] The message to be displayed.

title
[str, default None] The title of the alert.

buttons
[str, default "ok"] Can be either "ok", "ok_cancel", "yes_no", or "yes_no_cancel".

mode
[str, default None] Can be "info" or "critical". Not supported by Google Sheets.

callback
[str, default None] Only used by xlwings Server: you can provide the name of a function that
will be called with the value of the pressed button as argument. The function has to exist on
the client side, i.e., in VBA or JavaScript.

33.1.3 Returns

button_value: str or None
Returns None when used with xlwings Server, otherwise the value of the pressed button in
lowercase: "ok", "cancel", "yes", "no".

New in version 0.27.13.

260 Chapter 33. App

xlwings - Make Excel Fly!, Release dev

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

property books

A collection of all Book objects that are currently open.

New in version 0.9.0.

calculate()

Calculates all open books.

New in version 0.3.6.

property calculation

Returns or sets a calculation value that represents the calculation mode. Modes: 'manual',
'automatic', 'semiautomatic'

33.1.4 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.app.calculation = 'manual'

Changed in version 0.9.0.

property cut_copy_mode

Gets or sets the status of the cut or copy mode. Accepts False for setting and returns None, copy
or cut when getting the status.

New in version 0.24.0.

property display_alerts

The default value is True. Set this property to False to suppress prompts and alert messages while
code is running; when a message requires a response, Excel chooses the default response.

New in version 0.9.0.

property enable_events

True if events are enabled. Read/write boolean.

New in version 0.24.4.

property hwnd

Returns the Window handle (Windows-only).

New in version 0.9.0.

property interactive

True if Excel is in interactive mode. If you set this property to False, Excel blocks all input

33.1. Parameters 261

xlwings - Make Excel Fly!, Release dev

from the keyboard and mouse (except input to dialog boxes that are displayed by your code).
Read/write Boolean. NOTE: Not supported on macOS.

New in version 0.24.4.

kill()

Forces the Excel app to quit by killing its process.

New in version 0.9.0.

macro(name)
Runs a Sub or Function in Excel VBA that are not part of a specific workbook but e.g. are part
of an add-in.

33.1.5 Arguments

name
[Name of Sub or Function with or without module name,] e.g., 'Module1.MyMacro' or
'MyMacro'

33.1.6 Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

Types are supported too:

Function MySum(x as integer, y as integer)
MySum = x + y

End Function

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

262 Chapter 33. App

xlwings - Make Excel Fly!, Release dev

However typed arrays are not supported. So the following won’t work

Function MySum(arr() as integer)
' code here

End Function

See also: Book.macro()

New in version 0.9.0.

property path

Returns the path to where the App is installed.

New in version 0.28.4.

property pid

Returns the PID of the app.

New in version 0.9.0.

properties(**kwargs)
Context manager that allows you to easily change the app’s properties temporarily. Once the code
leaves the with block, the properties are changed back to their previous state. Note: Must be used
as context manager or else will have no effect. Also, you can only use app properties that you
can both read and write.

33.1.7 Examples

import xlwings as xw
app = App()

Sets app.display_alerts = False
with app.properties(display_alerts=False):

do stuff

Sets app.calculation = 'manual' and app.enable_events = True
with app.properties(calculation='manual', enable_events=True):

do stuff

Makes sure the status bar is reset even if an error happens in the␣
→˓with block
with app.properties(status_bar='Calculating...'):

do stuff

New in version 0.24.4.

quit()

Quits the application without saving any workbooks.

New in version 0.3.3.

33.1. Parameters 263

xlwings - Make Excel Fly!, Release dev

range(cell1, cell2=None)
Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

render_template(template=None, output=None, book_settings=None, **data)
This function requires xlwings PRO.

This is a convenience wrapper around mysheet.render_template

Writes the values of all key word arguments to the output file according to the template and
the variables contained in there (Jinja variable syntax). Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, pictures and Mat-
plotlib/Plotly figures.

33.1.8 Parameters

template: str or path-like object
Path to your Excel template, e.g. r'C:\Path\to\my_template.xlsx'

output: str or path-like object
Path to your Report, e.g. r'C:\Path\to\my_report.xlsx'

book_settings: dict, default None
A dictionary of xlwings.Book parameters, for details see: xlwings.Book . For example:
book_settings={'update_links': False}.

data: kwargs
All key/value pairs that are used in the template.

33.1.9 Returns

wb: xlwings Book

New in version 0.24.4.

property screen_updating

Turn screen updating off to speed up your script. You won’t be able to see what the script is
doing, but it will run faster. Remember to set the screen_updating property back to True when
your script ends.

New in version 0.3.3.

property selection

Returns the selected cells as Range.

New in version 0.9.0.

264 Chapter 33. App

xlwings - Make Excel Fly!, Release dev

property startup_path

Returns the path to XLSTART which is where the xlwings add-in gets copied to by doing xlwings
addin install.

New in version 0.19.4.

property status_bar

Gets or sets the value of the status bar. Returns False if Excel has control of it.

New in version 0.20.0.

property version

Returns the Excel version number object.

33.1.10 Examples

>>> import xlwings as xw
>>> xw.App().version
VersionNumber('15.24')
>>> xw.apps[10559].version.major
15

Changed in version 0.9.0.

property visible

Gets or sets the visibility of Excel to True or False.

New in version 0.3.3.

33.1. Parameters 265

xlwings - Make Excel Fly!, Release dev

266 Chapter 33. App

CHAPTER

THIRTYFOUR

APPS

class Apps(impl)
A collection of all app objects:

>>> import xlwings as xw
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

property active

Returns the active app.

New in version 0.9.0.

add(**kwargs)
Creates a new App. The new App becomes the active one. Returns an App object.

cleanup()

Removes Excel zombie processes (Windows-only). Note that this is automatically called with
App.quit() and App.kill().

New in version 0.30.2.

property count

Returns the number of apps.

New in version 0.9.0.

keys()

Provides the PIDs of the Excel instances that act as keys in the Apps collection.

New in version 0.13.0.

267

xlwings - Make Excel Fly!, Release dev

268 Chapter 34. Apps

CHAPTER

THIRTYFIVE

BOOK

class Book(fullname=None, update_links=None, read_only=None, format=None, password=None,
write_res_password=None, ignore_read_only_recommended=None, origin=None,
delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None,
local=None, corrupt_load=None, impl=None, json=None, mode=None, engine=None)

A book object is a member of the books collection:

>>> import xlwings as xw
>>> xw.books[0]
<Book [Book1]>

The easiest way to connect to a book is offered by xw.Book: it looks for the book in all app instances
and returns an error, should the same book be open in multiple instances. To connect to a book in the
active app instance, use xw.books and to refer to a specific app, use:

>>> app = xw.App() # or xw.apps[10559] (get the PIDs via xw.apps.keys())
>>> app.books['Book1']

xw.Book xw.books
New book xw.Book() xw.books.add()
Unsaved book xw.Book('Book1') xw.books['Book1']
Book by
(full)name

xw.Book(r'C:/path/to/file.
xlsx')

xw.books.open(r'C:/path/to/
file.xlsx')

35.1 Parameters

fullname
[str or path-like object, default None] Full path or name (incl. xlsx, xlsm etc.) of existing work-
book or name of an unsaved workbook. Without a full path, it looks for the file in the current
working directory.

update_links
[bool, default None] If this argument is omitted, the user is prompted to specify how links will
be updated

269

xlwings - Make Excel Fly!, Release dev

read_only
[bool, default False] True to open workbook in read-only mode

format
[str] If opening a text file, this specifies the delimiter character

password
[str] Password to open a protected workbook

write_res_password
[str] Password to write to a write-reserved workbook

ignore_read_only_recommended
[bool, default False] Set to True to mute the read-only recommended message

origin
[int] For text files only. Specifies where it originated. Use Platform constants.

delimiter
[str] If format argument is 6, this specifies the delimiter.

editable
[bool, default False] This option is only for legacy Microsoft Excel 4.0 addins.

notify
[bool, default False] Notify the user when a file becomes available If the file cannot be opened
in read/write mode.

converter
[int] The index of the first file converter to try when opening the file.

add_to_mru
[bool, default False] Add this workbook to the list of recently added workbooks.

local
[bool, default False] If True, saves files against the language of Excel, otherwise against the
language of VBA. Not supported on macOS.

corrupt_load
[int, default xlNormalLoad] Can be one of xlNormalLoad, xlRepairFile or xlExtractData. Not
supported on macOS.

json
[dict] A JSON object as delivered by the MS Office Scripts or Google Apps Script xlwings
module but in a deserialized form, i.e., as dictionary.

New in version 0.26.0.

mode
[str, default None] Either "i" (interactive (default)) or "r" (read). In interactive mode, xlwings
opens the workbook in Excel, i.e., Excel needs to be installed. In read mode, xlwings reads from
the file directly, without requiring Excel to be installed. Read mode requires xlwings PRO.

New in version 0.28.0.

270 Chapter 35. Book

xlwings - Make Excel Fly!, Release dev

activate(steal_focus=False)
Activates the book.

35.1.1 Parameters

steal_focus
[bool, default False] If True, make frontmost window and hand over focus from Python to
Excel.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

property app

Returns an app object that represents the creator of the book.

New in version 0.9.0.

classmethod caller()

References the calling book when the Python function is called from Excel via RunPython. Pack
it into the function being called from Excel, e.g.:

import xlwings as xw

def my_macro():
wb = xw.Book.caller()
wb.sheets[0].range('A1').value = 1

To be able to easily invoke such code from Python for debugging, use xw.Book.
set_mock_caller().

New in version 0.3.0.

close()

Closes the book without saving it.

New in version 0.1.1.

property fullname

Returns the name of the object, including its path on disk, as a string. Read-only String.

json()

Returns a JSON serializable object as expected by the MS Office Scripts or Google Apps
Script xlwings module. Only available with book objects that have been instantiated via xw.
Book(json=...).

New in version 0.26.0.

macro(name)
Runs a Sub or Function in Excel VBA.

35.1. Parameters 271

xlwings - Make Excel Fly!, Release dev

35.1.2 Arguments

name : Name of Sub or Function with or without module name, e.g., 'Module1.MyMacro' or
'MyMacro'

35.1.3 Examples

This VBA function:

Function MySum(x, y)
MySum = x + y

End Function

can be accessed like this:

>>> import xlwings as xw
>>> wb = xw.books.active
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3

See also: App.macro()

New in version 0.7.1.

property name

Returns the name of the book as str.

property names

Returns a names collection that represents all the names in the specified book (including all
sheet-specific names).

Changed in version 0.9.0.

render_template(**data)
This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the book with the keyword argument of the
same name.

New in version 0.25.0.

272 Chapter 35. Book

xlwings - Make Excel Fly!, Release dev

35.1.4 Parameters

data: kwargs
All key/value pairs that are used in the template.

35.1.5 Examples

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.render_template(myvar='test')

save(path=None, password=None)
Saves the Workbook. If a path is provided, this works like SaveAs() in Excel. If no path is
specified and if the file hasn’t been saved previously, it’s saved in the current working directory
with the current filename. Existing files are overwritten without prompting. To change the file
type, provide the appropriate extension, e.g. to save myfile.xlsx in the xlsb format, provide
myfile.xlsb as path.

35.1.6 Arguments

path
[str or path-like object, default None] Path where you want to save the Book.

password
[str, default None] Protection password with max. 15 characters

New in version 0.25.1.

35.1.7 Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.save()
>>> wb.save(r'C:\path\to\new_file_name.xlsx')

New in version 0.3.1.

property selection

Returns the selected cells as Range.

New in version 0.9.0.

set_mock_caller()

Sets the Excel file which is used to mock xw.Book.caller() when the code is called from
Python and not from Excel via RunPython.

35.1. Parameters 273

xlwings - Make Excel Fly!, Release dev

35.1.8 Examples

This code runs unchanged from Excel via RunPython and from Python␣
→˓directly
import os
import xlwings as xw

def my_macro():
sht = xw.Book.caller().sheets[0]
sht.range('A1').value = 'Hello xlwings!'

if __name__ == '__main__':
xw.Book('file.xlsm').set_mock_caller()
my_macro()

New in version 0.3.1.

property sheet_names

35.1.9 Returns

sheet_names
[List] List of sheet names in order of appearance.

New in version 0.28.1.

property sheets

Returns a sheets collection that represents all the sheets in the book.

New in version 0.9.0.

to_pdf(path=None, include=None, exclude=None, layout=None, exclude_start_string='#',
show=False, quality='standard')

Exports the whole Excel workbook or a subset of the sheets to a PDF file. If you want to print
hidden sheets, you will need to list them explicitely under include.

35.1.10 Parameters

path
[str or path-like object, default None] Path to the PDF file, defaults to the same name as the
workbook, in the same directory. For unsaved workbooks, it defaults to the current working
directory instead.

include
[int or str or list, default None] Which sheets to include: provide a selection of sheets in the
form of sheet indices (1-based like in Excel) or sheet names. Can be an int/str for a single
sheet or a list of int/str for multiple sheets.

274 Chapter 35. Book

xlwings - Make Excel Fly!, Release dev

exclude
[int or str or list, default None] Which sheets to exclude: provide a selection of sheets in the
form of sheet indices (1-based like in Excel) or sheet names. Can be an int/str for a single
sheet or a list of int/str for multiple sheets.

layout
[str or path-like object, default None] This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for headers and footers
as well as borderless printing of graphics/artwork. The PDF file either needs to have only 1
page (every report page uses the same layout) or otherwise needs the same amount of pages
as the report (each report page is printed on the respective page in the layout PDF).

New in version 0.24.3.

exclude_start_string
[str, default '#'] Sheet names that start with this character/string will not be printed.

New in version 0.24.4.

show
[bool, default False] Once created, open the PDF file with the default application.

New in version 0.24.6.

quality
[str, default 'standard'] Quality of the PDF file. Can either be 'standard' or
'minimum'.

New in version 0.26.2.

35.1.11 Examples

>>> wb = xw.Book()
>>> wb.sheets[0]['A1'].value = 'PDF'
>>> wb.to_pdf()

See also xlwings.Sheet.to_pdf()

New in version 0.21.1.

35.1. Parameters 275

xlwings - Make Excel Fly!, Release dev

276 Chapter 35. Book

CHAPTER

THIRTYSIX

BOOKS

class Books(impl)
A collection of all book objects:

>>> import xlwings as xw
>>> xw.books # active app
Books([<Book [Book1]>, <Book [Book2]>])
>>> xw.apps[10559].books # specific app, get the PIDs via xw.apps.keys()
Books([<Book [Book1]>, <Book [Book2]>])

New in version 0.9.0.

property active

Returns the active Book.

add()

Creates a new Book. The new Book becomes the active Book. Returns a Book object.

open(fullname=None, update_links=None, read_only=None, format=None, password=None,
write_res_password=None, ignore_read_only_recommended=None, origin=None,
delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None,
local=None, corrupt_load=None, json=None)

Opens a Book if it is not open yet and returns it. If it is already open, it doesn’t raise an exception
but simply returns the Book object.

36.1 Parameters

fullname
[str or path-like object] filename or fully qualified filename, e.g. r'C:\path\to\file.
xlsx' or 'file.xlsm'. Without a full path, it looks for the file in the current working
directory.

Other Parameters
see: xlwings.Book()

277

xlwings - Make Excel Fly!, Release dev

36.2 Returns

Book : Book that has been opened.

278 Chapter 36. Books

CHAPTER

THIRTYSEVEN

CHARACTERS

object is a Range or Shape object.

class Characters(impl)
The characters object can be accessed as an attribute of the range or shape object.

• mysheet['A1'].characters

• mysheet.shapes[0].characters

Note: On macOS, characters are currently not supported due to bugs/lack of support in Apple-
Script.

New in version 0.23.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.23.0.

property font

Returns or sets the text property of a characters object.

>>> sheet['A1'].characters[1:3].font.bold = True
>>> sheet['A1'].characters[1:3].font.bold
True

New in version 0.23.0.

property text

Returns or sets the text property of a characters object.

>>> sheet['A1'].value = 'Python'
>>> sheet['A1'].characters[:3].text
Pyt

New in version 0.23.0.

279

xlwings - Make Excel Fly!, Release dev

280 Chapter 37. Characters

CHAPTER

THIRTYEIGHT

CHART

class Chart(name_or_index=None, impl=None)
The chart object is a member of the charts collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.charts[0] # or sht.charts['ChartName']
<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

property chart_type

Returns and sets the chart type of the chart. The following chart types are available:

3d_area, 3d_area_stacked, 3d_area_stacked_100, 3d_bar_clustered,
3d_bar_stacked, 3d_bar_stacked_100, 3d_column, 3d_column_clustered,
3d_column_stacked, 3d_column_stacked_100, 3d_line, 3d_pie, 3d_pie_exploded,
area, area_stacked, area_stacked_100, bar_clustered, bar_of_pie,
bar_stacked, bar_stacked_100, bubble, bubble_3d_effect, column_clustered,
column_stacked, column_stacked_100, combination, cone_bar_clustered,
cone_bar_stacked, cone_bar_stacked_100, cone_col, cone_col_clustered,
cone_col_stacked, cone_col_stacked_100, cylinder_bar_clustered,
cylinder_bar_stacked, cylinder_bar_stacked_100, cylinder_col,
cylinder_col_clustered, cylinder_col_stacked, cylinder_col_stacked_100,
doughnut, doughnut_exploded, line, line_markers, line_markers_stacked,
line_markers_stacked_100, line_stacked, line_stacked_100, pie,
pie_exploded, pie_of_pie, pyramid_bar_clustered, pyramid_bar_stacked,
pyramid_bar_stacked_100, pyramid_col, pyramid_col_clustered,
pyramid_col_stacked, pyramid_col_stacked_100, radar, radar_filled,
radar_markers, stock_hlc, stock_ohlc, stock_vhlc, stock_vohlc, surface,
surface_top_view, surface_top_view_wireframe, surface_wireframe, xy_scatter,
xy_scatter_lines, xy_scatter_lines_no_markers, xy_scatter_smooth,
xy_scatter_smooth_no_markers

New in version 0.1.1.

281

xlwings - Make Excel Fly!, Release dev

delete()

Deletes the chart.

property height

Returns or sets the number of points that represent the height of the chart.

property left

Returns or sets the number of points that represent the horizontal position of the chart.

property name

Returns or sets the name of the chart.

property parent

Returns the parent of the chart.

New in version 0.9.0.

set_source_data(source)
Sets the source data range for the chart.

38.1 Arguments

source
[Range] Range object, e.g. xw.books['Book1'].sheets[0].range('A1')

to_pdf(path=None, show=None, quality='standard')
Exports the chart as PDF.

38.2 Parameters

path
[str or path-like, default None] Path where you want to store the pdf. Defaults to the name
of the chart in the same directory as the Excel file if the Excel file is stored and to the current
working directory otherwise.

show
[bool, default False] Once created, open the PDF file with the default application.

quality
[str, default 'standard'] Quality of the PDF file. Can either be 'standard' or
'minimum'.

New in version 0.26.2.

to_png(path=None)
Exports the chart as PNG picture.

282 Chapter 38. Chart

xlwings - Make Excel Fly!, Release dev

38.3 Parameters

path
[str or path-like, default None] Path where you want to store the picture. Defaults to the
name of the chart in the same directory as the Excel file if the Excel file is stored and to the
current working directory otherwise.

New in version 0.24.8.

property top

Returns or sets the number of points that represent the vertical position of the chart.

property width

Returns or sets the number of points that represent the width of the chart.

38.3. Parameters 283

xlwings - Make Excel Fly!, Release dev

284 Chapter 38. Chart

CHAPTER

THIRTYNINE

CHARTS

class Charts(impl)
A collection of all chart objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].charts
Charts([<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>,

<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

add(left=0, top=0, width=355, height=211)
Creates a new chart on the specified sheet.

39.1 Arguments

left
[float, default 0] left position in points

top
[float, default 0] top position in points

width
[float, default 355] width in points

height
[float, default 211] height in points

285

xlwings - Make Excel Fly!, Release dev

39.2 Returns

Chart

39.3 Examples

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [['Foo1', 'Foo2'], [1, 2]]
>>> chart = sht.charts.add()
>>> chart.set_source_data(sht.range('A1').expand())
>>> chart.chart_type = 'line'
>>> chart.name
'Chart1'

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property count

Returns the number of objects in the collection.

286 Chapter 39. Charts

CHAPTER

FORTY

FONT

class Font(impl)
The font object can be accessed as an attribute of the range or shape object.

• mysheet['A1'].font

• mysheet.shapes[0].font

New in version 0.23.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.23.0.

property bold

Returns or sets the bold property (boolean).

>>> sheet['A1'].font.bold = True
>>> sheet['A1'].font.bold
True

New in version 0.23.0.

property color

Returns or sets the color property (tuple).

>>> sheet['A1'].font.color = (255, 0, 0) # or '#ff0000'
>>> sheet['A1'].font.color
(255, 0, 0)

New in version 0.23.0.

property italic

Returns or sets the italic property (boolean).

>>> sheet['A1'].font.italic = True
>>> sheet['A1'].font.italic
True

287

xlwings - Make Excel Fly!, Release dev

New in version 0.23.0.

property name

Returns or sets the name of the font (str).

>>> sheet['A1'].font.name = 'Calibri'
>>> sheet['A1'].font.name
Calibri

New in version 0.23.0.

property size

Returns or sets the size (float).

>>> sheet['A1'].font.size = 13
>>> sheet['A1'].font.size
13

New in version 0.23.0.

288 Chapter 40. Font

CHAPTER

FORTYONE

NAME

class Name(impl)
The name object is a member of the names collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names[0] # or sht.names['MyName']
<Name 'MyName': =Sheet1!A3>

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

delete()

Deletes the name.

New in version 0.9.0.

property name

Returns or sets the name of the name object.

New in version 0.9.0.

property refers_to

Returns or sets the formula that the name is defined to refer to, in A1-style notation, beginning
with an equal sign.

New in version 0.9.0.

property refers_to_range

Returns the Range object referred to by a Name object.

New in version 0.9.0.

289

xlwings - Make Excel Fly!, Release dev

290 Chapter 41. Name

CHAPTER

FORTYTWO

NAMES

class Names(impl)
A collection of all name objects in the workbook:

>>> import xlwings as xw
>>> book = xw.books['Book1'] # book scope and sheet scope
>>> book.names
[<Name 'MyName': =Sheet1!A3>]
>>> book.sheets[0].names # sheet scope only

New in version 0.9.0.

add(name, refers_to)
Defines a new name for a range of cells.

42.1 Parameters

name
[str] Specifies the text to use as the name. Names cannot include spaces and cannot be
formatted as cell references.

refers_to
[str] Describes what the name refers to, in English, using A1-style notation.

42.2 Returns

Name

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine beingused.

New in version 0.9.0.

291

xlwings - Make Excel Fly!, Release dev

property count

Returns the number of objects in the collection.

292 Chapter 42. Names

CHAPTER

FORTYTHREE

NOTE

class Note(impl)

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.24.2.

delete()

Delete the note.

New in version 0.24.2.

property text

Gets or sets the text of a note. Keep in mind that the note must already exist!

43.1 Examples

>>> sheet = xw.Book(...).sheets[0]
>>> sheet['A1'].note.text = 'mynote'
>>> sheet['A1'].note.text
>>> 'mynote'

New in version 0.24.2.

293

xlwings - Make Excel Fly!, Release dev

294 Chapter 43. Note

CHAPTER

FORTYFOUR

PAGESETUP

class PageSetup(impl)

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.24.2.

property print_area

Gets or sets the range address that defines the print area.

44.1 Examples

>>> mysheet.page_setup.print_area = 'A1:B3'
>>> mysheet.page_setup.print_area
'A1:B3'
>>> mysheet.page_setup.print_area = None # clear the print_area

New in version 0.24.2.

295

xlwings - Make Excel Fly!, Release dev

296 Chapter 44. PageSetup

CHAPTER

FORTYFIVE

PICTURE

class Picture(impl=None)
The picture object is a member of the pictures collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.pictures[0] # or sht.charts['PictureName']
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

delete()

Deletes the picture.

New in version 0.5.0.

property height

Returns or sets the number of points that represent the height of the picture.

New in version 0.5.0.

property left

Returns or sets the number of points that represent the horizontal position of the picture.

New in version 0.5.0.

property lock_aspect_ratio

True will keep the original proportion, False will allow you to change height and width inde-
pendently of each other (read/write).

New in version 0.24.0.

property name

Returns or sets the name of the picture.

New in version 0.5.0.

297

xlwings - Make Excel Fly!, Release dev

property parent

Returns the parent of the picture.

New in version 0.9.0.

property top

Returns or sets the number of points that represent the vertical position of the picture.

New in version 0.5.0.

update(image, format=None, export_options=None)
Replaces an existing picture with a new one, taking over the attributes of the existing picture.

45.1 Arguments

image
[str or path-like object or matplotlib.figure.Figure] Either a filepath or a Matplotlib figure
object.

format
[str, default None] See under Pictures.add()

export_options
[dict, default None] See under Pictures.add()

New in version 0.5.0.

property width

Returns or sets the number of points that represent the width of the picture.

New in version 0.5.0.

298 Chapter 45. Picture

CHAPTER

FORTYSIX

PICTURES

class Pictures(impl)
A collection of all picture objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].pictures
Pictures([<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>,

<Picture 'Picture 2' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

add(image, link_to_file=False, save_with_document=True, left=None, top=None, width=None,
height=None, name=None, update=False, scale=None, format=None, anchor=None,
export_options=None)
Adds a picture to the specified sheet.

46.1 Arguments

image
[str or path-like object or matplotlib.figure.Figure] Either a filepath or a Matplotlib figure
object.

left
[float, default None] Left position in points, defaults to 0. If you use top/left, you must
not provide a value for anchor.

top
[float, default None] Top position in points, defaults to 0. If you use top/left, you must
not provide a value for anchor.

width
[float, default None] Width in points. Defaults to original width.

height
[float, default None] Height in points. Defaults to original height.

299

xlwings - Make Excel Fly!, Release dev

name
[str, default None] Excel picture name. Defaults to Excel standard name if not provided,
e.g., ‘Picture 1’.

update
[bool, default False] Replace an existing picture with the same name. Requires name to be
set.

scale
[float, default None] Scales your picture by the provided factor.

format
[str, default None] Only used if image is a Matplotlib or Plotly plot. By de-
fault, the plot is inserted in the “png” format, but you may want to change this
to a vector-based format like “svg” on Windows (may require Microsoft 365)
or “eps” on macOS for better print quality. If you use 'vector', it will be
using 'svg' on Windows and 'eps' on macOS. To find out which formats
your version of Excel supports, see: https://support.microsoft.com/en-us/topic/
support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840

anchor: xw.Range, default None
The xlwings Range object of where you want to insert the picture. If you use anchor, you
must not provide values for top/left.

New in version 0.24.3.

export_options
[dict, default None] For Matplotlib plots, this dictionary is passed on to image.
savefig() with the following defaults: {"bbox_inches": "tight", "dpi": 200},
so if you want to leave the picture uncropped and increase dpi to 300, use:
export_options={"dpi": 300}. For Plotly, the options are passed to write_image().

New in version 0.27.7.

46.2 Returns

Picture

46.3 Examples

1. Picture

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(r'C:\path\to\file.png')
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

2. Matplotlib

300 Chapter 46. Pictures

https://support.microsoft.com/en-us/topic/support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840
https://support.microsoft.com/en-us/topic/support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840

xlwings - Make Excel Fly!, Release dev

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Book1]Sheet1>>

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property count

Returns the number of objects in the collection.

46.3. Examples 301

xlwings - Make Excel Fly!, Release dev

302 Chapter 46. Pictures

CHAPTER

FORTYSEVEN

RANGE

class Range(cell1=None, cell2=None, **options)
Returns a Range object that represents a cell or a range of cells.

47.1 Arguments

cell1
[str or tuple or Range] Name of the range in the upper-left corner in A1 notation or as index-tuple
or as name or as xw.Range object. It can also specify a range using the range operator (a colon),
.e.g. ‘A1:B2’

cell2
[str or tuple or Range, default None] Name of the range in the lower-right corner in A1 notation
or as index-tuple or as name or as xw.Range object.

47.2 Examples

import xlwings as xw
sheet1 = xw.Book("MyBook.xlsx").sheets[0]

sheet1.range("A1")
sheet1.range("A1:C3")
sheet1.range((1,1))
sheet1.range((1,1), (3,3))
sheet1.range("NamedRange")

Or using index/slice notation
sheet1["A1"]
sheet1["A1:C3"]
sheet1[0, 0]
sheet1[0:4, 0:4]
sheet1["NamedRange"]

303

xlwings - Make Excel Fly!, Release dev

add_hyperlink(address, text_to_display=None, screen_tip=None)
Adds a hyperlink to the specified Range (single Cell)

47.2.1 Arguments

address
[str] The address of the hyperlink.

text_to_display
[str, default None] The text to be displayed for the hyperlink. Defaults to the hyperlink
address.

screen_tip: str, default None
The screen tip to be displayed when the mouse pointer is paused over the hyperlink. Default
is set to ‘<address> - Click once to follow. Click and hold to select this cell.’

New in version 0.3.0.

property address

Returns a string value that represents the range reference. Use get_address() to be able to
provide parameters.

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofill(destination, type_='fill_default')
Autofills the destination Range. Note that the destination Range must include the origin Range.

47.2.2 Arguments

destination
[Range] The origin.

type_
[str, default "fill_default"] One of the following strings: "fill_copy",
"fill_days", "fill_default", "fill_formats", "fill_months", "fill_series",
"fill_values", "fill_weekdays", "fill_years", "growth_trend",
"linear_trend", "flash_fill

New in version 0.30.1.

autofit()

Autofits the width and height of all cells in the range.

• To autofit only the width of the columns use myrange.columns.autofit()

• To autofit only the height of the rows use myrange.rows.autofit()

304 Chapter 47. Range

xlwings - Make Excel Fly!, Release dev

Changed in version 0.9.0.

clear()

Clears the content and the formatting of a Range.

clear_contents()

Clears the content of a Range but leaves the formatting.

clear_formats()

Clears the format of a Range but leaves the content.

New in version 0.26.2.

property color

Gets and sets the background color of the specified Range.

To set the color, either use an RGB tuple (0, 0, 0) or a hex string like #efefef or an Excel
color constant. To remove the background, set the color to None, see Examples.

47.2.3 Returns

RGB : tuple

47.2.4 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = xw.sheets[0]
>>> sheet1.range('A1').color = (255, 255, 255) # or '#ffffff'
>>> sheet1.range('A2').color
(255, 255, 255)
>>> sheet1.range('A2').color = None
>>> sheet1.range('A2').color is None
True

New in version 0.3.0.

property column

Returns the number of the first column in the in the specified range. Read-only.

47.2. Examples 305

xlwings - Make Excel Fly!, Release dev

47.2.5 Returns

Integer

New in version 0.3.5.

property column_width

Gets or sets the width, in characters, of a Range. One unit of column width is equal to the width
of one character in the Normal style. For proportional fonts, the width of the character 0 (zero)
is used.

If all columns in the Range have the same width, returns the width. If columns in the Range have
different widths, returns None.

column_width must be in the range: 0 <= column_width <= 255

Note: If the Range is outside the used range of the Worksheet, and columns in the Range have
different widths, returns the width of the first column.

47.2.6 Returns

float

New in version 0.4.0.

property columns

Returns a RangeColumns object that represents the columns in the specified range.

New in version 0.9.0.

copy(destination=None)
Copy a range to a destination range or clipboard.

47.2.7 Parameters

destination
[xlwings.Range] xlwings Range to which the specified range will be copied. If omitted, the
range is copied to the clipboard.

47.2.8 Returns

None

copy_picture(appearance='screen', format='picture')
Copies the range to the clipboard as picture.

306 Chapter 47. Range

xlwings - Make Excel Fly!, Release dev

47.2.9 Parameters

appearance
[str, default ‘screen’] Either ‘screen’ or ‘printer’.

format
[str, default ‘picture’] Either ‘picture’ or ‘bitmap’.

New in version 0.24.8.

property count

Returns the number of cells.

property current_region

This property returns a Range object representing a range bounded by (but not including) any
combination of blank rows and blank columns or the edges of the worksheet. It corresponds to
Ctrl-* on Windows and Shift-Ctrl-Space on Mac.

47.2.10 Returns

Range object

delete(shift=None)
Deletes a cell or range of cells.

47.2.11 Parameters

shift
[str, default None] Use left or up. If omitted, Excel decides based on the shape of the
range.

47.2.12 Returns

None

end(direction)
Returns a Range object that represents the cell at the end of the region that contains the source
range. Equivalent to pressing Ctrl+Up, Ctrl+down, Ctrl+left, or Ctrl+right.

47.2. Examples 307

xlwings - Make Excel Fly!, Release dev

47.2.13 Parameters

direction : One of ‘up’, ‘down’, ‘right’, ‘left’

47.2.14 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = xw.sheets[0]
>>> sheet1.range('A1:B2').value = 1
>>> sheet1.range('A1').end('down')
<Range [Book1]Sheet1!A2>
>>> sheet1.range('B2').end('right')
<Range [Book1]Sheet1!B2>

New in version 0.9.0.

expand(mode='table')
Expands the range according to the mode provided. Ignores empty top-left cells (unlike Range.
end()).

47.2.15 Parameters

mode
[str, default ‘table’] One of 'table' (=down and right), 'down', 'right'.

47.2.16 Returns

Range

47.2.17 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range('A1').value = [[None, 1], [2, 3]]
>>> sheet1.range('A1').expand().address
A1:B2
>>> sheet1.range('A1').expand('right').address
A1:B1

New in version 0.9.0.

308 Chapter 47. Range

xlwings - Make Excel Fly!, Release dev

property formula

Gets or sets the formula for the given Range.

property formula2

Gets or sets the formula2 for the given Range.

property formula_array

Gets or sets an array formula for the given Range.

New in version 0.7.1.

get_address(row_absolute=True, column_absolute=True, include_sheetname=False,
external=False)

Returns the address of the range in the specified format. address can be used instead if none of
the defaults need to be changed.

47.2.18 Arguments

row_absolute
[bool, default True] Set to True to return the row part of the reference as an absolute refer-
ence.

column_absolute
[bool, default True] Set to True to return the column part of the reference as an absolute
reference.

include_sheetname
[bool, default False] Set to True to include the Sheet name in the address. Ignored if exter-
nal=True.

external
[bool, default False] Set to True to return an external reference with workbook and worksheet
name.

47.2.19 Returns

str

47.2.20 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range((1,1)).get_address()
'A1'
>>> sheet1.range((1,1)).get_address(False, False)
'A1'

(continues on next page)

47.2. Examples 309

xlwings - Make Excel Fly!, Release dev

(continued from previous page)

>>> sheet1.range((1,1), (3,3)).get_address(True, False, True)
'Sheet1!A$1:C$3'
>>> sheet1.range((1,1), (3,3)).get_address(True, False, external=True)
'[Book1]Sheet1!A$1:C$3'

New in version 0.2.3.

property has_array

True if the range is part of a legacy CSE Array formula and False otherwise.

property height

Returns the height, in points, of a Range. Read-only.

47.2.21 Returns

float

New in version 0.4.0.

property hyperlink

Returns the hyperlink address of the specified Range (single Cell only)

47.2.22 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range('A1').value
'www.xlwings.org'
>>> sheet1.range('A1').hyperlink
'http://www.xlwings.org'

New in version 0.3.0.

insert(shift, copy_origin='format_from_left_or_above')
Insert a cell or range of cells into the sheet.

47.2.23 Parameters

shift
[str] Use right or down.

copy_origin
[str, default format_from_left_or_above] Use format_from_left_or_above or
format_from_right_or_below. Note that copy_origin is only supported on Win-
dows.

310 Chapter 47. Range

xlwings - Make Excel Fly!, Release dev

47.2.24 Returns

None

Changed in version 0.30.3: shift is now a required argument.

property last_cell

Returns the bottom right cell of the specified range. Read-only.

47.2.25 Returns

Range

47.2.26 Example

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> myrange = sheet1.range('A1:E4')
>>> myrange.last_cell.row, myrange.last_cell.column
(4, 5)

New in version 0.3.5.

property left

Returns the distance, in points, from the left edge of column A to the left edge of the range.
Read-only.

47.2.27 Returns

float

New in version 0.6.0.

merge(across=False)
Creates a merged cell from the specified Range object.

47.2.28 Parameters

across
[bool, default False] True to merge cells in each row of the specified Range as separate
merged cells.

property merge_area

Returns a Range object that represents the merged Range containing the specified cell. If the
specified cell isn’t in a merged range, this property returns the specified cell.

47.2. Examples 311

xlwings - Make Excel Fly!, Release dev

property merge_cells

Returns True if the Range contains merged cells, otherwise False

property name

Sets or gets the name of a Range.

New in version 0.4.0.

property note

Returns a Note object. Before the introduction of threaded comments, a Note was called a Com-
ment.

New in version 0.24.2.

property number_format

Gets and sets the number_format of a Range.

47.2.29 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range('A1').number_format
'General'
>>> sheet1.range('A1:C3').number_format = '0.00%'
>>> sheet1.range('A1:C3').number_format
'0.00%'

New in version 0.2.3.

offset(row_offset=0, column_offset=0)
Returns a Range object that represents a Range that’s offset from the specified range.

47.2.30 Returns

Range object : Range

New in version 0.3.0.

options(convert=None, **options)
Allows you to set a converter and their options. Converters define how Excel Ranges and their
values are being converted both during reading and writing operations. If no explicit converter
is specified, the base converter is being applied, see Converters and Options.

312 Chapter 47. Range

xlwings - Make Excel Fly!, Release dev

47.2.31 Arguments

convert
[object, default None] A converter, e.g. dict, np.array, pd.DataFrame, pd.Series,
defaults to default converter

47.2.32 Keyword Arguments

ndim
[int, default None] number of dimensions

numbers
[type, default None] type of numbers, e.g. int

dates
[type, default None] e.g. datetime.date defaults to datetime.datetime

empty
[object, default None] transformation of empty cells

transpose
[Boolean, default False] transpose values

expand
[str, default None] One of 'table', 'down', 'right'

chunksize
[int] Use a chunksize, e.g. 10000 to prevent timeout or memory issues when reading or writ-
ing large amounts of data. Works with all formats, including DataFrames, NumPy arrays,
and list of lists.

err_to_str
[Boolean, default False] If True, will include cell errors such as #N/A as strings. By default,
they will be converted to None.

New in version 0.28.0.

=> For converter-specific options, see Converters and Options.

47.2.33 Returns

Range object

paste(paste=None, operation=None, skip_blanks=False, transpose=False)
Pastes a range from the clipboard into the specified range.

47.2. Examples 313

xlwings - Make Excel Fly!, Release dev

47.2.34 Parameters

paste
[str, default None] One of all_merging_conditional_formats, all,
all_except_borders, all_using_source_theme, column_widths, comments,
formats, formulas, formulas_and_number_formats, validation, values,
values_and_number_formats.

operation
[str, default None] One of “add”, “divide”, “multiply”, “subtract”.

skip_blanks
[bool, default False] Set to True to skip over blank cells

transpose
[bool, default False] Set to True to transpose rows and columns.

47.2.35 Returns

None

property raw_value

Gets and sets the values directly as delivered from/accepted by the engine that s being used
(pywin32 or appscript) without going through any of xlwings’ data cleaning/converting. This
can be helpful if speed is an issue but naturally will be engine specific, i.e. might remove the
cross-platform compatibility.

resize(row_size=None, column_size=None)
Resizes the specified Range

47.2.36 Arguments

row_size: int > 0
The number of rows in the new range (if None, the number of rows in the range is unchanged).

column_size: int > 0
The number of columns in the new range (if None, the number of columns in the range is
unchanged).

47.2.37 Returns

Range object: Range

New in version 0.3.0.

property row

Returns the number of the first row in the specified range. Read-only.

314 Chapter 47. Range

xlwings - Make Excel Fly!, Release dev

47.2.38 Returns

Integer

New in version 0.3.5.

property row_height

Gets or sets the height, in points, of a Range. If all rows in the Range have the same height,
returns the height. If rows in the Range have different heights, returns None.

row_height must be in the range: 0 <= row_height <= 409.5

Note: If the Range is outside the used range of the Worksheet, and rows in the Range have
different heights, returns the height of the first row.

47.2.39 Returns

float

New in version 0.4.0.

property rows

Returns a RangeRows object that represents the rows in the specified range.

New in version 0.9.0.

select()

Selects the range. Select only works on the active book.

New in version 0.9.0.

property shape

Tuple of Range dimensions.

New in version 0.3.0.

property sheet

Returns the Sheet object to which the Range belongs.

New in version 0.9.0.

property size

Number of elements in the Range.

New in version 0.3.0.

property table

Returns a Table object if the range is part of one, otherwise None.

New in version 0.21.0.

to_pdf(path=None, layout=None, show=None, quality='standard')
Exports the range as PDF.

47.2. Examples 315

xlwings - Make Excel Fly!, Release dev

47.2.40 Parameters

path
[str or path-like, default None] Path where you want to store the pdf. Defaults to the address
of the range in the same directory as the Excel file if the Excel file is stored and to the current
working directory otherwise.

layout
[str or path-like object, default None] This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for headers and footers
as well as borderless printing of graphics/artwork. The PDF file either needs to have only 1
page (every report page uses the same layout) or otherwise needs the same amount of pages
as the report (each report page is printed on the respective page in the layout PDF).

show
[bool, default False] Once created, open the PDF file with the default application.

quality
[str, default 'standard'] Quality of the PDF file. Can either be 'standard' or
'minimum'.

New in version 0.26.2.

to_png(path=None)
Exports the range as PNG picture.

47.2.41 Parameters

path
[str or path-like, default None] Path where you want to store the picture. Defaults to the
name of the range in the same directory as the Excel file if the Excel file is stored and to the
current working directory otherwise.

New in version 0.24.8.

property top

Returns the distance, in points, from the top edge of row 1 to the top edge of the range. Read-only.

47.2.42 Returns

float

New in version 0.6.0.

unmerge()

Separates a merged area into individual cells.

316 Chapter 47. Range

xlwings - Make Excel Fly!, Release dev

property value

Gets and sets the values for the given Range. See xlwings.Range.options() about how to
set options, e.g., to transform it into a DataFrame or how to set a chunksize.

47.2.43 Returns

object
[returned object depends on the converter being used,] see xlwings.Range.options()

property width

Returns the width, in points, of a Range. Read-only.

47.2.44 Returns

float

New in version 0.4.0.

property wrap_text

Returns True if the wrap_text property is enabled and False if it’s disabled. If not all cells have
the same value in a range, on Windows it returns None and on macOS False.

New in version 0.23.2.

47.2. Examples 317

xlwings - Make Excel Fly!, Release dev

318 Chapter 47. Range

CHAPTER

FORTYEIGHT

RANGECOLUMNS

class RangeColumns(rng)
Represents the columns of a range. Do not construct this class directly, use Range.columns instead.

48.1 Example

import xlwings as xw

wb = xw.Book("MyFile.xlsx")
sheet1 = wb.sheets[0]
myrange = sheet1.range('A1:C4')

assert len(myrange.columns) == 3 # or myrange.columns.count

myrange.columns[0].value = 'a'

assert myrange.columns[2] == sheet1.range('C1:C4')
assert myrange.columns(2) == sheet1.range('B1:B4')

for c in myrange.columns:
print(c.address)

autofit()

Autofits the width of the columns.

property count

Returns the number of columns.

New in version 0.9.0.

319

xlwings - Make Excel Fly!, Release dev

320 Chapter 48. RangeColumns

CHAPTER

FORTYNINE

RANGEROWS

class RangeRows(rng)
Represents the rows of a range. Do not construct this class directly, use Range.rows instead.

49.1 Example

import xlwings as xw

wb = xw.Book("MyBook.xlsx")
sheet1 = wb.sheets[0]
myrange = sheet1.range('A1:C4')

assert len(myrange.rows) == 4 # or myrange.rows.count

myrange.rows[0].value = 'a'

assert myrange.rows[2] == sheet1.range('A3:C3')
assert myrange.rows(2) == sheet1.range('A2:C2')

for r in myrange.rows:
print(r.address)

autofit()

Autofits the height of the rows.

property count

Returns the number of rows.

New in version 0.9.0.

321

xlwings - Make Excel Fly!, Release dev

322 Chapter 49. RangeRows

CHAPTER

FIFTY

REPORTS

class Image(filename)
Use this class to provide images to either render_template().

50.1 Arguments

filename
[str or pathlib.Path object] The file name or path

class Markdown(text, style=<MarkdownStyle> h1.font: .bold: True paragraph.blank_lines_after: 1
unordered_list.bullet_character: • unordered_list.blank_lines_after: 1 strong.bold:
True emphasis.italic: True)

Markdown objects can be assigned to a single cell or shape via myrange.value or myshape.text.
They accept a string in Markdown format which will cause the text in the cell to be formatted accord-
ingly. They can also be used in mysheet.render_template().

Note: On macOS, formatting is currently not supported, but things like bullet points will still work.

50.2 Arguments

text
[str] The text in Markdown syntax

style
[MarkdownStyle object, optional] The MarkdownStyle object defines how the text will be for-
matted.

323

xlwings - Make Excel Fly!, Release dev

50.3 Examples

>>> mysheet['A1'].value = Markdown("A text with *emphasis* and **strong**␣
→˓style.")
>>> myshape.text = Markdown("A text with *emphasis* and **strong** style.")

New in version 0.23.0.

class MarkdownStyle

MarkdownStyle defines how Markdown objects are being rendered in Excel cells or shapes. Start by
instantiating a MarkdownStyle object. Printing it will show you the current (default) style:

>>> style = MarkdownStyle()
>>> style
<MarkdownStyle>
h1.font: .bold: True
h1.blank_lines_after: 1
paragraph.blank_lines_after: 1
unordered_list.bullet_character: •
unordered_list.blank_lines_after: 1
strong.bold: True
emphasis.italic: True

You can override the defaults, e.g., to make **strong** text red instead of bold, do this:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

New in version 0.23.0.

formatter(func)
Decorator

render_template(template, output, book_settings=None, app=None, **data)
This function requires xlwings PRO.

This is a convenience wrapper around mysheet.render_template

Writes the values of all key word arguments to the output file according to the template and the
variables contained in there (Jinja variable syntax). Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, pictures and Matplotlib/Plotly
figures.

324 Chapter 50. Reports

xlwings - Make Excel Fly!, Release dev

50.4 Parameters

template: str or path-like
Path to your Excel template, e.g. r'C:\Path\to\my_template.xlsx'

output: str or path-like
Path to your Report, e.g. r'C:\Path\to\my_report.xlsx'

book_settings: dict, default None
A dict of xlwings.Book parameters, for details see: xlwings.Book . For example:
book_settings={'update_links': False}.

app: xlwings App, default None
By passing in an xlwings App instance, you can control where your report runs and configure
things like visible=False. For details see xlwings.App. By default, it creates the report in
the currently active instance of Excel.

data: kwargs
All key/value pairs that are used in the template.

50.5 Returns

xlwings Book

50.6 Examples

In my_template.xlsx, put the following Jinja variables in two cells: {{ title }} and {{ df }}

>>> from xlwings.reports import render_template
>>> import pandas as pd
>>> df = pd.DataFrame(data=[[1,2],[3,4]])
>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx',

title='MyTitle', df=df)

With many template variables it may be useful to collect the data first:

>>> data = dict(title='MyTitle', df=df)
>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx', **data)

If you need to handle external links or a password, use it like so:

>>> mybook = render_template('my_template.xlsx', 'my_report.xlsx',
book_settings={'update_links': True,
'password': 'mypassword'}, **data)

50.4. Parameters 325

xlwings - Make Excel Fly!, Release dev

326 Chapter 50. Reports

CHAPTER

FIFTYONE

SHAPE

class Shape(*args, **options)
The shape object is a member of the shapes collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.shapes[0] # or sht.shapes['ShapeName']
<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>

Changed in version 0.9.0.

activate()

Activates the shape.

New in version 0.5.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.19.2.

delete()

Deletes the shape.

New in version 0.5.0.

property height

Returns or sets the number of points that represent the height of the shape.

New in version 0.5.0.

property left

Returns or sets the number of points that represent the horizontal position of the shape.

New in version 0.5.0.

property name

Returns or sets the name of the shape.

New in version 0.5.0.

327

xlwings - Make Excel Fly!, Release dev

property parent

Returns the parent of the shape.

New in version 0.9.0.

scale_height(factor, relative_to_original_size=False, scale='scale_from_top_left')

factor
[float] For example 1.5 to scale it up to 150%

relative_to_original_size
[bool, optional] If False, it scales relative to current height (default). For True must be a
picture or OLE object.

scale
[str, optional] One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

New in version 0.19.2.

scale_width(factor, relative_to_original_size=False, scale='scale_from_top_left')

factor
[float] For example 1.5 to scale it up to 150%

relative_to_original_size
[bool, optional] If False, it scales relative to current width (default). For True must be a
picture or OLE object.

scale
[str, optional] One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

New in version 0.19.2.

property text

Returns or sets the text of a shape.

New in version 0.21.4.

property top

Returns or sets the number of points that represent the vertical position of the shape.

New in version 0.5.0.

property type

Returns the type of the shape.

New in version 0.9.0.

property width

Returns or sets the number of points that represent the width of the shape.

New in version 0.5.0.

328 Chapter 51. Shape

CHAPTER

FIFTYTWO

SHAPES

class Shapes(impl)
A collection of all shape objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].shapes
Shapes([<Shape 'Oval 1' in <Sheet [Book1]Sheet1>>,

<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>])

New in version 0.9.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property count

Returns the number of objects in the collection.

329

xlwings - Make Excel Fly!, Release dev

330 Chapter 52. Shapes

CHAPTER

FIFTYTHREE

SHEET

class Sheet(sheet=None, impl=None)
A sheet object is a member of the sheets collection:

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets[0]
<Sheet [Book1]Sheet1>
>>> wb.sheets['Sheet1']
<Sheet [Book1]Sheet1>
>>> wb.sheets.add()
<Sheet [Book1]Sheet2>

Changed in version 0.9.0.

activate()

Activates the Sheet and returns it.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

New in version 0.9.0.

autofit(axis=None)
Autofits the width of either columns, rows or both on a whole Sheet.

53.1 Arguments

axis
[string, default None]

• To autofit rows, use one of the following: rows or r

• To autofit columns, use one of the following: columns or c

• To autofit rows and columns, provide no arguments

331

xlwings - Make Excel Fly!, Release dev

53.2 Examples

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets['Sheet1'].autofit('c')
>>> wb.sheets['Sheet1'].autofit('r')
>>> wb.sheets['Sheet1'].autofit()

New in version 0.2.3.

property book

Returns the Book of the specified Sheet. Read-only.

property cells

Returns a Range object that represents all the cells on the Sheet (not just the cells that are currently
in use).

New in version 0.9.0.

property charts

See Charts

New in version 0.9.0.

clear()

Clears the content and formatting of the whole sheet.

clear_contents()

Clears the content of the whole sheet but leaves the formatting.

clear_formats()

Clears the format of the whole sheet but leaves the content.

New in version 0.26.2.

copy(before=None, after=None, name=None)
Copy a sheet to the current or a new Book. By default, it places the copied sheet after all existing
sheets in the current Book. Returns the copied sheet.

New in version 0.22.0.

53.3 Arguments

before
[sheet object, default None] The sheet object before which you want to place the sheet

after
[sheet object, default None] The sheet object after which you want to place the sheet, by
default it is placed after all existing sheets

332 Chapter 53. Sheet

xlwings - Make Excel Fly!, Release dev

name
[str, default None] The sheet name of the copy

53.4 Returns

Sheet object: Sheet
The copied sheet

53.5 Examples

Create two books and add a value to the first sheet of the first book
first_book = xw.Book()
second_book = xw.Book()
first_book.sheets[0]['A1'].value = 'some value'

Copy to same Book with the default location and name
first_book.sheets[0].copy()

Copy to same Book with custom sheet name
first_book.sheets[0].copy(name='copied')

Copy to second Book requires to use before or after
first_book.sheets[0].copy(after=second_book.sheets[0])

delete()

Deletes the Sheet.

New in version 0.6.0.

property index

Returns the index of the Sheet (1-based as in Excel).

property name

Gets or sets the name of the Sheet.

property names

Returns a names collection that represents all the sheet-specific names (names defined with the
“SheetName!” prefix).

New in version 0.9.0.

property page_setup

Returns a PageSetup object.

New in version 0.24.2.

53.4. Returns 333

xlwings - Make Excel Fly!, Release dev

property pictures

See Pictures

New in version 0.9.0.

range(cell1, cell2=None)
Returns a Range object from the active sheet of the active book, see Range().

New in version 0.9.0.

render_template(**data)
This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the sheet with the keyword argument that has
the same name. Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, PIL Image objects that
have a filename and Matplotlib figures.

New in version 0.22.0.

53.6 Parameters

data: kwargs
All key/value pairs that are used in the template.

53.7 Examples

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.sheets[0].render_template(myvar='test')

select()

Selects the Sheet. Select only works on the active book.

New in version 0.9.0.

property shapes

See Shapes

New in version 0.9.0.

property tables

See Tables

New in version 0.21.0.

to_html(path=None)
Export a Sheet as HTML page.

334 Chapter 53. Sheet

xlwings - Make Excel Fly!, Release dev

53.8 Parameters

path
[str or path-like, default None] Path where you want to save the HTML file. Defaults to
Sheet name in the current working directory.

New in version 0.28.1.

to_pdf(path=None, layout=None, show=False, quality='standard')
Exports the sheet to a PDF file.

53.9 Parameters

path
[str or path-like object, default None] Path to the PDF file, defaults to the name of the sheet
in the same directory of the workbook. For unsaved workbooks, it defaults to the current
working directory instead.

layout
[str or path-like object, default None] This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for headers and footers
as well as borderless printing of graphics/artwork. The PDF file either needs to have only 1
page (every report page uses the same layout) or otherwise needs the same amount of pages
as the report (each report page is printed on the respective page in the layout PDF).

New in version 0.24.3.

show
[bool, default False] Once created, open the PDF file with the default application.

New in version 0.24.6.

quality
[str, default 'standard'] Quality of the PDF file. Can either be 'standard' or
'minimum'.

New in version 0.26.2.

53.10 Examples

>>> wb = xw.Book()
>>> sheet = wb.sheets[0]
>>> sheet['A1'].value = 'PDF'
>>> sheet.to_pdf()

See also xlwings.Book.to_pdf()

53.8. Parameters 335

xlwings - Make Excel Fly!, Release dev

New in version 0.22.3.

property used_range

Used Range of Sheet.

53.11 Returns

xw.Range

New in version 0.13.0.

property visible

Gets or sets the visibility of the Sheet (bool).

New in version 0.21.1.

336 Chapter 53. Sheet

CHAPTER

FIFTYFOUR

SHEETS

class Sheets(impl)
A collection of all sheet objects:

>>> import xlwings as xw
>>> xw.sheets # active book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])
>>> xw.Book('Book1').sheets # specific book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])

New in version 0.9.0.

property active

Returns the active Sheet.

add(name=None, before=None, after=None)
Creates a new Sheet and makes it the active sheet.

54.1 Parameters

name
[str, default None] Name of the new sheet. If None, will default to Excel’s default name.

before
[Sheet, default None] An object that specifies the sheet before which the new sheet is added.

after
[Sheet, default None] An object that specifies the sheet after which the new sheet is added.

337

xlwings - Make Excel Fly!, Release dev

54.2 Returns

sheet
[Sheet] Added sheet object

338 Chapter 54. Sheets

CHAPTER

FIFTYFIVE

TABLE

class Table(*args, **options)
The table object is a member of the tables collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.tables[0] # or sht.tables['TableName']
<Table 'Table 1' in <Sheet [Book1]Sheet1>>

New in version 0.21.0.

property api

Returns the native object (pywin32 or appscript obj) of the engine being used.

property data_body_range

Returns an xlwings range object that represents the range of values, excluding the header row

property display_name

Returns or sets the display name for the specified Table object

property header_row_range

Returns an xlwings range object that represents the range of the header row

property insert_row_range

Returns an xlwings range object representing the row where data is going to be inserted. This is
only available for empty tables, otherwise it’ll return None

property name

Returns or sets the name of the Table.

property parent

Returns the parent of the table.

property range

Returns an xlwings range object of the table.

resize(range)
Resize a Table by providing an xlwings range object

New in version 0.24.4.

339

xlwings - Make Excel Fly!, Release dev

property show_autofilter

Turn the autofilter on or off by setting it to True or False (read/write boolean)

property show_headers

Show or hide the header (read/write)

property show_table_style_column_stripes

Returns or sets if the Column Stripes table style is used for (read/write boolean)

property show_table_style_first_column

Returns or sets if the first column is formatted (read/write boolean)

property show_table_style_last_column

Returns or sets if the last column is displayed (read/write boolean)

property show_table_style_row_stripes

Returns or sets if the Row Stripes table style is used (read/write boolean)

property show_totals

Gets or sets a boolean to show/hide the Total row.

property table_style

Gets or sets the table style. See Tables.add for possible values.

property totals_row_range

Returns an xlwings range object representing the Total row

update(data, index=True)
Updates the Excel table with the provided data. Currently restricted to DataFrames.

Changed in version 0.24.0.

55.1 Arguments

data
[pandas DataFrame] Currently restricted to pandas DataFrames.

index
[bool, default True] Whether or not the index of a pandas DataFrame should be written to
the Excel table.

340 Chapter 55. Table

xlwings - Make Excel Fly!, Release dev

55.2 Returns

Table

55.3 Examples

import pandas as pd
import xlwings as xw

sheet = xw.Book('Book1.xlsx').sheets[0]
table_name = 'mytable'

Sample DataFrame
nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],

columns=['col ' + str(i) for i in range(ncols)])

Hide the index, then insert a new table if it doesn't exist yet,
otherwise update the existing one
df = df.set_index('col 0')
if table_name in [table.name for table in sheet.tables]:

sheet.tables[table_name].update(df)
else:

mytable = sheet.tables.add(source=sheet['A1'],
name=table_name).update(df)

55.2. Returns 341

xlwings - Make Excel Fly!, Release dev

342 Chapter 55. Table

CHAPTER

FIFTYSIX

TABLES

class Tables(impl)
A collection of all table objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].tables
Tables([<Table 'Table1' in <Sheet [Book11]Sheet1>>,

<Table 'Table2' in <Sheet [Book11]Sheet1>>])

New in version 0.21.0.

add(source=None, name=None, source_type=None, link_source=None, has_headers=True,
destination=None, table_style_name='TableStyleMedium2')
Creates a Table to the specified sheet.

56.1 Arguments

source
[xlwings range, default None] An xlwings range object, representing the data source.

name
[str, default None] The name of the Table. By default, it uses the autogenerated name that is
assigned by Excel.

source_type
[str, default None] This currently defaults to xlSrcRange, i.e. expects an xlwings range
object. No other options are allowed at the moment.

link_source
[bool, default None] Currently not implemented as this is only in case source_type is
xlSrcExternal.

has_headers
[bool or str, default True] Indicates whether the data being imported has column labels.
Defaults to True. Possible values: True, False, 'guess'

343

xlwings - Make Excel Fly!, Release dev

destination
[xlwings range, default None] Currently not implemented as this is used in case
source_type is xlSrcExternal.

table_style_name
[str, default ‘TableStyleMedium2’] Possible strings: 'TableStyleLightN' (where N is
1-21), 'TableStyleMediumN' (where N is 1-28), 'TableStyleDarkN' (where N is 1-11)

56.2 Returns

Table

56.3 Examples

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [['a', 'b'], [1, 2]]
>>> table = sheet.tables.add(source=sheet['A1'].expand(), name='MyTable
→˓')
>>> table
<Table 'MyTable' in <Sheet [Book1]Sheet1>>

344 Chapter 56. Tables

INDEX

A
activate() (App method), 260
activate() (Book method), 270
activate() (Shape method), 327
activate() (Sheet method), 331
active (Apps property), 267
active (Books property), 277
active (Sheets property), 337
add() (Apps method), 267
add() (Books method), 277
add() (Charts method), 285
add() (Names method), 291
add() (Pictures method), 299
add() (Sheets method), 337
add() (Tables method), 343
add_hyperlink() (Range method), 303
address (Range property), 304
alert() (App method), 260
api (App property), 260
api (Book property), 271
api (Characters property), 279
api (Chart property), 281
api (Charts property), 286
api (Font property), 287
api (Name property), 289
api (Names property), 291
api (Note property), 293
api (PageSetup property), 295
api (Picture property), 297
api (Pictures property), 301
api (Range property), 304
api (Shape property), 327
api (Shapes property), 329
api (Sheet property), 331
api (Table property), 339
app (Book property), 271
App (class in xlwings), 259

Apps (class in xlwings.main), 267
autofill() (Range method), 304
autofit() (Range method), 304
autofit() (RangeColumns method), 319
autofit() (RangeRows method), 321
autofit() (Sheet method), 331

B
bold (Font property), 287
Book (class in xlwings), 269
book (Sheet property), 332
books (App property), 261
Books (class in xlwings.main), 277
built-in function

xlwings.arg(), 257
xlwings.func(), 257
xlwings.ret(), 258
xlwings.sub(), 257

C
calculate() (App method), 261
calculation (App property), 261
caller() (Book class method), 271
cells (Sheet property), 332
Characters (class in xlwings.main), 279
Chart (class in xlwings), 281
chart_type (Chart property), 281
Charts (class in xlwings.main), 285
charts (Sheet property), 332
cleanup() (Apps method), 267
clear() (Range method), 305
clear() (Sheet method), 332
clear_contents() (Range method), 305
clear_contents() (Sheet method), 332
clear_formats() (Range method), 305
clear_formats() (Sheet method), 332
close() (Book method), 271
color (Font property), 287

345

xlwings - Make Excel Fly!, Release dev

color (Range property), 305
column (Range property), 305
column_width (Range property), 306
columns (Range property), 306
copy() (Range method), 306
copy() (Sheet method), 332
copy_picture() (Range method), 306
count (Apps property), 267
count (Charts property), 286
count (Names property), 291
count (Pictures property), 301
count (Range property), 307
count (RangeColumns property), 319
count (RangeRows property), 321
count (Shapes property), 329
current_region (Range property), 307
cut_copy_mode (App property), 261

D
data_body_range (Table property), 339
delete() (Chart method), 281
delete() (Name method), 289
delete() (Note method), 293
delete() (Picture method), 297
delete() (Range method), 307
delete() (Shape method), 327
delete() (Sheet method), 333
display_alerts (App property), 261
display_name (Table property), 339

E
enable_events (App property), 261
end() (Range method), 307
expand() (Range method), 308

F
font (Characters property), 279
Font (class in xlwings.main), 287
formatter() (in module xlwings.reports), 324
formula (Range property), 308
formula2 (Range property), 309
formula_array (Range property), 309
fullname (Book property), 271

G
get_address() (Range method), 309

H
has_array (Range property), 310

header_row_range (Table property), 339
height (Chart property), 282
height (Picture property), 297
height (Range property), 310
height (Shape property), 327
hwnd (App property), 261
hyperlink (Range property), 310

I
Image (class in xlwings.reports), 323
index (Sheet property), 333
insert() (Range method), 310
insert_row_range (Table property), 339
interactive (App property), 261
italic (Font property), 287

J
json() (Book method), 271

K
keys() (Apps method), 267
kill() (App method), 262

L
last_cell (Range property), 311
left (Chart property), 282
left (Picture property), 297
left (Range property), 311
left (Shape property), 327
load() (in module xlwings), 255
lock_aspect_ratio (Picture property), 297

M
macro() (App method), 262
macro() (Book method), 271
Markdown (class in xlwings.reports), 323
MarkdownStyle (class in xlwings.reports), 324
merge() (Range method), 311
merge_area (Range property), 311
merge_cells (Range property), 311
module

xlwings, 255
xlwings.reports, 323

N
name (Book property), 272
name (Chart property), 282
Name (class in xlwings), 289

346 Index

xlwings - Make Excel Fly!, Release dev

name (Font property), 288
name (Name property), 289
name (Picture property), 297
name (Range property), 312
name (Shape property), 327
name (Sheet property), 333
name (Table property), 339
names (Book property), 272
Names (class in xlwings.main), 291
names (Sheet property), 333
Note (class in xlwings.main), 293
note (Range property), 312
number_format (Range property), 312

O
offset() (Range method), 312
open() (Books method), 277
options() (Range method), 312

P
page_setup (Sheet property), 333
PageSetup (class in xlwings.main), 295
parent (Chart property), 282
parent (Picture property), 297
parent (Shape property), 327
parent (Table property), 339
paste() (Range method), 313
path (App property), 263
Picture (class in xlwings), 297
Pictures (class in xlwings.main), 299
pictures (Sheet property), 333
pid (App property), 263
print_area (PageSetup property), 295
properties() (App method), 263

Q
quit() (App method), 263

R
Range (class in xlwings), 303
range (Table property), 339
range() (App method), 263
range() (Sheet method), 334
RangeColumns (class in xlwings), 319
RangeRows (class in xlwings), 321
raw_value (Range property), 314
refers_to (Name property), 289
refers_to_range (Name property), 289

render_template() (App method), 264
render_template() (Book method), 272
render_template() (in module xlwings.reports),

324
render_template() (Sheet method), 334
resize() (Range method), 314
resize() (Table method), 339
row (Range property), 314
row_height (Range property), 315
rows (Range property), 315

S
save() (Book method), 273
scale_height() (Shape method), 328
scale_width() (Shape method), 328
screen_updating (App property), 264
select() (Range method), 315
select() (Sheet method), 334
selection (App property), 264
selection (Book property), 273
set_mock_caller() (Book method), 273
set_source_data() (Chart method), 282
Shape (class in xlwings), 327
shape (Range property), 315
Shapes (class in xlwings.main), 329
shapes (Sheet property), 334
Sheet (class in xlwings), 331
sheet (Range property), 315
sheet_names (Book property), 274
sheets (Book property), 274
Sheets (class in xlwings.main), 337
show_autofilter (Table property), 339
show_headers (Table property), 340
show_table_style_column_stripes (Table

property), 340
show_table_style_first_column (Table prop-

erty), 340
show_table_style_last_column (Table prop-

erty), 340
show_table_style_row_stripes (Table prop-

erty), 340
show_totals (Table property), 340
size (Font property), 288
size (Range property), 315
startup_path (App property), 264
status_bar (App property), 265

Index 347

xlwings - Make Excel Fly!, Release dev

T
Table (class in xlwings.main), 339
table (Range property), 315
table_style (Table property), 340
Tables (class in xlwings.main), 343
tables (Sheet property), 334
text (Characters property), 279
text (Note property), 293
text (Shape property), 328
to_html() (Sheet method), 334
to_pdf() (Book method), 274
to_pdf() (Chart method), 282
to_pdf() (Range method), 315
to_pdf() (Sheet method), 335
to_png() (Chart method), 282
to_png() (Range method), 316
top (Chart property), 283
top (Picture property), 298
top (Range property), 316
top (Shape property), 328
totals_row_range (Table property), 340
type (Shape property), 328

U
unmerge() (Range method), 316
update() (Picture method), 298
update() (Table method), 340
used_range (Sheet property), 336

V
value (Range property), 316
version (App property), 265
view() (in module xlwings), 255
visible (App property), 265
visible (Sheet property), 336

W
width (Chart property), 283
width (Picture property), 298
width (Range property), 317
width (Shape property), 328
wrap_text (Range property), 317

X
xlwings

module, 255
xlwings.arg()

built-in function, 257

xlwings.func()
built-in function, 257

xlwings.reports
module, 323

xlwings.ret()
built-in function, 258

xlwings.sub()
built-in function, 257

348 Index

	Quickstart
	1. Interacting with Excel from a Jupyter notebook
	2. Scripting: Automate/interact with Excel from Python
	3. Macros: Call Python from Excel
	4. UDFs: User Defined Functions (Windows only)

	Video course
	Installation
	Prerequisites
	xlwings Python package
	xlwings Excel Add-in
	Dependencies
	How to activate xlwings PRO
	Optional Dependencies
	Update
	Uninstall

	Connect to a Book
	Python to Excel
	Excel to Python (RunPython)
	User Defined Functions (UDFs)

	Syntax Overview
	Active Objects
	Full qualification
	App context manager
	Range indexing/slicing
	Range Shortcuts
	Object Hierarchy

	Data Structures Tutorial
	Single Cells
	Lists
	Range expanding
	NumPy arrays
	Pandas DataFrames
	Pandas Series
	Chunking: Read/Write big DataFrames etc.

	Add-in & Settings
	Run main
	Installation
	User Settings
	Anaconda/Miniconda

	Making use of Environment Variables
	Config Hierarchy
	User Config: Ribbon/Config File
	Directory Config: Config file
	Workbook Config: xlwings.conf Sheet
	Alternative: Standalone VBA module

	RunPython
	xlwings add-in
	Call Python with “RunPython”
	Function Arguments and Return Values

	User Defined Functions (UDFs)
	One-time Excel preparations
	Workbook preparation
	A simple UDF
	Array formulas: Get efficient
	Number of array dimensions: ndim

	Array formulas with NumPy and Pandas
	@xw.arg and @xw.ret decorators
	Dynamic Array Formulas
	Docstrings
	The “caller” argument
	The “vba” keyword
	Macros
	Call UDFs from VBA
	Asynchronous UDFs

	Matplotlib & Plotly Charts
	Matplotlib
	Getting started
	Full integration with Excel
	Properties
	Getting a Matplotlib figure

	Plotly static charts
	Prerequisites
	How to use

	Jupyter Notebooks: Interact with Excel
	The view function
	The load function

	Command Line Client (CLI)
	Deployment
	Zip files
	RunFrozenPython

	OneDrive and SharePoint
	OneDrive (Personal)
	OneDrive for Business
	SharePoint (Online and On-Premises)
	Implementation Details & Limitations

	Troubleshooting
	Issue: dll not found
	Issue: Files that are saved on OneDrive or SharePoint cause an error to pop up
	Issue: Python was not found; run without arguments to install from the Microsoft Store, or disable this shortcut from Settings > Manage App Execution Aliases.

	Converters and Options
	Default Converter
	ndim
	numbers
	dates
	empty
	transpose
	expand
	chunksize
	err_to_str
	formatter

	Built-in Converters
	Dictionary converter
	Numpy array converter
	Pandas Series converter
	Pandas DataFrame converter
	xw.Range and ‘raw’ converters

	Custom Converter

	Debugging
	RunPython
	UDF debug server

	Extensions
	In-Excel SQL

	Custom Add-ins
	Quickstart
	Changing the Ribbon menu
	Importing UDFs
	Configuration
	Installation
	Renaming your add-in
	Deployment

	Threading and Multiprocessing
	Threading
	Multiprocessing

	Missing Features
	Example: Workaround to use VBA’s Range.WrapText

	xlwings with other Office Apps
	How To
	Config

	License Key
	How to get a license key
	Activate a developer key
	Setting developer keys or deploy keys as environment variable
	Generate a deploy key
	Updating the deploy key in a workbook via the “xlwings release” command
	Updating the deploy key in a workbook manually
	Setting the license key in code

	1-click Installer/Embedded Code
	Step 1: One-Click Installer
	Step 2: Release Command (CLI)
	Updating a Release
	Embedded Code Explained

	xlwings Reader
	Reading a specific range
	Reading an entire sheet
	Converters: DataFrames etc.
	Named Ranges
	Dynamic Ranges
	Cell errors
	Limitations

	xlwings Reports
	Quickstart
	Render Books and Sheets

	Components and Filters
	DataFrames
	DataFrames Filters
	noheader
	header
	sortasc
	sortdesc
	columns
	mul, div, sum, sub
	maxrows
	aggsmall
	head
	tail
	rowslice
	colslice
	vmerge
	formatter

	Excel Tables
	Excel Charts
	Images
	Matplotlib and Plotly Plots
	Matplotlib
	Plotly

	Text
	Simple Text without Formatting
	Markdown Formatting

	Date and Time
	Number Format
	Frames: Multi-column Layout
	PDF Layout

	Markdown Formatting

	xlwings Server
	xlwings Server: VBA, Office Scripts, Google Apps Script
	Why is this useful?
	Prerequisites
	Introduction
	Local Development with Desktop Excel
	Cloud-based development with Gitpod
	Local Development with Google Sheets or Excel via Office Scripts
	Part I: Backend
	Part II: Frontend

	Configuration
	Configuration Examples: Function Arguments
	Configuration Examples: xlwings.conf sheet

	Production Deployment
	Serverless Functions

	Triggers
	Workaround for missing features
	Limitations
	Roadmap

	Office.js Add-ins
	Why is this useful?
	Introduction to Office.js add-ins
	Quickstart
	Backend
	Frontend
	➊ Load JavaScript libraries
	➋ Put a button on the task pane
	➌ Initialize Office.js
	➍ Add click event listeners
	❺ Use runPython

	Task pane
	Commands
	Alerts
	Alerts boilerplate
	Showing alerts

	Debugging
	Production deployment
	Workaround for missing features
	Limitations

	Office.js Custom Functions
	Quickstart
	Basic syntax
	Python modules
	pandas DataFrames
	Doc strings
	Date and time
	Namespace
	Array Dimensions
	Error handling and error cells
	Error handling
	Writing NaN values
	Error cells

	Dynamic arrays
	Volatile functions
	Asynchronous functions
	Backend and Manifest
	Backend
	Manifest

	Authentication
	Deployment
	Custom functions vs. legacy UDFs
	Limitations
	Roadmap

	Server Authentication
	API Key
	HTTP Basic Auth
	SSO/Azure AD for Excel 365
	Azure AD for Excel VBA
	OAuth2 Access Token for Google Sheets

	Changelog
	v0.30.6 (May 5, 2023)
	v0.30.5 (Apr 25, 2023)
	v0.30.4 (Mar 31, 2023)
	v0.30.3 (Mar 26, 2023)
	v0.30.2 (Mar 16, 2023)
	v0.30.1 (Mar 6, 2023)
	v0.30.0 (Mar 2, 2023)
	v0.29.1 (Feb 5, 2023)
	v0.29.0 (Jan 29, 2023)
	v0.28.9 (Jan 21, 2023)
	v0.28.8 (Jan 13, 2023)
	v0.28.7 (Dec 27, 2022)
	v0.28.6 (Dec 15, 2022)
	v0.28.4 and v0.28.5 (Oct 29, 2022)
	v0.28.3 (Oct 21, 2022)
	v0.28.2 (Oct 17, 2022)
	v0.28.1 (Oct 10, 2022)
	v0.28.0 (Oct 4, 2022)
	v0.27.15 (Sep 16, 2022)
	v0.27.14 (Aug 26, 2022)
	v0.27.13 (Aug 22, 2022)
	v0.27.12 (Aug 8, 2022)
	v0.27.11 (Jul 6, 2022)
	v0.27.10 (Jun 8, 2022)
	v0.27.9 (Jun 4, 2022)
	v0.27.8 (May 22, 2022)
	v0.27.7 (May 1, 2022)
	v0.27.6 (Apr 11, 2022)
	v0.27.5 (Apr 1, 2022)
	v0.27.4 (Mar 29, 2022)
	v0.27.3 (Mar 18, 2022)
	v0.27.2 (Mar 11, 2022)
	v0.27.0 and v0.27.1 (Mar 8, 2022)
	v0.26.3 (Feb 19, 2022)
	v0.26.2 (Feb 10, 2022)
	v0.26.0 and v0.26.1 (Feb 1, 2022)
	Older Releases

	License
	xlwings (Open Source)
	xlwings PRO
	Third-party Open Source Licenses

	Open Source Licenses
	pywin32 (used for interactive mode on Windows)
	psutil (used for interactive mode on macOS)
	Appscript (used for interactive mode on macOS)
	Mistune
	VBA-Dictionary (used in VBA add-in & modules)
	VBA-Web (used in VBA add-in & modules)
	watchgod (used in xlwings.exe)
	msal (used in xlwings.exe)
	core-js (used in xlwings.js)
	Bootstrap (used in xlwings-alert.html in connection with xlwings.js)
	bootstrap-ie11 (used in xlwings-alert.html in connection with xlwings.js)
	Webpack (used in xlwings.js)

	Top-level functions
	Parameters
	Examples
	Parameters
	Examples

	UDF decorators
	App
	Parameters
	Parameters
	Parameters
	Returns
	Examples
	Arguments
	Examples
	Examples
	Parameters
	Returns
	Examples

	Apps
	Book
	Parameters
	Parameters
	Arguments
	Examples
	Parameters
	Examples
	Arguments
	Example
	Examples
	Returns
	Parameters
	Examples

	Books
	Parameters
	Returns

	Characters
	Chart
	Arguments
	Parameters
	Parameters

	Charts
	Arguments
	Returns
	Examples

	Font
	Name
	Names
	Parameters
	Returns

	Note
	Examples

	PageSetup
	Examples

	Picture
	Arguments

	Pictures
	Arguments
	Returns
	Examples

	Range
	Arguments
	Examples
	Arguments
	Arguments
	Returns
	Examples
	Returns
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Returns
	Parameters
	Examples
	Parameters
	Returns
	Examples
	Arguments
	Returns
	Examples
	Returns
	Examples
	Parameters
	Returns
	Returns
	Example
	Returns
	Parameters
	Examples
	Returns
	Arguments
	Keyword Arguments
	Returns
	Parameters
	Returns
	Arguments
	Returns
	Returns
	Returns
	Parameters
	Parameters
	Returns
	Returns
	Returns

	RangeColumns
	Example

	RangeRows
	Example

	Reports
	Arguments
	Arguments
	Examples
	Parameters
	Returns
	Examples

	Shape
	Shapes
	Sheet
	Arguments
	Examples
	Arguments
	Returns
	Examples
	Parameters
	Examples
	Parameters
	Parameters
	Examples
	Returns

	Sheets
	Parameters
	Returns

	Table
	Arguments
	Returns
	Examples

	Tables
	Arguments
	Returns
	Examples

	Index

