

xlwings - 让Excel跑得飞快!

xlwings (Open Source) is a BSD-licensed [http://opensource.org/licenses/BSD-3-Clause] Python library that makes it easy to call Python from Excel and vice versa:

	Scripting(脚本): 使用类似VBA的语法，在Python中自动处理Excel数据或者与Excel交互。

	Macros(宏): 用强大而干净的Python代码替代VBA宏。

	UDFs(用户定义函数): 用Python编写用户定义函数(UDFs)，仅适用于windows系统。

完全支持 Numpy arrays(数组) 和 Pandas Series(序列)/DataFrames 。 带有xlwings支持的工作簿可以在 Windows 和 Mac 系统中很容易地分发和使用。

 Getting Started

Start here if you are new to xlwings. Learn about the syntax, the RunPython call, the add-in and UDFs.

 Advanced Features

More in-depths explanations about converters, debugging or how to write your own add-in.

 xlwings PRO

Use advanced features such as:

	xlwings Server (self-hosted): no local Python required

	xlwings Reports: work with templates

	1-click installer: bundle Python and all your packages

	Embedded code: easy deployment

	Ultra fast file reader: no Excel required

	No more VBA: Call Python from Office Scripts and Office.js

	Excel on the web & Google Sheets

Free for non-commercial use only.

 API Reference

This is a description of all the classes, methods, properties and functions that xlwings offers to work with the Excel object model.

快速入门

This guide assumes you have xlwings already installed. If that’s not the case, head over to 安装.

1. Interacting with Excel from a Jupyter notebook

If you’re just interested in getting a pandas DataFrame in and out of your Jupyter notebook, you can use the view and load functions, see Jupyter Notebooks: Interact with Excel.

2. Scripting: Automate/interact with Excel from Python

建立到工作簿(workbook)的连接：

>>> import xlwings as xw
>>> wb = xw.Book() # this will open a new workbook
>>> wb = xw.Book('FileName.xlsx') # connect to a file that is open or in the current working directory
>>> wb = xw.Book(r'C:\path\to\file.xlsx') # on Windows: use raw strings to escape backslashes

如果在两个Excel实例中打开了同一个Excel文件，需要通过使用app实例来完全限定具体的文件。可以通过 xw.apps.keys() 来查找app实例的值(PID)：

>>> xw.apps[10559].books['FileName.xlsx']

初始化工作表(sheet)对象：

>>> sheet = wb.sheets['Sheet1']

从区域(range)读数据/往区域写数据就像下面这么简单：

>>> sheet['A1'].value = 'Foo 1'
>>> sheet['A1'].value
'Foo 1'

还有很多 方便的特性 ，比如区域扩展：

>>> sheet['A1'].value = [['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]
>>> sheet['A1'].expand().value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

强大的转换器 能够处理大多数数据类型的双向转换，包括Numpy arrays和Pandas DataFrames：

>>> import pandas as pd
>>> df = pd.DataFrame([[1,2], [3,4]], columns=['a', 'b'])
>>> sheet['A1'].value = df
>>> sheet['A1'].options(pd.DataFrame, expand='table').value
 a b
0.0 1.0 2.0
1.0 3.0 4.0

Matplotlib 图表可以作为图片放在Excel中展示：

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
[<matplotlib.lines.Line2D at 0x1071706a0>]
>>> sheet.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Workbook4]Sheet1>>

3. Macros: Call Python from Excel

可以通过点击插件中的 Run 按钮(v0.16的新增功能)来调用Python，也可以通过在VBA中使用 RunPython 函数：

Run 按钮会在与工作簿同名的Python模块中寻找 main 函数。最妙的是这里并不需要在工作簿上启用宏，我们还是可以把它存为 xlsx 文件。

不管Python函数是在哪个模块、叫什么名字都可以用 RunPython 来调用:

Sub HelloWorld()
 RunPython "import hello; hello.world()"
End Sub

备注

Per default, RunPython expects hello.py in the same directory as the Excel file with the same name, but you can change both of these things: if your Python file is an a different folder, add that folder to the PYTHONPATH in the config. If the file has a different name, change the RunPython command accordingly.

Refer to the calling Excel book by using xw.Book.caller():

hello.py
import numpy as np
import xlwings as xw

def world():
 wb = xw.Book.caller()
 wb.sheets[0]['A1'].value = 'Hello World!'

To make this run, you’ll need to have the xlwings add-in installed or have the workbooks setup in the standalone mode. The easiest way to get everything set up is to use the xlwings command line client from either a command prompt on Windows or a terminal on Mac: xlwings quickstart myproject.

具体细节参考 Add-in & Settings 。

4. UDFs: User Defined Functions (Windows only)

用Python写一个UDF就这么简单：

import xlwings as xw

@xw.func
def hello(name):
 return f'Hello {name}'

UDFs中也可以使用转换器。还是用一个Pandas DataFrame的例子：

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame)
def correl2(x):
 # x arrives as DataFrame
 return x.corr()

Import this function into Excel by clicking the import button of the xlwings add-in: for a step-by-step tutorial, see User Defined Functions (UDFs).

Getting Started

	视频教程

	安装

	连接到Excel工作簿

	语法综述

	数据结构教程

	Add-in & Settings

	RunPython

	User Defined Functions (UDFs)

	Matplotlib & Plotly Charts

	Jupyter Notebooks: Interact with Excel

	Command Line Client (CLI)

	部署

	OneDrive and SharePoint

	故障排查

视频教程

如果喜欢按照教学方式设计的视频教程，可以看一下我们推出的视频课程：

https://training.xlwings.org/p/xlwings

这(付费学习我们的课程)也是支持xlwings持续开发的好办法:)

安装

Prerequisites

	xlwings (Open Source) requires an installation of Excel and therefore only works on Windows and macOS. Note that macOS currently does not support UDFs.

	
	xlwings PRO offers additional features:
	
	File Reader (new in v0.28.0): Runs additionally on Linux and doesn’t require an installation of Excel.

	xlwings Server (new in v0.26.0). Runs additionally on Linux and doesn’t require a local installation of Python. Works with Desktop Excel on Windows and macOS as well as with Excel on the web and Google Sheets.

	xlwings requires at least Python 3.8.

Here are previous versions of xlwings that support older versions of Python:

	Python 3.7: 0.30.9

	Python 3.6: 0.25.3

	Python 3.5: 0.19.5

	Python 2.7: 0.16.6

xlwings Python package

xlwings comes pre-installed with

	Anaconda [https://www.anaconda.com/products/individual] (Windows and macOS)

	WinPython [https://winpython.github.io] (Windows only) Make sure not to take the dot version as this only contains Python.

If you are new to Python or have trouble installing xlwings, one of these distributions is highly recommended. Otherwise, you can also install it with pip:

pip install xlwings

或者用conda:

conda install xlwings

Note that the official conda package might be a few releases behind. You can, however,
use the conda-forge channel (replace install with upgrade if xlwings is already installed):

conda install -c conda-forge xlwings

xlwings Excel Add-in

To install the add-in, run the following command:

xlwings addin install

To automate Excel from Python, you don’t need an add-in. Also, you can use a single file VBA module (standalone workbook) instead of the add-in. For more details, see Add-in & Settings.

备注

The add-in needs to be the same version as the Python package. Make sure to run xlwings add install again after upgrading the xlwings package.

备注

When you are on macOS and are using the VBA standalone module instead of the add-in, you need to run $ xlwings runpython install once.

必备软件

For automating Excel, you’ll need the following dependencies:

	Windows: pywin32

	Mac: psutil, appscript

The dependencies are automatically installed via conda or pip.
If you would like to install xlwings without dependencies, you can run pip install xlwings --no-deps.

How to activate xlwings PRO

See xlwings PRO.

可选软件

	NumPy

	pandas

	Matplotlib

	Pillow

	Jinja2 (for xlwings.reports)

These packages are not required but highly recommended as they play very nicely with xlwings. They are all pre-installed with Anaconda. With pip, you can install xlwings with all optional dependencies as follows:

pip install "xlwings[all]"

Update

To update to the latest xlwings version, run the following in a command prompt:

pip install --upgrade xlwings

or:

conda update -c conda-forge xlwings

Make sure to keep your version of the Excel add-in in sync with your Python package by running the following (make sure to close Excel first):

xlwings addin install

Uninstall

To uninstall xlwings completely, first uninstall the add-in, then uninstall the xlwings package using the same method (pip or conda) that you used for installing it:

xlwings addin remove

Then

pip uninstall xlwings

or:

conda remove xlwings

Finally, manually remove the .xlwings directory in your home folder if it exists.

连接到Excel工作簿

Python到Excel

xw.Book 提供了连接到工作簿的最简单的方法： 它在所有的app实例中查找指定的工作簿，如果同一个工作簿在多个app实例中存在，就会返回一个错误信息。 连接活动app实例中的工作簿用 xw.books ，连接指定app实例中的工作簿用：

>>> app = xw.App() # or something like xw.apps[10559] for existing apps, get the available PIDs via xw.apps.keys()
>>> app.books['Book1']

Note that you usually should use App as a context manager as this will make sure that the Excel instance is closed and cleaned up again properly:

with xw.App() as app:
 book = app.books['Book1']

	
	xw.Book

	xw.books

	新建工作簿

	xw.Book()

	xw.books.add()

	未保存的工作簿

	xw.Book('Book1')

	xw.books['Book1']

	有全路径的工作簿

	xw.Book(r'C:/path/to/file.xlsx')

	xw.books.open(r'C:/path/to/file.xlsx')

备注

When specifying file paths on Windows, you should either use raw strings by putting
an r in front of the string or use double back-slashes like so: C:\\path\\to\\file.xlsx.

Excel到Python(RunPython)

To reference the calling book when using RunPython in VBA, use xw.Book.caller(), see
用”RunPython”调用Python.
Check out the section about 调试 to see how you can call a script from both sides, Python and Excel, without
the need to constantly change between xw.Book.caller() and one of the methods explained above.

用户定义函数(UDFs)

Unlike RunPython, UDFs don’t need a call to xw.Book.caller(), see User Defined Functions (UDFs).
You’ll usually use the caller argument which returns the xlwings range object from where you call the function.

语法综述

xlwings的对象模型和VBA的非常相似。

后面所有的示例代码都依赖下面的模块导入语句：

>>> import xlwings as xw

活动对象

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sheet = xw.sheets.active # in active book
>>> sheet = wb.sheets.active # in specific book

A Range can be instantiated with A1 notation, a tuple of Excel’s 1-based indices, or a named range:

import xlwings as xw
sheet1 = xw.Book("MyBook.xlsx").sheets[0]

sheet1.range("A1")
sheet1.range("A1:C3")
sheet1.range((1,1))
sheet1.range((1,1), (3,3))
sheet1.range("NamedRange")

Or using index/slice notation
sheet1["A1"]
sheet1["A1:C3"]
sheet1[0, 0]
sheet1[0:4, 0:4]
sheet1["NamedRange"]

对象的完全限定

使用圆括号时里面用Excel惯用的的引用方式（如从1开始的下标），使用方括号时里面用Python惯用的从0开始的下标或切片。 例如，下列表达式都引用了同一个区域:

xw.apps[763].books[0].sheets[0].range('A1')
xw.apps(10559).books(1).sheets(1).range('A1')
xw.apps[763].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(10559).books('Book1').sheets('Sheet1').range('A1')

注意app的值是他们的进程ID（PID），这的确有点与众不同。可以通过 xw.apps.keys() 得到PID列表。

App context manager

If you want to open a new Excel instance via App(), you usually should use App as a context manager as this will make sure that the Excel instance is closed and cleaned up again properly:

with xw.App() as app:
 book = app.books['Book1']

区域索引/切片

区域对象支持索引和切片，下面是一些例子：

>>> myrange = xw.Book().sheets[0].range('A1:D5')
>>> myrange[0, 0]
 <Range [Workbook1]Sheet1!A1>
>>> myrange[1]
 <Range [Workbook1]Sheet1!B1>
>>> myrange[:, 3:]
<Range [Workbook1]Sheet1!D1:D5>
>>> myrange[1:3, 1:3]
<Range [Workbook1]Sheet1!B2:C3>

区域快捷方式

通过在工作表对象上使用索引和切片标注，提供了引用区域对象的一种快捷方式。 根据传入的是字符串还是索引/切片，分别赋值给 sheet.range 或 sheet.cells 对象：

>>> sheet = xw.Book().sheets['Sheet1']
>>> sheet['A1']
<Range [Book1]Sheet1!A1>
>>> sheet['A1:B5']
<Range [Book1]Sheet1!A1:B5>
>>> sheet[0, 1]
<Range [Book1]Sheet1!B1>
>>> sheet[:10, :10]
<Range [Book1]Sheet1!A1:J10>

对象层次结构

下面用一个例子来说明xlwings中从app到range的层次顺序和反过来从range到app的层次顺序：

>>> myrange = xw.apps[10559].books[0].sheets[0].range('A1')
>>> myrange.sheet.book.app
<Excel App 10559>

数据结构教程

本教程会简单过一遍xlwings读写数据的最常用的场景和默认的方式。如果需要深入了解如何通过 options 方法控制更多的细节，请查阅 转换器及选项 。

后面所有的示例代码都依赖下面的模块导入语句：

>>> import xlwings as xw

单个单元格

根据单元格里面存储的是数字、字符串、空白还是日期，返回的python对象类型分别是 float, unicode, None 或 datetime :

>>> import datetime as dt
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = 1
>>> sheet['A1'].value
1.0
>>> sheet['A2'].value = 'Hello'
>>> sheet['A2'].value
'Hello'
>>> sheet['A3'].value is None
True
>>> sheet['A4'].value = dt.datetime(2000, 1, 1)
>>> sheet['A4'].value
datetime.datetime(2000, 1, 1, 0, 0)

列表

	一维列表：在Excel中代表行或者列的区域，在Python中返回的都是一个列表。 所以一旦把他们读入Python中，就是丢失行、列的方向信息。 如果这个的确是个问题的话，下面一个知识点会说明如何保留这些信息：

>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1],[2],[3],[4],[5]] # Column orientation (nested list)
>>> sheet['A1:A5'].value
[1.0, 2.0, 3.0, 4.0, 5.0]
>>> sheet['A1'].value = [1, 2, 3, 4, 5]
>>> sheet['A1:E1'].value
[1.0, 2.0, 3.0, 4.0, 5.0]

要把单个的单元格强制转换为列表，可以这样:

>>> sheet['A1'].options(ndim=1).value
[1.0]

备注

To write a list in column orientation to Excel, use transpose: sheet.range('A1').options(transpose=True).value = [1,2,3,4]

	二维列表：如果必须保留行列的方向信息，可以在区域操作中设置ndim 。这样会把区域信息返回为一个嵌套的列表（二维列表）：

>>> sheet['A1:A5'].options(ndim=2).value
[[1.0], [2.0], [3.0], [4.0], [5.0]]
>>> sheet['A1:E1'].options(ndim=2).value
[[1.0, 2.0, 3.0, 4.0, 5.0]]

	二维区域会自动返回为嵌套列表。当把一个嵌套列表赋值给Excel区域的时候，只要明确目标区域的左上角单元格地址就行了。下面的例子也使用了索引方式把区域的值读会Python：

>>> sheet['A10'].value = [['Foo 1', 'Foo 2', 'Foo 3'], [10, 20, 30]]
>>> sheet.range((10,1),(11,3)).value
[['Foo 1', 'Foo 2', 'Foo 3'], [10.0, 20.0, 30.0]]

备注

Try to minimize the number of interactions with Excel. It is always more efficient to do
sheet.range('A1').value = [[1,2],[3,4]] than sheet.range('A1').value = [1, 2] and sheet.range('A2').value = [3, 4].

区域扩展

通过 expand 或者 options 方法中的 expand 关键词可以动态地获得区域范围。 expand 会直接给出扩展后的区域对象,而 options 方法在调用区域的是才计算区域扩展。下面例子说明了两种方法的不同之处：

>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1,2], [3,4]]
>>> range1 = sheet['A1'].expand('table') # or just .expand()
>>> range2 = sheet['A1'].options(expand='table')
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sheet['A3'].value = [5, 6]
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

上面例子中的 'table' 是向 'down' (下方)和 'right' (右边)扩展，其他可用选项可以分别只在行或者列方向上扩展。

备注

Using expand() together with a named Range as top left cell gives you a flexible setup in
Excel: You can move around the table and change its size without having to adjust your code, e.g. by using
something like sheet.range('NamedRange').expand().value.

NumPy数组

NumPy数组和嵌套列表类似，只是表示空元素时用 nan 而不是 None 。如果要把一个区域读到数组中，需要在 options 中设置 convert=np.array ：

>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = np.eye(3)
>>> sheet['A1'].options(np.array, expand='table').value
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

Pandas数据表(DataFrame)

>>> sheet = xw.Book().sheets[0]
>>> df = pd.DataFrame([[1.1, 2.2], [3.3, None]], columns=['one', 'two'])
>>> df
 one two
0 1.1 2.2
1 3.3 NaN
>>> sheet['A1'].value = df
>>> sheet['A1:C3'].options(pd.DataFrame).value
 one two
0 1.1 2.2
1 3.3 NaN
options: work for reading and writing
>>> sheet['A5'].options(index=False).value = df
>>> sheet['A9'].options(index=False, header=False).value = df

Pandas的序列(Serie)

>>> import pandas as pd
>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.], name='myseries')
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64
>>> sheet['A1'].value = s
>>> sheet['A1:B7'].options(pd.Series).value
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
Name: myseries, dtype: float64

备注

You only need to specify the top left cell when writing a list, a NumPy array or a Pandas
DataFrame to Excel, e.g.: sheet['A1'].value = np.eye(10)

Chunking: Read/Write big DataFrames etc.

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will depend on your system and size of the array, so you will have to try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

Add-in & Settings

[image: _images/ribbon.png]

The xlwings add-in is the preferred way to be able to use the Run main button, RunPython or UDFs.
Note that you don’t need an add-in if you just want to manipulate Excel by running a Python script.

备注

The ribbon of the add-in is compatible with Excel >= 2007 on Windows and >= 2016 on macOS.
On macOS, all UDF related functionality is not available.

备注

加载项是密码保护的，密码是 xlwings 。如果要调试或增加新的扩展，需要先解除保护。

运行main

Added in version 0.16.0.

The Run main button is the easiest way to run your Python code: It runs a function called main in a Python
module that has the same name as your workbook. This allows you to save your workbook as xlsx without enabling macros.
The xlwings quickstart command will create a workbook that will automatically work with the Run button.

安装

To install the add-in, use the command line client:

xlwings addin install

Technically, this copies the add-in from Python’s installation directory to Excel’s XLSTART folder. Then, to use RunPython or UDFs in a workbook, you need to set a reference to xlwings in the VBA editor, see screenshot (Windows: Tools > References..., Mac: it’s on the lower left corner of the VBA editor). Note that when you create a workbook via xlwings quickstart, the reference should already be set.

[image: _images/vba_reference.png]

User Settings

When you install the add-in for the first time, it will get auto-configured and therefore, a quickstart project should work out of the box. For fine-tuning, here are the available settings:

	Interpreter: This is the path to the Python interpreter. This works also with virtual or conda envs on Mac.
If you use conda envs on Windows, then leave this empty and use Conda Path and Conda Env below instead. Examples:
"C:\Python39\pythonw.exe" or "/usr/local/bin/python3.9". Note that in the settings,
this is stored as Interpreter_Win or Interpreter_Mac, respectively, see below!

	PYTHONPATH: If the source file of your code is not found, add the path to its directory here.

	Conda Path: 如果是在Windows系统使用conda环境，就在这里输入Anaconda或者Miniconda安装路径，比如： C:\Users\Username\Miniconda3 或 %USERPROFILE%\Anaconda 。注意必须是conda 4.6以上！

	Conda Env: If you are on Windows and use Anaconda or Miniconda, type here the name of your conda env, e.g. base
for the base installation or myenv for a conda env with the name myenv.

	UDF Modules : 导入UDF的Python模块的名称(不加.py 文件扩展名)。如果有多个模块，用”;”分割。例子： UDF_MODULES = "common_udfs;myproject" 。 缺省情况下导入文件是Excel文件同目录下的同名但是文件扩展名为 .py 的文件。

	Debug UDFs: Check this box if you want to run the xlwings COM server manually for debugging, see 调试.

	RunPython: Use UDF Server: 使用和UDF相同的COM服务器，因为Python解释器不是每次调用后就关闭，因此能够提高速度。

	Restart UDF Server: This restarts the UDF Server/Python interpreter.

	Show Console: Check the box in the ribbon or set the config to TRUE if you want the command prompt to pop up. This currently only works on Windows.

	ADD_WORKBOOK_TO_PYTHONPATH: Uncheck this box to not automatically add the directory of your workbook to the PYTHONPATH. This can be helpful if you experience issues with OneDrive/SharePoint: uncheck this box and provide the path where your source file is manually via the PYTHONPATH setting.

Anaconda/Miniconda

If you use Anaconda or Miniconda on Windows, you will need to set your Conda Path and Conda Env settings, as you will
otherwise get errors when using NumPy etc. In return, leave Interpreter empty.

Making use of Environment Variables

With environment variables, you can set dynamic paths e.g. to your interpreter or PYTHONPATH:

	On Windows, you can use all environment variables like so: %USERPROFILE%\Anaconda.

	On macOS, the following special variables are supported: $HOME, $APPLICATIONS, $DOCUMENTS, $DESKTOP.

Config Hierarchy

xlwings looks for settings in the following locations and order:

	Workbook configuration

First, xlwings looks for a sheet called xlwings.conf. This is the recommended way to configure your workbook for deployment as you don’t have to handle an additional config file. When you run the quickstart command, it will create a sample configuration on a sheet called _xlwings.conf: remove the leading underscore in the name to activate it. If you don’t want to use it, feel free to delete the sheet.

	Directory configuration

Next, xlwings looks for a file called xlwings.conf in the same directory as your Excel workbook.

	User configuration

Finally, xlwings looks for a file called xlwings.conf in the .xlwings folder in the user’s home directory. Normally, you don’t edit this file directly—instead, it is created and edited by the add-in whenever you change a setting.

You will find more details about the each configuration type below.

Source: The section “Config Hierarchy” is taken from “Python for Excel by Felix Zumstein (O’Reilly). Copyright 2021 Zoomer Analytics LLC, 978-1-492-08100-5.”

User Config: Ribbon/Config File

xlwings功能区的设置是存放在一个配置文件里面的，这个文件也可以用其他方式修改。这个文件的存储目录是：

	Windows: .xlwings\xlwings.conf in your home folder, that is usually C:\Users\<username>

	macOS: ~/Library/Containers/com.microsoft.Excel/Data/xlwings.conf

The format is as follows (currently the keys are required to be all caps) - note the OS specific Interpreter settings!

"INTERPRETER_WIN","C:\path\to\python.exe"
"INTERPRETER_MAC","/path/to/python"
"PYTHONPATH",""
"ADD_WORKBOOK_TO_PYTHONPATH",""
"CONDA PATH",""
"CONDA ENV",""
"UDF MODULES",""
"DEBUG UDFS",""
"USE UDF SERVER",""
"SHOW CONSOLE",""
"ONEDRIVE_CONSUMER_WIN",""
"ONEDRIVE_CONSUMER_WIN",""
"ONEDRIVE_COMMERCIAL_WIN",""
"ONEDRIVE_COMMERCIAL_MAC",""
"SHAREPOINT_WIN",""
"SHAREPOINT_MAC",""

备注

The ONEDRIVE_WIN/_MAC setting has to be edited directly in the file, there is currently no possibility to edit it via the ribbon. Usually, it is only required if you are either on macOS or if your environment variables on Windows are not correctly set or if you have a private and corporate location and don’t want to go with the default one. ONEDRIVE_WIN/_MAC has to point to the root folder of your local OneDrive folder.

Directory Config: Config file

当工作簿目录下存在 xlwings.conf 时，功能区或配置文件中的全局设置会被覆盖。

备注

Workbook directory config files are not supported if your workbook is stored on SharePoint or OneDrive.

工作簿级配置：xlwings.conf表

Workbook specific settings will override global (Ribbon) and workbook directory config files:
Workbook specific settings are set by listing the config key/value pairs in a sheet with the name xlwings.conf.
When you create a new project with xlwings quickstart, it’ll already have such a sheet but you need to rename
it from _xlwings.conf to xlwings.conf to make it active.

[image: _images/workbook_config.png]

可选方式：独立的VBA模块

Sometimes, it might be useful to run xlwings code without having to install an add-in first. To do so, you
need to use the standalone option when creating a new project: xlwings quickstart myproject --standalone.

This will add the content of the add-in as a single VBA module so you don’t need to set a reference to the add-in anymore.
It will also include Dictionary.cls as this is required on macOS.
It will still read in the settings from your xlwings.conf if you don’t override them by using a sheet with the name xlwings.conf.

RunPython

xlwings加载项

要用 Run main 按钮(v0.16的新功能)或者 RunPython VBA函数，需要xlwings加载项(或VBA模块)，参见 Add-in & Settings.

对新项目，最简单的办法是通过命令行客户端的的quickstart命令，详见 Command Line Client (CLI)

$ xlwings quickstart myproject

用”RunPython”调用Python

In the VBA Editor (Alt-F11), write the code below into a VBA module. xlwings quickstart automatically
adds a new module with a sample call. If you rather want to start from scratch, you can add a new module via Insert > Module.

Sub HelloWorld()
 RunPython "import hello; hello.world()"
End Sub

上面代码会调用 hello.py 中的内容：

hello.py
import numpy as np
import xlwings as xw

def world():
 wb = xw.Book.caller()
 wb.sheets[0]['A1'].value = 'Hello World!'

你可以把 HelloWorld 绑定到一个按钮上，或者直接在VBA编辑器中通过点击 F5 运行。

备注

Place xw.Book.caller() within the function that is being called from Excel and not outside as
global variable. Otherwise it prevents Excel from shutting down properly upon exiting and
leaves you with a zombie process when you use Use UDF Server = True.

函数的参数和返回值

While it’s technically possible to include arguments in the function call within RunPython, it’s not very convenient.
Also, RunPython does not allow you to return values. To overcome these issues, use UDFs, see User Defined Functions (UDFs) - however,
this is currently limited to Windows only.

User Defined Functions (UDFs)

本教程指导大家快速着手写用户定义函数。

备注

	目前仅能在Windows系统中使用用户定义函数(UDF)

	如何控制参数和返回值的方法，请查看 转换器及选项.

	关于全部装饰器及其功能的全面的综述，请查询相应的API文档: UDF装饰器.

Excel里的一次性准备工作

	Enable Trust access to the VBA project object model under File > Options > Trust Center > Trust Center Settings > Macro Settings. You only need to do this once. Also, this is only required for importing the functions, i.e. end users won’t need to bother about this.

	Install the add-in via command prompt: xlwings addin install (see Add-in & Settings).

准备工作簿

最简单的方法是在命令行用 xlwings quickstart myproject 来创建一个新的项目(参见 Command Line Client (CLI))。这样会在创建的工作簿中自动添加xlwings引用。

一个简单的UDF

加载项缺省设置和用 ``quickstart``创建的项目一样，像下面这样找Python源文件：

	在工作簿所在的相同目录下

	和工作簿同名，但是文件后缀是 .py 而不是 .xlsm 。

另外一种方法是在xlwings功能区通过 UDF Modules 来指明是哪一个文件。

	The Image below shows the correct input for the “UDF Modules” field in the xlwings ribbon with a module called “my_udf.py”:

[image: _images/udf_modules.png]

	If the module is not within the same directory as the Excel file, you point to it via the “PYTHONPATH” field. The image below shows input for if the module was in a folder under “C:\py_folder” (just an example so it fits in the field window):

[image: _images/pythonpath.png]

	For reference, with those changes, this is how your xlwings.conf file should look:

[image: _images/pythonpath_conf.png]

假设你有一个工作簿 myproject.xlsm ，可以把下列代码输入 myproject.py:

import xlwings as xw

@xw.func
def double_sum(x, y):
 """Returns twice the sum of the two arguments"""
 return 2 * (x + y)

	在xlwings工具功能区点击 Import Python UDFs ，把在 myproject.py 中修改的内容同步进来。

	在一个单元格里输入公式 =double_sum(1, 2) ，可以看到正确结果：

[image: _images/double_sum.png]

	文档字符串(三重双引号内的文字)在Excel中会被显示为函数说明。

备注

	只有修改了函数参数或者函数名称，才需要重新导入。

	实际函数中的改变会被自动更新(也就是说在公式下次计算的时候，比如被 Ctrl-Alt-F9 触发的时候)，但是导入模块中的变化不是这样。 导入模块的行为和Python导入模块的行为一致。 如果需要确保所有公式都在最新状态，需要单击 Restart UDF Server 。[译者注：在Excel2013，建议修改公式内容后，每个使用到该公式的单元格都重新运行一下。]

	装饰器 @xw.func 只在函数被导入Excel时被xlwings模块用到。它告诉xlwings该为哪个函数创建一个VBA的封装函数，除此之外，它不影响函数在Python中的行为。

数组公式：提高效率

在Excel中，调用一个大数组的公式比调用多个单元格的公式效率高。所以，用大数组公式是个很好的办法，特别是要解决性能问题的时候。

可以把一个区域而不是一个单元格作为公式的参数。区域在Python中被表示为嵌套列表。

例如，可以写下面一个公式来为区域里面的每个单元格加1:

@xw.func
def add_one(data):
 return [[cell + 1 for cell in row] for row in data]

要在Excel中用这个公式，可以：

	先再一次单击 Import Python UDFs

	在区域 A1:B2 中填一些数字

	选中 D1:E2

	输入公式 =add_one(A1:B2)

	按 Ctrl+Shift+Enter 组合键创建数组公式。如果上面几个动作都做对了，就会看到下面截屏中显示的公式外面有一对花括号：

[image: _images/array_formula.png]

数组的维数: ndim

上面的公式存在一个问题：它需要一个类似嵌套列表 [[1, 2], [3, 4]] 的“2维”的输入。所以如果你把这个公式用于一个单元格，会得到下面的错误信息： 类型错误: 'float' 对象不可迭代 。

要强制Excel不管输入参数是单元格、单行/单列还是2维区域都把它转化为2维数组，可以把上面的公式做如下扩展:

@xw.func
@xw.arg('data', ndim=2)
def add_one(data):
 return [[cell + 1 for cell in row] for row in data]

与NumPy和Pandas合用数组公式

通常会在UDF中用到NumPy array或者Pandas DataFrame，因为这样能把Python的整个科学计算体系的能力都发挥出来。

要用numpy array来定义一个矩阵运算公式，可以定义下面的公式:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
@xw.arg('y', np.array, ndim=2)
def matrix_mult(x, y):
 return x @ y

备注

如果版本不满足Python >= 3.5 并且 NumPy >= 1.10，请用 x.dot(y) 替代 x @ y 。

把Pandas用于实际工作的一个很棒的例子是创建基于数组的 CORREL 公式。Excel版的 CORREL 必须用在2个数据集上，而且在求时间序列的相关系数矩阵时用起来很复杂。Pandas使得创建数组相关的 CORREL2 公式简单到一行搞定:

import xlwings as xw
import pandas as pd

@xw.func
@xw.arg('x', pd.DataFrame, index=False, header=False)
@xw.ret(index=False, header=False)
def CORREL2(x):
 """Like CORREL, but as array formula for more than 2 data sets"""
 return x.corr()

装饰器@xw.arg和@xw.ret

装饰器之于UDF就如 options 方法之于 Range 对象：他们允许对函数的参数(@xw.arg) 和返回值(@xw.ret)使用转换器和各种选项。比如，要把参数x转换成pandas DataFrame并且在返回时抑制索引，可以这样做:

@xw.func
@xw.arg('x', pd.DataFrame)
@xw.ret(index=False)
def myfunction(x):
 # x is a DataFrame, do something with it
 return x

更多的细节可以参考 转换器及选项 。

动态数组公式

备注

如果你用的Excel版本支持原生的动态数组，就不需要做特别的处理，并且不要使用 expand 装饰器！ 检查版本是否支持的方法是看看 =UNIQUE() 公式是否可用。原生动态数组将在2018年9月底最先在Office 365 Insider项目的Fast通道中发布。

就像在前面看到的那样，使用Excel的数组公式的时候，要预先通过选定结果区域来确定范围，然后输入公式，最好敲组合键 Ctrl-Shift-Enter 。这在实际操作中常常弄得很复杂，特别是在处理与时间序列相关的动态数组时更是如此。从v0.10版本开始，xlwings提供了动态UDF扩展：

下面这个简单的例子展示了UDF扩展的语法和效果：

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):
 return np.random.randn(int(r), int(c))

[image: _images/dynamic_array1.png]

[image: _images/dynamic_array2.png]

备注

	扩展数组公式的输出会直接覆盖结果区域，没有预先提示;

	v0.15.0之前的版本中，易变函数不能做为参数。例如，不能使用 =TODAY() 之类的函数作为参数。从v0.15.0开始，可以用易变函数作为输入，不过UDF的调用次数会增加1倍多;

	从v0.15.0开始重构了动态数组使得它和传统数组一致： 从xlwings >= v0.15.0开始， 编辑动态数组的时候，光标定位在动态数组区域的左上角，编辑完成后要需要敲组合键 Ctrl-Shift-Enter 。请注意，在第一次输入公式的时候，是用不着敲组合键的。

文档字符串

下面的例子演示了怎样在函数中加上函数及参数x、y的文档字符串，这些文档字符串能在Excel的函数向导里面显示出来：

import xlwings as xw

@xw.func
@xw.arg('x', doc='This is x.')
@xw.arg('y', doc='This is y.')
def double_sum(x, y):
 """Returns twice the sum of the two arguments"""
 return 2 * (x + y)

The “caller” argument

You often need to know which cell called the UDF. For this, xlwings offers the reserved argument caller which returns the calling cell as xlwings range object:

@xw.func
def get_caller_address(caller):
 # caller will not be exposed in Excel, so use it like so:
 # =get_caller_address()
 return caller.address

Note that caller will not be exposed in Excel but will be provided by xlwings behind the scenes.

“vba”关键字

By using the vba keyword, you can get access to any Excel VBA object in the form of a pywin32 object. For example, if you wanted to pass the sheet object in the form of its CodeName, you can do it as follows:

@xw.func
@xw.arg('sheet1', vba='Sheet1')
def get_name(sheet1):
 # call this function in Excel with:
 # =get_name()
 return sheet1.Name

Note that vba arguments are not exposed in the UDF but automatically provided by xlwings.

宏

On Windows, as an alternative to calling macros via RunPython, you can also use the @xw.sub
decorator:

import xlwings as xw

@xw.sub
def my_macro():
 """Writes the name of the Workbook into Range("A1") of Sheet 1"""
 wb = xw.Book.caller()
 wb.sheets[0].range('A1').value = wb.name

After clicking on Import Python UDFs, you can then use this macro by executing it via Alt + F8 or by
binding it e.g. to a button. To do the latter, make sure you have the Developer tab selected under File >
Options > Customize Ribbon. Then, under the Developer tab, you can insert a button via Insert > Form Controls.
After drawing the button, you will be prompted to assign a macro to it and you can select my_macro.

从VBA调用UDF

导入的函数同样可以在VBA中使用。例如，一个返回2维数组的函数:

Sub MySub()

Dim arr() As Variant
Dim i As Long, j As Long

 arr = my_imported_function(...)

 For j = LBound(arr, 2) To UBound(arr, 2)
 For i = LBound(arr, 1) To UBound(arr, 1)
 Debug.Print "(" & i & "," & j & ")", arr(i, j)
 Next i
 Next j

End Sub

异步UDF

备注

This is an experimental feature

Added in version v0.14.0.

xlwings提供了一个在Excel中写异步函数的很容易的方法。异步函数立即返回 #N/A waiting... 。在函数等待返回值的时候，可以用Excel处理其他事情。一旦有了返回值，相关单元格的数值会被更新。

目前的唯一可用模式是 async_mode='threading' ，这意味着对于类似使用API通过网络获得数据的这类I/O绑定的任务很有用。

可以简单地通过设定其函数装饰器的参数中来实现一个异步函数。下面这个例子中，耗时的I/O绑定任务是用 time.sleep 来模拟的:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):
 time.sleep(5) # long running tasks
 return a

You can use this function like any other xlwings function, simply by putting =myfunction("abcd") into a cell
(after you have imported the function, of course).

注意：xlwings没有使用从Excel 2010开始引入的原生异步函数，所以xlwings的异步支持所有的Excel版本。

Matplotlib & Plotly Charts

Matplotlib

通过使用 pictures.add() ，能很容易地把Matplotlib图表当作图片贴进Excel中。

从头开始

最简单的例子都可以归结为下面的模式:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

sheet = xw.Book().sheets[0]
sheet.pictures.add(fig, name='MyPlot', update=True)

[image: _images/mpl_basic.png]

备注

如果设置 update=True,就可以做Excel里移动和缩放图表：后续调用 pictures.add() 时如果图表名称相同('MyPlot')，会更新图表，不改变它的位置和大小

全面集成到Excel

用 RunPython 调用上面的代码并把它绑定到一个按钮上是件水到渠成的事情，并且能够跨平台工作。

不过，在Windows系统上可以通过下面的代码来定义一个 UDF 使得集成度更高:

@xw.func
def myplot(n, caller):
 fig = plt.figure()
 plt.plot(range(int(n)))
 caller.sheet.pictures.add(fig, name='MyPlot', update=True)
 return 'Plotted with n={}'.format(n)

导入这个UDF函数并在B2上调用它，图表会随着B1的值而变化：

[image: _images/mpl_udf.png]

属性

大小、位置和其他属性可以通过 pictures.add() 的参数设定，也可以通过对返回的图片对象进行操作，参见 xlwings.Picture().

例如:

>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(fig, name='MyPlot', update=True,
 left=sht.range('B5').left, top=sht.range('B5').top)

或:

>>> plot = sht.pictures.add(fig, name='MyPlot', update=True)
>>> plot.height /= 2
>>> plot.width /= 2

获得Matplotlib图片

下面是一些如何取得matplotlib figure 对象的例子：

	通过PyPlot接口:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

或:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4, 5])
fig = plt.gcf()

	通过面向对象接口:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

	通过Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

备注

When working with Google Sheets, you can use a maximum of 1 million pixels per picture. Total pixels is a function of figure size and dpi: (width in inches * dpi) * (height in inches * dpi). For example, fig = plt.figure(figsize=(6, 4)) with 200 dpi (default dpi when using pictures.add()) will result in (6 * 200) * (4 * 200) = 960,000 px. To change the dpi, provide export_options: pictures.add(fig, export_options={"bbox_inches": "tight", "dpi": 300}). Existing figure size can be checked via fig.get_size_inches(). pandas also accepts figsize like so: ax = df.plot(figsize=(3, 3)). Note that "bbox_inches": "tight" crops the image and therefore will reduce the number of pixels in a non-deterministic way. export_options will be passed to figure.figsave() when using Matplotlib and to figure.write_image() when using Plotly.

Plotly static charts

Prerequisites

In addition to plotly, you will need kaleido, psutil, and requests. The easiest way to get it is via pip:

$ pip install kaleido psutil requests

or conda:

$ conda install -c conda-forge python-kaleido psutil requests

See also: https://plotly.com/python/static-image-export/

How to use

It works the same as with Matplotlib, however, rendering a Plotly chart takes slightly longer. Here is a sample:

import xlwings as xw
import plotly.express as px

Plotly chart
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")

Add it to Excel
wb = xw.Book()
wb.sheets[0].pictures.add(fig, name='IrisScatterPlot', update=True)

[image: _images/plotly.png]

Jupyter Notebooks: Interact with Excel

When you work with Jupyter notebooks, you may use Excel as an interactive data viewer or scratchpad from where you can load DataFrames. The two convenience functions view and load make this really easy.

备注

The view and load functions should exclusively be used for interactive work. If you write scripts, use the xlwings API as introduced under 快速入门 and 语法综述.

The view function

The view function accepts pretty much any object of interest, whether that’s a number, a string, a nested list or a NumPy array or a pandas DataFrame. By default, it writes the data into an Excel table in a new workbook. If you wanted to reuse the same workbook, provide a sheet object, e.g. view(df, sheet=xw.sheets.active), for further options see view.

[image: _images/xw_view.png]

在 0.22.0 版本发生变更: Earlier versions were not formatting the output as Excel table

The load function

To load in a range in an Excel sheet as pandas DataFrame, use the load function. If you only select one cell, it will auto-expand to cover the whole range. If, however, you select a specific range that is bigger than one cell, it will load in only the selected cells. If the data in Excel does not have an index or header, set them to False like this: xw.load(index=False), see also load.

[image: _images/xw_load.png]

Added in version 0.22.0.

Command Line Client (CLI)

xlwings comes with a command line client. On Windows, type the commands into a Command Prompt or Anaconda Prompt, on Mac, type them into a Terminal. To get an overview of all commands, simply type xlwings and hit Enter:

addin Run "xlwings addin install" to install the Excel add-
 in (will be copied to the user's XLSTART folder).
 Instead of "install" you can also use "update",
 "remove" or "status". Note that this command may take
 a while. You can install your custom add-in by
 providing the name or path via the --file/-f flag,
 e.g. "xlwings add-in install -f custom.xlam or copy
 all Excel files in a directory to the XLSTART folder
 by providing the path via the --dir flag." To install
 the add-in for every user globally, use the --glob/-g
 flag and run this command from an Elevated Command
 Prompt.
 (New in 0.6.0, the --dir flag was added in 0.24.8 and the
 --glob flag in 0.28.4)
quickstart Run "xlwings quickstart myproject" to create a folder
 called "myproject" in the current directory with an
 Excel file and a Python file, ready to be used. Use
 the "--standalone" flag to embed all VBA code in the
 Excel file and make it work without the xlwings add-
 in. Use "--fastapi" for creating a project that uses a
 remote Python interpreter. Use "--addin --ribbon" to
 create a template for a custom ribbon addin. Leave
 away the "--ribbon" if you don't want a ribbon tab.
runpython macOS only: run "xlwings runpython install" if you
 want to enable the RunPython calls without installing
 the add-in. This will create the following file:
 ~/Library/Application
 Scripts/com.microsoft.Excel/xlwings.applescript
 (new in 0.7.0)
restapi Use "xlwings restapi run" to run the xlwings REST API
 via Flask dev server. Accepts "--host" and "--port" as
 optional arguments.
license xlwings PRO: Use "xlwings license update -k KEY" where
 "KEY" is your personal (trial) license key. This will
 update ~/.xlwings/xlwings.conf with the LICENSE_KEY
 entry. If you have a paid license, you can run
 "xlwings license deploy" to create a deploy key. This
 is not available for trial keys.
config Run "xlwings config create" to create the user config
 file (~/.xlwings/xlwings.conf) which is where the
 settings from the Ribbon add-in are stored. It will
 configure the Python interpreter that you are running
 this command with. To reset your configuration, run
 this with the "--force" flag which will overwrite your
 current configuration.
 (New in 0.19.5)
code Run "xlwings code embed" to embed all Python modules
 of the workbook's dir in your active Excel file. Use
 the "--file" flag to only import a single file by
 providing its path. Requires xlwings PRO.
 (Changed in 0.23.4)
release Run "xlwings release" to configure your active
 workbook to work with a one-click installer for easy
 deployment. Requires xlwings PRO.
 (New in 0.23.4)
copy Run "xlwings copy os" to copy the xlwings Office
 Scripts module. Run "xlwings copy gs" to copy the
 xlwings Google Apps Script module. Run "xlwings copy
 vba" to copy the standalone xlwings VBA module. Run
 "xlwings copy vba --addin" to copy the xlwings VBA
 module for custom add-ins.
 (New in 0.26.0, 'vba' added in 0.28.7)
auth Microsoft Azure AD: "xlwings auth azuread", see
 https://docs.xlwings.org/en/stable/server_authentication.html
 (New in 0.28.6)
vba This functionality allows you to easily write VBA code
 in an external editor: run "xlwings vba edit" to
 update the VBA modules of the active workbook from
 their local exports everytime you hit save. If you run
 this the first time, the modules will be exported from
 Excel into your current working directory. To
 overwrite the local version of the modules with those
 from Excel, run "xlwings vba export". To overwrite the
 VBA modules in Excel with their local versions, run
 "xlwings vba import". The "--file/-f" flag allows you
 to specify a file path instead of using the active
 Workbook. Requires "Trust access to the VBA project
 object model" enabled. NOTE: Whenever you change
 something in the VBA editor (such as the layout of a
 form or the properties of a module), you have to run
 "xlwings vba export".
 (New in 0.26.3, changed in 0.27.0)
py This functionality allows you to easily write Python code for
 Microsoft's Python in Excel cells (=PY) via a local editor:
 run "xlwings py edit" to export the code of the selected cell
 into a local file. Whenever you save the file, the code will be
 synced back to the cell.
 (New in 0.30.12)

部署

Zip文件

Added in version 0.15.2.

为了让软件部署容易一点，可以把Python代码打包到zip文件。如果是在用UDF，这样做了之后代码就不能够自动重载，所以这样是一个部署的方法，而不是开发的方法。实际上，如果源代码中一个zip文件里面，如果代码有什么变化，必须通过点击导入按钮重新导入。

如果zip文件名和Excel文件名一致(不过后缀是 .zip)并且与Excel文件在同一个文件夹，xlwings能够自动发现它(与单个python文件的情况类似)。

如果需要放在不同的目录下面，请确认这个目录已经加到配置文件中的 PYTHONPATH 了:

PYTHONPATH, "C:\path\to\myproject.zip"

RunFrozenPython

在 0.15.2 版本发生变更.

可以用一个像PyInstaller、cx_Freeze、py2exe之类的打包工具把Python模块打包到一个可执行文件中。这样使用者就不用安装完整的Python发行版软件包了。

备注

	本方法不适用于UDF。

	目前只在Windows系统上有效，不过对Mac系统的支持也比较容易。

	为了支持从V0.15.6版开始的语法变化，版本至少需要在0.15.2以上。

使用方法如下:

Sub MySample()
 RunFrozenPython "C:\path\to\dist\myproject\myproject.exe", "arg1 arg2"
End Sub

OneDrive and SharePoint

Since v0.27.4, xlwings works with locally synced files on OneDrive, OneDrive for Business, and SharePoint. Some constellations will work out-of-the-box, while others require you to edit the configuration via the xlwings.conf file (see User Config) or the workbook’s xlwings.conf sheet (see Workbook Config).

备注

This documentation is for OneDrive and SharePoint files that are synced to a local folder. This means that both, the Excel and Python file, need to show the green check mark in the File Explorer/Finder as status—a cloud icon will not work. If, in turn, you are looking for the documentation to run xlwings with Excel on the web, see xlwings Server: VBA, Office Scripts, Google Apps Script.

An easy workaround if you run into issues is to:

	Disable the ADD_WORKBOOK_TO_PYTHONPATH setting (either via the checkbox on the Ribbon or via the settings in the xlwings.conf sheet).

	Add the directory of your Python source file to the PYTHONPATH—again, either via Ribbon or xlwings.conf sheet.

If you are using the PRO version, you could instead also embed your code to get around these issues.

For a bit more flexibility, follow the solutions below.

OneDrive (Personal)

Default setups work out-of-the-box on Windows and macOS. If you get an error message, add the following setting with the correct path to the local root directory of your OneDrive. If possible, make use of environment variables (as shown in the examples) so the configuration will work across different users with the same setup:

	Windows (Example):

	ONEDRIVE_CONSUMER_WIN

	%USERPROFILE%\OneDrive

	macOS (Example):

	ONEDRIVE_CONSUMER_MAC

	$HOME/OneDrive

OneDrive for Business

	Windows: Default setups work out-of-the-box. If you get an error message, add the following setting with the correct path to the local root directory of your OneDrive for Business. If possible, make use of environment variables (as shown in the examples) so the configuration will work across different users with the same setup:

	ONEDRIVE_COMMERCIAL_WIN

	%USERPROFILE%\OneDrive - My Company LLC

	macOS: macOS always requires the following setting with the correct path to the local root directory of your OneDrive for Business. If possible, make use of environment variables (as shown in the examples) so the configuration will work across different users with the same setup:

	ONEDRIVE_COMMERCIAL_MAC

	$HOME/OneDrive - My Company LLC

SharePoint (Online and On-Premises)

On Windows, the location of the local root folder of SharePoint can sometimes be derived from the OneDrive environment variables. Most of the time though, you’ll have to provide the following setting (on macOS this is a must):

	Windows:

	SHAREPOINT_WIN

	%USERPROFILE%\My Company LLC

	macOS:

	SHAREPOINT_MAC

	$HOME/My Company LLC

Implementation Details & Limitations

A lot of the xlwings functionality depends on the workbook’s FullName property (via VBA/COM) that returns the local path of the file unless it is saved on OneDrive, OneDrive for Business or SharePoint with AutoSave enabled. In this case, it returns a URL instead.

URLs for OneDrive and OneDrive for Business can be translated fairly straight forward to the local equivalent. You will need to know the root directory of the local drive though: on Windows, these are usually provided via environment variables for OneDrive. On macOS they don’t exist, which is the reason why you need to provide the root directory for OneDrive. On Windows, the root directory for SharePoint can sometimes be derived from the env vars, too, but this is not guaranteed. On macOS, you’ll need to provide it always anyway.

SharePoint, unfortunately, allows you to map the drives locally in any way you want and there’s no way to reliably get the local path for these files. On Windows, xlwings first checks the registry for the mapping. If this doesn’t work, xlwings checks if the local path is mapped by using the defaults and if the file can’t be found, it checks all existing local files on SharePoint. If it finds one with the same name, it’ll use this. If, however, it finds more than one with the same name, you will get an error message. In this case, you can either rename the file to something unique across all the locally synced SharePoint files or you can change the SHAREPOINT_WIN/MAC setting to not stop at the root folder but include additional folders. As an example, assume you have the following file structure on your local SharePoint:

My Company LLC/
└── sitename1/
 └── myfile.xlsx
└── sitename2 - Documents/
 └── myfile.xlsx

In this case, you could either rename one of the files, or you could add a path that goes beyond the root folder (preferably under the xlwings.conf sheet):

	SHAREPOINT_WIN

	%USERPROFILE%/My Company LLC/sitename2 - Documents

故障排查

问题: 未找到dll文件

解决方案:

	xlwings32-<version>.dll and xlwings64-<version>.dll are both in the same directory as your python.exe. If not, something went wrong
with your installation. Reinstall it with pip or conda, see 安装.

	在加载项或配置表中检查 Interpreter 条目。如果是空的，看看在命令行提示符下输入 python 时是否能够启动一个交互式的Python会话。 如果得到了错误信息 'python' is not recognized as an internal or external command, operable program or batch file., 这时有两个选择：把 python.exe 所在的目录加到windows路径中(参见 https://www.computerhope.com/issues/ch000549.htm)， 或者在加载项/配置表的配置中把解释器的全路径(例如 C:\Users\MyUser\anaconda\pythonw.exe)添加进去。

Issue: Files that are saved on OneDrive or SharePoint cause an error to pop up

解决方案:

See the dedicated page about how to configure OneDrive and Sharepoint: OneDrive and SharePoint.

Issue: Python was not found; run without arguments to install from the Microsoft Store, or disable this shortcut from Settings > Manage App Execution Aliases.

解决方案:

The Python interpreter is not correctly installed or the configuration does not point to the Python interpreter. To fix this:

	Verify that a Python interpreter is installed. Python can be installed in any way, including via Conda or virtual environment or the xlwings 1-click installer (part of xlwings PRO).

	Check the configuration of xlwings according to its Config Hierarchy.

Advanced Features

	转换器及选项

	调试

	扩展

	Custom Add-ins

	多线程和多进程

	缺失功能

	xlwings与其他Office应用

转换器及选项

转换器是从v0.7.0开始引入的，它定义了在 读出 和 写入 操作中，Excel的区域及其取值是如何被转换的。同时在 xlwings.Range 对象和 User Defined Functions (UDFs) 之间保持了一致性。

Converters are explicitly set in the options method when manipulating Range objects
or in the @xw.arg and @xw.ret decorators when using UDFs. If no converter is specified, the default converter
is applied when reading. When writing, xlwings will automatically apply the correct converter (if available) according to the
object’s type that is being written to Excel. If no converter is found for that type, it falls back to the default converter.

后面所有例子依赖下面的导入：

>>> import xlwings as xw

语法:

	Action

	Range objects

	UDFs

	读

	myrange.options(convert=None, **kwargs).value

	@arg('x', convert=None, **kwargs)

	writing

	myrange.options(convert=None, **kwargs).value = myvalue

	@ret(convert=None, **kwargs)

备注

关键词参数(kwargs)可以是特定转换器的参数，也可以是缺省转换器的参数。例如，为了在缺省转换器中设置 numbers 选项并在 DataFrame 转换器中设置 index 选项，可以这样写:

myrange.options(pd.DataFrame, index=False, numbers=int).value

缺省转换器

如果没有设定选项，执行下面的转换器:

	在读单元格时，如果里面有数字，转换为 floats ，如果里面是文字，转换为 unicode 字符串，如果里面是日期，转换为 datetime ，如果是空的，返回 None 。

	行/列被作为列表读入，例如: [None, 1.0, 'a string']

	2维区域作为嵌套列表读入，例如： [[None, 1.0, 'a string'], [None, 2.0, 'another string']]

下面选项可以设定：

ndim

不考虑区域的形状，强制返回值为1维或2维列表：

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1, 2], [3, 4]]
>>> sheet['A1'].value
1.0
>>> sheet['A1'].options(ndim=1).value
[1.0]
>>> sheet['A1'].options(ndim=2).value
[[1.0]]
>>> sheet['A1:A2'].value
[1.0 3.0]
>>> sheet['A1:A2'].options(ndim=2).value
[[1.0], [3.0]]

numbers

单元格里的数字，缺省作为 float 类型，不过也可以转换为 int 类型：

>>> sheet['A1'].value = 1
>>> sheet['A1'].value
1.0
>>> sheet['A1'].options(numbers=int).value
1

或者，可以指定为其他函数或类型，只要它们关键字参数和float类型的相同即可。

用在UDF中时是这样的:

@xw.func
@xw.arg('x', numbers=int)
def myfunction(x):
 # all numbers in x arrive as int
 return x

备注

Excel delivers all numbers as floats in the interactive mode, which is the reason why the int converter rounds numbers first before turning them into integers. Otherwise it could happen that e.g., 5 might be returned as 4 in case it is represented as a floating point number that is slightly smaller than 5. Should you require Python’s original int in your converter, use raw int` instead.

dates

单元格内的日期缺省被读作 datetime.datetime 类型，不过也可以改为 datetime.date 类型：

	Range:

>>> import datetime as dt
>>> sheet['A1'].options(dates=dt.date).value

	UDFs (decorator):

@xw.arg('x', dates=dt.date)

或者，可以指定为其他函数或类型，只要它们的关键字参数和 datetime.datetime 类型的相同即可。例如：

>>> my_date_handler = lambda year, month, day, **kwargs: "%04i-%02i-%02i" % (year, month, day)
>>> sheet['A1'].options(dates=my_date_handler).value
'2017-02-20'

empty

每个空白的单元格缺省会被转换成 None ，可以像下面一样改变：

	Range:

>>> sheet['A1'].options(empty='NA').value

	UDFs (decorator):

@xw.arg('x', empty='NA')

transpose

在读写时都可以转置，比如，我们可以把一个列表在Excel中写为一列：

	Range: sheet['A1'].options(transpose=True).value = [1, 2, 3]

	UDFs:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):
 # x will be returned unchanged as transposed both when reading and writing
 return x

expand

它的功能和区域的 table , vertical 及 horizontal 属性一样，只是在区域取值的时候才去求值：

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [[1,2], [3,4]]
>>> range1 = sheet['A1'].expand()
>>> range2 = sheet['A1'].options(expand='table')
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> sheet['A3'].value = [5, 6]
>>> range1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> range2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

备注

expand 方法仅用于 Range 对象，UDF只允许对调用的单元格操作。

chunksize

When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will depend on your system and size of the array, so you will have to try out a few different chunksizes to find one that works well:

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

err_to_str

Added in version 0.28.0.

If True, will include cell errors such as #N/A as strings. By default, they
will be converted to None.

formatter

Added in version 0.28.1.

备注

You can’t use formatters with Excel tables.

The formatter option accepts the name of a function. The function will be called after writing the values to Excel and allows you to easily style the range in a very flexible way. How it works is best shown with a little example:

import pandas as pd
import xlwings as xw

sheet = xw.Book().sheets[0]

def table(rng: xw.Range, df: pd.DataFrame):
 """This is the formatter function"""
 # Header
 rng[0, :].color = "#A9D08E"

 # Rows
 for ix, row in enumerate(rng.rows[1:]):
 if ix % 2 == 0:
 row.color = "#D0CECE" # Even rows

 # Columns
 for ix, col in enumerate(df.columns):
 if "two" in col:
 rng[1:, ix].number_format = "0.0%"

df = pd.DataFrame(data={"one": [1, 2, 3, 4], "two": [5, 6, 7, 8]})
sheet["A1"].options(formatter=table, index=False).value = df

Running this code will format the DataFrame like this:

[image: _images/formatter.png]
The formatter’s signature is: def myformatter(myrange, myvalues) where myrange corresponds to the range where myvalues are written to. myvalues is simply what you assign to the value property in the last line of the example. Since we’re using this with a DataFrame, it makes sense to name the argument accordingly and using type hints will help your editor with auto-completion. If you would use a nested list instead of a DataFrame, you would write something like this instead:

def table(rng: xw.Range, values: list[list]): # Python >= 3.9

For Python <= 3.8, you’ll need to capitalize List and import it like so:

from typing import List

内置转换器

xlwings提供了几种内置转换器，用于 dictionaries (字典), NumPy arrays**(NumPy数组), **Pandas Series**(Pandas序列)和 **DataFrames 的转换。它们都是基于缺省服务器的，所以在大多数情况下，上面提到的选项也同样可以用(除非有些选项在某种情况下没有意义，比如ndim对字典来说是没有意义的)。

It is also possible to write and register a custom converter for additional types, see below.

下面的例子适用于 xlwings.Range 对象和UDF，虽然有的只给出了一种例子

字典转换器

字典转换器把Excel中的两列转换成一个字典。如果数据是按行排的，请使用 transpose 选项：

[image: _images/dict_converter.png]

>>> sheet = xw.sheets.active
>>> sheet['A1:B2'].options(dict).value
{'a': 1.0, 'b': 2.0}
>>> sheet['A4:B5'].options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

注意：除了 dict ，还可以用 collections 中的 OrderedDict 。

Numpy数组转换器

options: dtype=None, copy=True, order=None, ndim=None

前3个选项的作用和直接使用 np.array() 时一致。 ndim 的作用和上面用在列表上(默认转换器的情况下)的作用一致，返回标量、1维数组或2维数组。

Example

>>> import numpy as np
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].options(transpose=True).value = np.array([1, 2, 3])
>>> sheet['A1:A3'].options(np.array, ndim=2).value
array([[1.],
 [2.],
 [3.]])

Pandas序列转换器

options: dtype=None, copy=False, index=1, header=True

前2个选项的作用和直接使用 pd.Series() 时一致。 Pandas 序列的返回值一直是一列，所以 ndim 不起作用。

	index: 整数值或布尔值
	
读的时候，认为它是Excel种的索引列的列数。

写的时候，如果需要包含索引，就设为 True ，否则就设为 False 。

	header: 布尔型
	
读的时候，如果Excel种没有索引或序列名，就设为 False 。

写的时候，如果需要包含索引和序列名，就设为 True ，否则设为 False 。

对 index 和 header , 1 和 True 是等价的。

示例:

[image: _images/series_conv.png]

>>> sheet = xw.Book().sheets[0]
>>> s = sheet['A1'].options(pd.Series, expand='table').value
>>> s
date
2001-01-01 1
2001-01-02 2
2001-01-03 3
2001-01-04 4
2001-01-05 5
2001-01-06 6
Name: series name, dtype: float64

Pandas DataFrame转换器

options: dtype=None, copy=False, index=1, header=1

前2个选项的作用和直接使用 pd.DataFrame() 时一致。 ndim 不起作用，因为把数据读入到Pandas DataFrame时自动设定 ndim=2 。

	index: 整数值或布尔值
	
读的时候，认为它是Excel种的索引列的列数。

写的时候，如果需要包含索引，就设为 True ，否则就设为 False 。

	header: 整数型或布尔型
	
读数据时，这个值应该是Excel表中表头的行数。

写的时候，如果需要包含索引和序列名，就设为 True ，否则设为 False 。

对 index 和 header , 1 和 True 是等价的。

示例:

[image: _images/df_converter.png]

>>> sheet = xw.Book().sheets[0]
>>> df = sheet['A1:D5'].options(pd.DataFrame, header=2).value
>>> df
 a b
 c d e
ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> sheet['A1'].value = df

Writing back and changing some of the options, e.g. getting rid of the index:
>>> sheet['B7'].options(index=False).value = df

The same sample for UDF (starting in cell A13 on screenshot) looks like this:

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):
 # x is a DataFrame, do something with it
 return x

xw.Range和‘裸’转换器

从技术层面上说，就是”没有转换”。

	如果需要直接得到 xlwings.Range ，可以这样做:

@xw.func
@xw.arg('x', 'range')
def myfunction(x):
 return x.formula

上面函数把 xlwings.Range 对象作为x返回，也就是说没有做任何转换或设置。

	这个 裸 转换器从底层库里 (Windows系统里是 pywin32 ，Mac系统里是 appscript)把值原封不动地输出来，也就是说，没有做任何的处理或者跨平台兼容。 这在一些要求效率的场合中很有用。例如:

>>> sheet['A1:B2'].value
[[1.0, 'text'], [datetime.datetime(2016, 2, 1, 0, 0), None]]

>>> sheet['A1:B2'].options('raw').value # or sheet['A1:B2'].raw_value
((1.0, 'text'), (pywintypes.datetime(2016, 2, 1, 0, 0, tzinfo=TimeZoneInfo('GMT Standard Time', True)), None))

自定义转换器

实现自定义转换器的步骤如下：

	继承 xlwings.conversion.Converter 类

	以静态方法或者类方法实现 read_value 和 write_value 方法：

	在 read_value 中， value 就是基转换器(Base converter)返回的值，因此如果没有指定 base 转换器，返回的就是经过缺省转换器转换出来的值。

	在 write_value 中， value 是需要往Excel里面写的原始对象。需要返回基转换器所需格式。如果没有指定 base 转换器，还是会使用缺省转换器。

The options dictionary will contain all keyword arguments specified in
the options method, e.g. when calling myrange.options(myoption='some value') or as specified in
the @arg and @ret decorator when using UDFs. Here is the basic structure:

from xlwings.conversion import Converter

class MyConverter(Converter):

 @staticmethod
 def read_value(value, options):
 myoption = options.get('myoption', default_value)
 return_value = value # Implement your conversion here
 return return_value

 @staticmethod
 def write_value(value, options):
 myoption = options.get('myoption', default_value)
 return_value = value # Implement your conversion here
 return return_value

	Optional: set a base converter (base expects a class name) to build on top of an existing converter, e.g.
for the built-in ones: DictConverter, NumpyArrayConverter, PandasDataFrameConverter, PandasSeriesConverter

	可选项：注册转换器：可以 (a) 把自己的转换器注册为一个类型在写入操作时的默认转换器；以及/或者 (b) 可以为自定义的转换器起一个别名，以便在调用转化器的时候可以用别名替代类名。

下面例子比较容易模仿，它定义了一个DataFrame转换器，扩展了内置转换器的功能，可以支持删除空值:

from xlwings.conversion import Converter, PandasDataFrameConverter

class DataFrameDropna(Converter):

 base = PandasDataFrameConverter

 @staticmethod
 def read_value(builtin_df, options):
 dropna = options.get('dropna', False) # set default to False
 if dropna:
 converted_df = builtin_df.dropna()
 else:
 converted_df = builtin_df
 # This will arrive in Python when using the DataFrameDropna converter for reading
 return converted_df

 @staticmethod
 def write_value(df, options):
 dropna = options.get('dropna', False)
 if dropna:
 converted_df = df.dropna()
 else:
 converted_df = df
 # This will be passed to the built-in PandasDataFrameConverter when writing
 return converted_df

现在来看看如何应用这些不同的转换器:

Fire up a Workbook and create a sample DataFrame
sheet = xw.Book().sheets[0]
df = pd.DataFrame([[1.,10.],[2.,np.nan], [3., 30.]])

	DataFrames缺省转换器:

Write
sheet['A1'].value = df

Read
sheet['A1:C4'].options(pd.DataFrame).value

	DataFrameDropna转换器:

Write
sheet['A7'].options(DataFrameDropna, dropna=True).value = df

Read
sheet['A1:C4'].options(DataFrameDropna, dropna=True).value

	注册别名(可选):

DataFrameDropna.register('df_dropna')

Write
sheet['A12'].options('df_dropna', dropna=True).value = df

Read
sheet['A1:C4'].options('df_dropna', dropna=True).value

	把DataFrameDropna注册为DataFrames的缺省转换器(可选):

DataFrameDropna.register(pd.DataFrame)

Write
sheet['A13'].options(dropna=True).value = df

Read
sheet['A1:C4'].options(pd.DataFrame, dropna=True).value

上面示例同样适用于UDF，例如:

@xw.func
@arg('x', DataFrameDropna, dropna=True)
@ret(DataFrameDropna, dropna=True)
def myfunction(x):
 # ...
 return x

备注

Python对象被写入Excel的时候，会在转换流水线中经过多个不同的阶段。Excel/COM对象被读进Python的时候也同样如此。

Pipelines are internally defined by Accessor classes. A Converter is just a special Accessor which
converts to/from a particular type by adding an extra stage to the pipeline of the default Accessor. For example, the
PandasDataFrameConverter defines how a list of lists (as delivered by the default Accessor) should be turned
into a Pandas DataFrame.

Converter (转换器)类提供了一套基础框架使得写新的转换器变得容易。如果需要控制更多的东西，可以直接编写 Accessor 的子类，不过这部分内容需要做更多的工作并且目前没有什么文档。

调试

因为xlwings可以在每种Python环境中运行，因此你可以选择自己喜欢的环境进行调试。

	RunPython: 通过 RunPython 调用Python时，可以设置一个 mock_caller 以便可以在Excel和Python的函数调用之间自由切换。

	UDFs: 为了调试用户定义函数，xlwings提供了一个方便的调试服务器。

首先，Excel会在消息框中显示Python错误：

[image: _images/debugging_error.png]

备注

在Mac系统中，如果在 xlwings 被导入之前就有模块或程序包导入失败，不会弹出提示框、状态栏也不会重置。 但是，错误信息仍旧会写入日志文件(/Users/<User>/Library/Containers/com.microsoft.Excel/Data/xlwings.log)。

RunPython

考虑Python源文件 my_module.py 里的示例代码：

my_module.py
import os
import xlwings as xw

def my_macro():
 wb = xw.Book.caller()
 wb.sheets[0]['A1'].value = 1

if __name__ == '__main__':
 # Expects the Excel file next to this source file, adjust accordingly.
 xw.Book('myfile.xlsm').set_mock_caller()
 my_macro()

现在 my_macro() 既可以从Python中轻松调试，又可以从Excel中通过 RunPython 来调试，用不着修改源代码：

Sub my_macro()
 RunPython "import my_module; my_module.my_macro()"
End Sub

UDF测试服务器

仅适用于Windows系统：要调试UDF，只需要在xlwings的 Add-in & Settings 功能区的VBA模块上部选中 Debug UDFs , 然后再Python源文件的结尾加上下面几行，就可以进行测试了。根据调试时用的Python集成环境，可能需要使用调试模式来运行代码(比如，使用PyCharm或者PyDev时):

if __name__ == '__main__':
 xw.serve()

接下来，当你刷新工作表时(用 Ctrl-Alt-F9)，代码会停止你设置的断点处，或者会输出你设置过的打印信息。

下面的截图显示了这PyCharm的社区版集成环境中，代码停在断点处的情况：

[image: _images/udf_debugging.png]

备注

当从命令行启动调试服务器的时候，现在这个版本中要终止服务器还没有什么比较优雅的办法，只能是通过关掉命令行窗口来停止进程。

扩展

用自己的代码，比如UDF或者RunPython宏，来扩展xlwings加载项是很容易的。用不着最终用户自己编写和导入函数，就可以进行部署。只需要给xlwings加载项增加一个包含相关代码的VBA模块就行了。

不用设置引用就可以在每个工作簿中使用UDF扩展。

In-Excel SQL

xlwings加载项附带了内置的扩展，增加了对Excel内SQL(in-Excel SQL)语法(sqlite语法分支)的支持:

=sql(SQL Statement, table a, table b, ...)

[image: _images/sql.png]

由于这个扩展用到了UDF，所以目前只支持Windows系统。

Custom Add-ins

Added in version 0.22.0.

Custom add-ins work on Windows and macOS and are white-labeled xlwings add-ins that include all your RunPython functions and UDFs (as usual, UDFs work on Windows only). You can build add-ins with and without an Excel ribbon.

The useful thing about add-in is that UDFs and RunPython calls will be available in all workbooks right out of the box without having to add any references via the VBA editor’s Tools > References.... You can also work with standard xlsx files rather than xlsm files. This tutorial assumes you’re familiar with how xlwings and its configuration works.

Quickstart

Start by running the following command on a command line (to create an add-in without a ribbon, you would leave away the --ribbon flag):

$ xlwings quickstart myproject --addin --ribbon

This will create the familiar quickstart folder with a Python file and an Excel file, but this time, the Excel file is in the xlam format.

	Double-click the Excel add-in to open it in Excel

	Add a new empty workbook (Ctrl+N on Windows or Command+N on macOS)

You should see a new ribbon tab called MyAddin like this:

[image: _images/custom_ribbon_addin.png]

The add-in and VBA project are currently always called myaddin, no matter what name you chose in the quickstart command. We’ll see towards the end of this tutorial how we can change that, but for now we’ll stick to it.

Compared to the xlwings add-in, the custom add-in offers an additional level of configuration: the configuration sheet of the add-in itself which is the easiest way to configure simple add-ins with a static configuration.

Let’s open the VBA editor by clicking on Alt+F11 (Windows) or Option+F11 (macOS). In our project, select ThisWorkbook, then change the Property IsAddin from True to False, see the following screenshot:

[image: _images/custom_addin_vba_properties.png]

This will make the sheet _myaddin.conf visible (again, we’ll see how to change the name of myaddin at the end of this tutorial):

	Activate the sheet config by renaming it from _myaddin.conf to myaddin.conf

	Set your Interpreter_Win/_Mac or Conda settings (you may want to take them over from the xlwings settings for now)

Once done, switch back to the VBA editor, select ThisWorkbook again, and change IsAddin back to True before you save your add-in from the VBA editor. Switch back to Excel and click the Run button under the My Addin ribbon tab and if you’ve configured the Python interpreter correctly, it will print Hello xlwings! into cell A1 of the active workbook.

Changing the Ribbon menu

To change the buttons and items in the ribbon menu or the Backstage View, download and install the Office RibbonX Editor [https://github.com/fernandreu/office-ribbonx-editor/releases]. While it is only available for Windows, the created ribbons will also work on macOS. Open your add-in with it so you can change the XML code that defines your buttons etc. You will find a good tutorial here [https://www.rondebruin.nl/win/s2/win001.htm]. The callback function for the demo Run button is in the RibbonMyAddin VBA module that you’ll find in the VBA editor.

Importing UDFs

To import your UDFs into the custom add-in, run the ImportPythonUDFsToAddin Sub towards the end of the xlwings module (click into the Sub and hit F5). Remember, you only have to do this whenever you change the function name, argument or decorator, so your end users won’t have to deal with this.

If you are only deploying UDFs via your add-in, you probably don’t need a Ribbon menu and can leave away the --ribbon flag in the quickstart command.

Configuration

As mentioned before, configuration works the same as with xlwings, so you could have your users override the default configuration we did above by adding a myaddin.conf sheet on their workbook or you could use the myaddin.conf file in the user’s home directory. For details see Add-in & Settings.

Installation

If you want to permanently install your add-in, you can do so by using the xlwings CLI:

$ xlwings addin install --file C:\path\to\your\myproject.xlam

This, however, means that you will need to adjust the PYTHONPATH for it to find your Python code (or move your Python code to somewhere where Python looks for it—more about that below under deployment). The command will copy your add-in to the XLSTART folder, a special folder from where Excel will open all files everytime you start it.

Renaming your add-in

Admittedly, this part is a bit cumbersome for now. Let’s assume, we would like to rename the addin from MyAddin to Demo:

	In the xlwings VBA module, change Public Const PROJECT_NAME As String = "myaddin" to Public Const PROJECT_NAME As String = "demo". You’ll find this line at the top, right after the Declare statements.

	If you rely on the myaddin.conf sheet for your configuration, rename it to demo.conf

	Right-click the VBA project, select MyAddin Properties... and rename the Project Name from MyAddin to Demo.

	If you use the ribbon, you want to rename the RibbonMyAddin VBA module to RibbonDemo. To do this, select the module in the VBA editor, then rename it in the Properties window. If you don’t see the Properties window, hit F4.

	Open the add-in in the Office RibbonX Editor (see above) and replace all occurrences of MyAddin with Demo in the XML code.

And finally, you may want to rename your myproject.xlam file in the Windows explorer, but I assume you have already run the quickstart command with the correct name, so this won’t be necessary.

Deployment

By far the easiest way to deploy your add-in to your end-users is to build an installer via the xlwings PRO offering. This will take care of everything and your end users literally just need to double-click the installer and they are all set (no existing Python installation required and no manual installation of the add-in or adjusting of settings required).

If you want it the free (but hard) way, you either need to build an installer yourself or you need your users to install Python and the add-in and take care of placing the Python code in the correct directory. This normally involves tweaking the following settings, for example in the myaddin.conf sheet:

	Interpreter_Win/_Mac: if your end-users have a working version of Python, you can use environment variables to dynamically resolve to the correct path. For example, if they have Anaconda installed in the default location, you could use the following configuration:

Conda Path: %USERPROFILE%\anaconda3
Conda Env: base
Interpreter_Mac: $HOME/opt/anaconda3/bin/python

	PYTHONPATH: since you can’t have your Python source code in the XLSTART folder next to the add-in, you’ll need to adjust the PYTHONPATH setting and add the folder to where the Python code will be. You could point this to a shared drive or again make use of environment variables so the users can place the file into a folder called MyAddin in their home directory, for example. However, you can also place your Python code where Python looks for it, for example by placing them in the site-packages directory of the Python distribution—an easy way to achieve this is to build a Python package that you can install via pip.

多线程和多进程

Added in version 0.13.0.

多线程

虽然xlwings在技术上并不是线程安全的，但是用在线程中也很便利，只要版本在v0.13.0以上并且遵循一个简单的规则：不要把xlwings对象传递给线程。在macOS中，这个规则不是硬性要求，但是如果你希望自己的程序能够跨平台，也还是建议遵循。

请考虑下面 无法 正常工作的例子:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
 while True:
 myrange = q.get()
 myrange.value = myrange.address
 print(myrange.address)
 q.task_done()

q = Queue()

for i in range(num_threads):
 t = threading.Thread(target=write_to_workbook)
 t.daemon = True
 t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
 # THIS DOESN'T WORK - passing xlwings objects to threads will fail!
 myrange = xw.Book('Book1.xlsx').sheets[0].range(cell)
 q.put(myrange)

q.join()

为了让上面的代码正常工作，仅需要把传递给线程的 Book 对象改为一个完全限定的单元格引用:

import threading
from queue import Queue
import xlwings as xw

num_threads = 4

def write_to_workbook():
 while True:
 cell_ = q.get()
 xw.Book('Book1.xlsx').sheets[0].range(cell_).value = cell_
 print(cell_)
 q.task_done()

q = Queue()

for i in range(num_threads):
 t = threading.Thread(target=write_to_workbook)
 t.daemon = True
 t.start()

for cell in ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']:
 q.put(cell)

q.join()

多进程

备注

Multiprocessing is only supported on Windows!

多进程要遵循的规则和多线程的一样，下面是可行的例子:

from multiprocessing import Pool
import xlwings as xw

def write_to_workbook(cell):
 xw.Book('Book1.xlsx').sheets[0].range(cell).value = cell
 print(cell)

if __name__ == '__main__':
 with Pool(4) as p:
 p.map(write_to_workbook,
 ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10'])

缺失功能

如果你希望xlwings中有一个新功能，可以这么做:

	Most importantly, open an issue on GitHub [https://github.com/xlwings/xlwings/issues].
Adding functionality should be user driven, so only if you tell us about what you’re missing,
it’s eventually going to find its way into the library. By the way, we also appreciate pull requests!

	Workaround: in essence, xlwings is just a smart wrapper around pywin32 [https://github.com/mhammond/pywin32/] on
Windows and appscript [https://github.com/hhas/appscript] on Mac. You can access the underlying objects by calling
the api property:

>>> sheet = xw.Book().sheets[0]
>>> sheet.api
Windows (pywin32)
<win32com.gen_py.Microsoft Excel 16.0 Object Library._Worksheet instance at 0x2260624985352>
macOS (appscript)
app(pid=2319).workbooks['Workbook1'].worksheets[1]

This works accordingly for the other objects like sheet.range('A1').api etc.

底层对象几乎提供了所有可以用VBA处理的东西，使用pywin32语法(和VBA很类似)或者appscript语法(不像VBA)可以处理。 不过这种变通方法，除了不好看，而且一定要记住 这会让你的代码依赖于平台(!) 也就是说，即便选择了方案2)，你还是应该根据方案1)的建议，到Github上提出一个问题，以便你需要的功能能够出现在新的xlwings库里面(那可是跨平台的，而且是用Python的哦)。

举例：使用VBA Range.WrapText 的变通办法

Windows
sheet['A1'].api.WrapText = True

Mac
sheet['A1'].api.wrap_text.set(True)

xlwings与其他Office应用

除了Excel，从Office的其他应用(如Outlook， Access等)中，也可以在VBA中通过xlwings调用Python函数。

备注

This is an experimental feature and may be removed in the future.
Currently, this functionality is only available on Windows for UDFs. The RunPython functionality
is currently not supported.

如何使用

	通常，先写好Python函数并导入到Excel中(参考 User Defined Functions (UDFs))。

	按 Alt-F11 组合键进入VBA编辑器，在VBA模块 xlwings_udfs 上点击右键，并选择 Export File(导出文件)... 。把 xlwings_udfs.bas 文件存到某个位置。

	切换到其他的Office应用，比如微软的Access，并再通过 Alt-F11 组合键进入VBA编辑器。 在VBA Project区域点击右键、选择 Import File(导入文件)..., 然后选择上面步骤中导出的文件。 导入之后，在代码的第一行中把原代码的 Microsoft Excel 替换成现在的应用名称，如 Microsoft Access 或 Microsoft Outlook 。替换好之后，代码的第一行显示为: #Const App = "Microsoft Access"

	现在导入独立的xlwings VBA模块(xlwings.bas)。这个模块中xlwings安装目录下。可以通过下列命令找出这个目录:

>>> import xlwings as xw
>>> xlwings.__path__

最后和上面步骤一样，把代码第一行的应用名称修改为正在使用的应用名称。 现在就可以从VBA中调用(导入的)Python函数了。

配置

其他Office应用同样使用Excel功能区加载项设置过的全局配置。如果需要，你可以用目录级的配置文件(例如，可以放在Access或Word文件的相同目录里)，也可以把路径直接写入VBA独立模块的配置文件中(例如，建议在使用Outlook这样做，因为它不像其他office应用，它的文件概念和其他应用不一样)。注意: 对于没有文件概念的Office应用，需要确认 PYTHONPATH 指向包含Pyhon源文件的目录。关于不同配置的细节，参考 Config 。

License Key

To use xlwings PRO functionality, you need to use a license key. xlwings PRO licenses keys are verified offline (i.e., no telemetry/license server involved). There are two types of license keys:

	Developer key: this is the key that you will be provided with after purchase. As the name suggests, a developer key should be used by the developer, i.e., someone who writes xlwings code. Developer keys are valid for one or more developers (depending on your plan) and expire after 1 year.

	Deploy key: to create deploy keys, you’ll need an activated developer key. As the name suggests, a deploy key should be used for the deployment of workbooks to end-users or with xlwings Server. A deploy key doesn’t expire but is bound to a specific version of xlwings, which means that you need to generate a new deploy key every time you update xlwings (the xlwings release command handles this automatically as we’ll see below). Note that you can’t generate deploy keys with a trial license.

Let’s now see how you can get and activate a license key.

How to get a license key

License Key for Commercial Purpose:

	To try xlwings PRO for free in a commercial context, request a trial license key: https://www.xlwings.org/trial

	To use xlwings PRO in a commercial context beyond the trial, you need to enroll in a paid plan (they include additional services like support and the ability to create one-click installers): https://www.xlwings.org/pricing

License Key for non-commercial Purpose:

	To use xlwings PRO for free in a non-commercial context (as defined by the PolyForm Noncommercial License 1.0.0 [https://polyformproject.org/licenses/noncommercial/1.0.0]) use the following license key: noncommercial (Note that you need at least xlwings 0.26.0).

Activate a developer key

To use xlwings PRO locally in your development environment, it’s easiest to run the following command:

xlwings license update -k YOUR_LICENSE_KEY

Make sure to replace YOUR_LICENSE_KEY with your actual key. This will store the license key in your xlwings.conf file (see User Config: Ribbon/Config File for where this is on your system). Alternatively, you could also activate the license key by setting an environment variable, as we’ll see next.

Setting developer keys or deploy keys as environment variable

For xlwings Server deployments, it is recommended to set the license key via the XLWINGS_LICENSE_KEY environment variable. How you set an environment variable depends on the operating system you use. Managed services often allow you to set environment variables as a secret via their user interface and many systems and frameworks such as Docker can be configured to read environment variables from a local .env file.

Setting an environment variable is also a convenient way for your local development environment. Just make sure to restart your code editor, IDE, or Terminal/Command Prompt after setting the environment variable.

Generate a deploy key

With an activated developer key, you can generate deploy keys like so:

xlwings license deploy

Make sure that you run this command with the same xlwings version as you’ll be using in your deployment. For convenience, when you run this command, the xlwings version will be printed as first line, but you can also query the xlwings version by running the following command in a Terminal/Command Prompt: python -c "import xlwings;print(xlwings.__version__)"

Note that if you use the xlwings release command, your workbook’s xlwings.conf sheet will be automatically updated with a correct deploy key as we’ll see next.

Updating the deploy key in a workbook via the “xlwings release” command

The xlwings release command is the recommended way to prepare a workbook for deployment. It takes care of:

	Setting the deploy key in the xlwings.conf sheet

	Embedding the code if desired

	Updating the xlwings VBA module so there’s no need to use the xlwings add-in on the end-users machine

For more details, see Step 2 under 1-click installer.

Updating the deploy key in a workbook manually

To update a workbook with a deploy key for deployment manually:

	Run xlwings license deploy, see above

	Paste the deploy key in your xlwings.conf sheet as value for LICENSE_KEY, see xlwings.conf Sheet

Setting the license key in code

If you run use xlwings PRO by running a Python script directly (e.g., as a frozen executable), it is easiest if you set the deploy key directly in code:

import os
os.environ["XLWINGS_LICENSE_KEY"] = "YOUR_DEPLOY_KEY"

These lines must be run before importing xlwings. It is also best practice to store the deploy key in an external config file instead of hardcoding it directly in the code.

xlwings Server (self-hosted)

xlwings Server is a self-hosted and privacy-compliant solution that turns the Python dependency into a web app running on your own server (in the form of a serverless function, a fully managed container, etc.). Unlike Microsoft’s Python in Excel solution, xlwings Server is not restricted to Office 365 but also works with the permanent versions of Office such as Office 2016 and Office 2021. It can be used from various clients:

	VBA: Desktop Excel (Windows and macOS)

	Office Scripts: Desktop Excel (Windows and macOS) and Excel on the web

	Office.js Add-ins: Desktop Excel (Windows and macOS), Excel on the web, and Excel on iPad (Note that Office.js add-ins don’t work with the legacy xls format)

	Google Apps Scripts: Google Sheets

xlwings Server: VBA, Office Scripts, Google Apps Script

This feature requires xlwings PRO and at least v0.27.0.

Instead of installing Python on each end-user’s machine, you can work with a server-based Python installation. It’s essentially a web application, but uses your spreadsheet as the frontend instead of a web page in a browser. xlwings Server doesn’t just work with the Desktop versions of Excel on Windows and macOS but additionally supports Google Sheets and Excel on the web for a full cloud experience. xlwings Server runs everywhere where Python runs, including Linux, Docker and WSL (Windows Subsystem for Linux). it can run on your local machine, as a (serverless) cloud service, or on an on-premise server.

重要

This feature currently only covers parts of the RunPython API. See also Limitations and Roadmap.

Why is this useful?

Having to install a local installation of Python with the correct dependencies is the number one friction when using xlwings. Most excitingly though, xlwings Server adds support for the web-based spreadsheets: Google Sheets and Excel on the web.

To automate Office on the web, you have to use Office Scripts (i.e., TypeScript, a typed superset of JavaScript) and for Google Sheets, you have to use Apps Script (i.e., JavaScript). If you don’t feel like learning JavaScript, xlwings allows you to write Python code instead. But even if you are comfortable with JavaScript, you are very limited in what you can do, as both Office Scripts and Apps Script are primarily designed to automate simple spreadsheet tasks such as inserting a new sheet or formatting cells rather than performing data-intensive tasks. They also make it very hard/impossible to use external JavaScript libraries and run in environments with minimal resources.

备注

From here on, when I refer to the xlwings JavaScript module, I mean either the xlwings Apps Script module if you use Google Sheets or the xlwings Office Scripts module if you use Excel on the web.

On the other hand, xlwings Server brings you these advantages:

	Work with the whole Python ecosystem: including pandas, machine learning libraries, database packages, web scraping, boto (for AWS S3), etc. This makes xlwings a great alternative for Power Query, which isn’t currently available for Excel on the web or Google Sheets.

	Leverage your existing development workflow: use your favorite IDE/editor (local or cloud-based) with full Git support, allowing you to easily track changes, collaborate and perform code reviews. You can also write unit tests using pytest.

	Remain in control of your data and code: except for the data you expose in Excel or Google Sheets, everything stays on your server. This can include database passwords and other sensitive info such as customer data. There’s also no need to give the Python code to end-users: the whole business logic with your secret sauce is protected on your own infrastructure.

	Choose the right machine for the job: whether that means using a GPU, a ton of CPU cores, lots of memory, or a gigantic hard disc. As long as Python runs on it, you can go from serverless functions as offered by the big cloud vendors all the way to a self-managed Kubernetes cluster under your desk (see Production Deployment).

	Headache-free deployment and maintenance: there’s only one location (usually a Linux server) where your Python code lives and you can automate the whole deployment process with continuous integration pipelines like GitHub actions etc.

	Cross-platform: xlwings Server works with Google Sheets, Excel on the web and the Desktop apps of Excel on Windows and macOS.

Prerequisites

Excel (VBA)

	At least xlwings 0.27.0

	Either the xlwings add-in installed or a workbook that has been set up in standalone mode

Excel (Office Scripts)

	At least xlwings 0.27.0

	You need the Automate tab enabled in order to access Office Scripts. Note that Office Scripts currently requires OneDrive for Business or SharePoint (it’s not available on the free office.com), see also Office Scripts Requirements [https://docs.microsoft.com/en-gb/office/dev/scripts/overview/excel#requirements].

	The fetch command in Office Scripts must not be disabled by your Microsoft 365 administrator.

	Note that Office Scripts is available for Excel on the web and more recently also for Desktop Excel if you use Microsoft 365 (macOS and Windows), you may need to be on the beta channel though.

Google Sheets

	At least xlwings 0.27.0

	New sheets: no special requirements.

	Older sheets: make sure that Chrome V8 runtime is enabled under Extensions > Apps Script > Project Settings > Enable Chrome V8 runtime.

Introduction

xlwings Server consists of two parts:

	Backend: the Python part

	Frontend: the xlwings JavaScript module (for Google Sheets/Excel via Office Scripts) or the VBA code in the form of the add-in or standalone modules (Desktop Excel via VBA)

The backend exposes your Python functions by using a Python web framework. In more detail, you need to handle a POST request along these lines (note that you can use any web framework, these are just examples of some of the most popular ones):

FastAPI
@app.post("/hello")
async def hello(data: dict = Body):
 # Instantiate a Book object with the deserialized request body
 with xw.Book(json=data) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 sheet["A1"].value = "Hello xlwings!"

 # Return a JSON response
 return book.json()

Flask
@app.route("/hello", methods=["POST"])
def hello():
 # Instantiate a Book object with the deserialized request body
 with xw.Book(json=request.json) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 sheet["A1"].value = "Hello xlwings!"

 # Return a JSON response
 return book.json()

Django
def hello(request):
 # Instantiate a book object with the parsed request body
 data = json.loads(request.body.decode("utf-8"))
 with xw.Book(json=data) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 sheet["A1"].value = "Hello xlwings!"

 # Return a JSON response
 return JsonResponse(book.json())

Starlette
async def hello(request):
 # Instantiate a Book object with the deserialized request body
 data = await request.json()
 with xw.Book(json=data) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 sheet["A1"].value = "Hello xlwings!"

 # Return a JSON response
 return JSONResponse(book.json())

小心

To prevent a memory leak, it is important to close the book at the end of the request either by invoking book.close() or, as shown in the example, by using book as context manager via the with statement. Note that your framework may offer better means to automatically close the book at the end of a request via middleware or similar mechanism. As an example, for FastAPI, you can use dependency injection, see https://github.com/xlwings/xlwings-server-helloworld-fastapi.

	
	For Desktop Excel, you can run the web server locally and call the respective function
	
	from VBA (requires the add-in installed or a workbook in standalone mode) or

	from Office Scripts

	For the cloud-based spreadsheets, you have to run this on a web server that can be reached from Google Sheets or Excel on the web, and you have to paste the xlwings JavaScript module into the respective editor. How this all works, will be shown in detail under Cloud-based development with Gitpod.

The next section shows you how you can play around with the xlwings Server on your local desktop before we’ll dive into developing against the cloud-based spreadsheets.

Local Development with Desktop Excel

The easiest way to try things out is to run the web server locally against your Desktop version of Excel. We’re going to use FastAPI [https://fastapi.tiangolo.com/] as our web framework. While you can use any web framework you like, no quickstart command exists for these yet. However, for Flask, you can find the respective project on GitHub: https://github.com/xlwings/xlwings-server-helloworld-flask

Start by running the following command on a Terminal/Command Prompt. Feel free to replace demo with another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with the following files:

demo.xlsm
main.py
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via pip install -r requirements.txt. To run this server locally, run python main.py in your Terminal/Command Prompt or use your code editor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using WatchFiles
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, so let’s open demo.xlsm.

If you want to use VBA, press Alt+F11 to open the VBA editor, and in Module1, place your cursor somewhere inside the following function:

Sub SampleRemoteCall()
 RunRemotePython "http://127.0.0.1:8000/hello"
End Sub

Then hit F5 to run the function—you should see Hello xlwings! in cell A1 of the first sheet.

If, however, you want to use Office Scripts, you can start from an empty file (it can be xlsx, it doesn’t have to be xlsm), and run xlwings copy os on the Terminal/Command Prompt/Anaconda Prompt. Then add a new Office Script and paste the code from the clipboard before clicking on Run.

To move this to production, you need to deploy the backend to a server, set up authentication, and point the URL to the production server, see Production Deployment.

The next sections, however, show you how you can make this work with Google Sheets and Excel on the web.

Cloud-based development with Gitpod

Using Gitpod is the easiest solution if you’d like to develop against either Google Sheets or Excel on the web.

If you want to have a development environment up and running in less than 5 minutes (even if you’re new to web development), simply click the Open in Gitpod button to open a sample project [https://github.com/xlwings/xlwings-web-fastapi] in Gitpod [https://www.gitpod.io] (Gitpod is a cloud-based development environment with a generous free tier):

[image: Open in Gitpod]
 [https://gitpod.io/#https://github.com/xlwings/xlwings-server-helloworld-fastapi]Opening the project in Gitpod will require you to sign in with your GitHub account. A few moments later, you should see an online version of VS Code. In the Terminal, it will ask you to paste the xlwings license key (get a free trial key [https://www.xlwings.org/trial] if you want to try this out in a commercial context or use the noncommercial license key if your usage qualifies as noncommercial [https://polyformproject.org/licenses/noncommercial/1.0.0]). Note that your browser will ask you for permission to paste. Once you confirm your license key by hitting Enter, the server will automatically start with everything properly configured. You can then open the app directory and look at the main.py file, where you’ll see the hello function. This is the function we’re going to call from Google Sheets/Excel on the web in just a moment. Let’s now look at the js folder and open the file according to your platform:

Excel (Office Scripts)
xlwings_excel.ts

Google Sheets
xlwings_google.js

Copy all the code, then switch to Google Sheets or Excel, respectively, and continue as follows:

Excel (Office Scripts)
In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a function stub. Replace this function stub with the copied code from xlwings_excel.ts. Make sure to click on Save script before clicking on Run: the script will run the hello function and write Hello xlwings! into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select + Add button.

Google Sheets
Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.gs with a function stub. Replace this function stub with the copied code from xlwings_google.js and click on the Save icon. Then hit the Run button (the hello function should be automatically selected in the dropdown to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions it needs. Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets, click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select Assign Script and write hello in the text box, then hit OK.

Any changes you make to the hello function in app/main.py in Gitpod are automatically saved and reloaded by the web server and will be reflected the next time you run the script from Google Sheets or Excel on the web.

备注

While Excel on the web requires you to create a separate script with a function called main for each Python function, Google Sheets allows you to add multiple functions with any name.

Please note that clicking the Gitpod button gets you up and running quickly, but if you want to save your changes (i.e., commit them to Git), you should first fork the project on GitHub to your own account and open it by prepending https://gitpod.io/# to your GitHub URL instead of clicking the button (this works with GitLab and Bitbucket too). Or continue with the next section, which shows you how you can start a project from scratch on your local machine.

An alternative for Gitpod is GitHub Codespaces [https://github.com/features/codespaces], but unlike Gitpod, GitHub Codespaces only works with GitHub.

Local Development with Google Sheets or Excel via Office Scripts

This section walks you through a local development workflow as an alternative to using Gitpod/GitHub Codespaces. What’s making this a little harder than using a preconfigured online IDE like Gitpod is the fact that we need to expose our local web server to the internet for easy development (even if we use the Desktop version of Excel).

As before, we’re going to use FastAPI [https://fastapi.tiangolo.com/] as our web framework. While you can use any web framework you like, no quickstart command exists for these yet, so you’d have to set up the boilerplate yourself. Let’s start with the server before turning our attention to the client side (i.e, Google Sheets or Excel on the web).

Part I: Backend

Start a new quickstart project by running the following command on a Terminal/Command Prompt. Feel free to replace demo with another project name and make sure to run this command in the desired directory:

$ xlwings quickstart demo --fastapi

This creates a folder called demo in the current directory with a few files:

main.py
demo.xlsm
requirements.txt

I would recommend you to create a virtual or Conda environment where you install the dependencies via pip install -r requirements.txt. In app.py, you’ll find the FastAPI boilerplate code and in main.py, you’ll find the hello function that is exposed under the /hello endpoint.

To run this server locally, run python main.py in your Terminal/Command Prompt or use your code editor/IDE’s run button. You should see something along these lines:

$ python main.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/demo']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [36073] using watchgod
INFO: Started server process [36075]
INFO: Waiting for application startup.
INFO: Application startup complete.

Your web server is now listening, however, to enable it to communicate with Google Sheets or Excel via Office Scripts, you need to expose the port used by your local server (port 8000 in your example) securely to the internet. There are many free and paid services available to help you do this. One of the more popular ones is ngrok [https://ngrok.com/] whose free version will do the trick (for a list of ngrok alternatives, see Awesome Tunneling [https://github.com/anderspitman/awesome-tunneling]):

	ngrok Installation [https://ngrok.com/download]

	ngrok Tutorial [https://ngrok.com/docs]

For the sake of this tutorial, let’s assume you’ve installed ngrok, in which case you would run the following on your Terminal/Command Prompt to expose your local server to the public internet:

$ ngrok http 8000

Note that the number of the port (8000) has to correspond to the port that is configured on your local development server as specified at the bottom of main.py. ngrok will print something along these lines:

ngrok by @inconshreveable (Ctrl+C to quit)

Session Status online
Account name@domain.com (Plan: Free)
Version 2.3.40
Region United States (us)
Web Interface http://127.0.0.1:4040
Forwarding http://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io -> http://localhost:8000
Forwarding https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io -> http://localhost:8000

To configure the xlwings client in the next step, we’ll need the https version of the Forwarding address that ngrok prints, i.e., https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io.

备注

When you’re not actively developing, you should stop your ngrok session by hitting Ctrl-C in the Terminal/Command Prompt.

Part II: Frontend

Now it’s time to switch to Google Sheets or Excel! To paste the xlwings JavaScript module, follow these 3 steps:

	Copy the xlwings JavaScript module: On a Terminal/Command Prompt on your local machine, run the following command:

Excel (Office Scripts)
$ xlwings copy os

Google Sheets
$ xlwings copy gs

This will copy the correct xlwings JavaScript module to the clipboard so we can paste it in the next step.

	Paste the xlwings JavaScript module

Excel (Office Scripts)
In the Automate tab, click on New Script. This opens a code editor pane on the right-hand side with a function stub. Replace this function stub with the copied code from the previous step. Make sure to click on Save script before clicking on Run: the script will run the hello function and write Hello xlwings! into cell A1.

To run this script from a button, click on the 3 dots in the Office Scripts pane (above the script), then select + Add button.

Google Sheets
Click on Extensions > Apps Script. This will open a separate browser tab and open a file called Code.gs with a function stub. Replace this function stub with the copied code from the previous step and click on the Save icon. Then hit the Run button (the hello function should be automatically selected in the dropdown to the right of it). If you run this the very first time, Google Sheets will ask you for the permissions it needs. Once approved, the script will run the hello function and write Hello xlwings! into cell A1.

To add a button to a sheet to run this function, switch from the Apps Script editor back to Google Sheets, click on Insert > Drawing and draw a rounded rectangle. After hitting Save and Close, the rectangle will appear on the sheet. Select it so that you can click on the 3 dots on the top right of the shape. Select Assign Script and write hello in the text box, then hit OK.

	Configuration: The final step is to configure the xlwings JavaScript module properly, see the next section Configuration.

Configuration

xlwings can be configured in two ways:

	Via arguments in the runPython (via Apps Script / Office Scripts) or RunRemotePython (via VBA) function, respectively.

	Via xlwings.conf sheet (in this case, the keys are UPPER_CASE with underscore instead of camelCase, see the screenshot below).

If you provide a value via config sheet and via function argument, the function argument wins. Let’s see what the available settings are:

	url (required): This is the full URL of your function. In the above example under Local Development with Google Sheets or Excel via Office Scripts, this would be https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello, i.e., the ngrok URL with the /hello endpoint appended.

	auth (optional): This is a shortcut to set the Authorization header. See the section about Server Auth for the options.

	headers (optional): A dictionary (VBA) or object literal (JS) with name/value pairs. If you set the Authorization header, the auth argument will be ignored.

	exclude (optional): By default, xlwings sends over the complete content of the whole workbook to the server. If you have sheets with big amounts of data, this can make the calls slow or you could even hit a timeout. If your backend doesn’t need the content of certain sheets, the exclude option will block the sheet’s content (e.g., values, pictures, etc.) from being sent to the backend. Currently, you can only exclude entire sheets as comma-delimited string like so: "Sheet1, Sheet2".

	include (optional): It’s the counterpart to exclude and allows you to submit the names of the sheets whose content (e.g., values, pictures, etc.) you want to send to the server. Like exclude, include accepts a comma-delimited string, e.g., "Sheet1,Sheet2".

	timeout (optional, VBA client only): By default, the VBA client has a timeout of 30s, you can change it by providing the timeout in milliseconds, so if you want to increase it to 40s, provide the argument as timeout:=40000.

Configuration Examples: Function Arguments

Excel (VBA)
No arguments:

Sub Hello()
 RunRemotePython "http://127.0.0.1:8000/hello"
End Sub

Additionally providing the auth and exclude parameters as well as including a custom header:

Sub Hello()
 Dim headers As New Dictionary
 headers.Add "MyHeader", "my-value"
 RunRemotePython "http://127.0.0.1:8000/hello", auth:="xxxxxxxxxxxx", exclude:="xlwings.conf, Sheet1", headers:=headers
End Sub

Excel (Office Scripts)
No arguments:

async function main(workbook: ExcelScript.Workbook) {
 await runPython(
 workbook,
 "https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",
);
}

Additionally providing the auth and exclude parameters as well as a custom header:

async function main(workbook: ExcelScript.Workbook) {
 await runPython(
 workbook,
 "https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello",
 {
 auth: "xxxxxxxxxxxx",
 exclude: "xlwings.conf, Sheet1",
 headers: { MyHeader: "my-value" },
 }
);
}

Google Sheets
No arguments:

function hello() {
 runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello");
}

Additionally providing the auth and exclude parameters as well as a custom header:

function hello() {
 runPython("https://xxxx-xxxx-xx-xx-xxx-xxxx-xxxx-xxxx-xxx.ngrok.io/hello", {
 auth: "xxxxxxxxxxxx",
 exclude: "xlwings.conf, Sheet1",
 headers: { MyHeader: "my-value" },
 });
}

Configuration Examples: xlwings.conf sheet

Create a sheet called xlwings.conf and fill in key/value pairs like so:

 | A | B |

1 | AUTH | xxxxxxxxxxxx |
2 | EXCLUDE | Sheet1,xlwings.conf|

Production Deployment

The xlwings web server can be built with any web framework and can therefore be deployed using any solution capable of running a Python backend or function. Here is a list for inspiration (non-exhaustive):

	Fully-managed services: Heroku [https://www.heroku.com], Render [https://www.render.com], Fly.io [https://www.fly.io], etc.

	Interactive environments: PythonAnywhere [https://www.pythonanywhere.com], Anvil [https://www.anvil.works], etc.

	Serverless functions: AWS Lambda [https://aws.amazon.com/lambda/], Azure Functions [https://azure.microsoft.com/en-us/services/functions/], Google Cloud Functions [https://cloud.google.com/functions], Vercel [https://vercel.com], etc.

	Virtual Machines: DigitalOcean [https://digitalocean.com], vultr [https://www.vultr.com], Linode [https://www.linode.com/], AWS EC2 [https://aws.amazon.com/ec2/], Microsoft Azure VM [https://azure.microsoft.com/en-us/services/virtual-machines/], Google Cloud Compute Engine [https://cloud.google.com/compute], etc.

	Corporate servers: Anything will work (including Kubernetes) as long as the respective endpoints can be accessed from your spreadsheet app.

Serverless Functions

For examples how to configure the serverless function platform with xlwings see the following example repositories.

	DigitalOcean Functions xlwings server [https://github.com/xlwings/xlwings-server-digitaloceanfunctions]

	Azure Functions xlwings server [https://github.com/xlwings/xlwings-server-azurefunctions]

	AWS Lambda xlwings server [https://github.com/xlwings/xlwings-server-awslambda]

重要

For production deployments, make sure to set up authentication, see Server Auth.

Triggers

Excel (Office Scripts)
Normally, you would use Power Automate to achieve similar things as with Google Sheets Triggers, but unfortunately, Power Automate can’t run Office Scripts that contain a fetch command like xlwings does, so for the time being, you can only trigger xlwings calls manually on Excel on the web. Alternatively, you can open your Excel file with Google Sheets and leverage the Triggers that Google Sheets offers. This, however, requires you to store your Excel file on Google Drive.

Google Sheets
For Google Sheets, you can take advantage of the integrated Triggers (accessible from the menu on the left-hand side of the Apps Script editor). You can trigger your xlwings functions on a schedule or by an event, such as opening or editing a sheet.

Workaround for missing features

In the classic version of xlwings, you can use the .api property to fall back to the underlying automation library and work around missing features in xlwings. That’s not possible with xlwings Server.

Instead, call the book.app.macro() method to run functions in JavaScript or VBA, respectively.

Excel (VBA)
' The first parameter has to be the workbook, the others
' are those parameters that you will provide via Python
' NOTE: you're limited to 10 parameters
Sub WrapText(wb As Workbook, sheetName As String, cellAddress As String)
 wb.Worksheets(sheetName).Range(cellAddress).WrapText = True
End Sub

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("'MyWorkbook.xlsm'!WrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

Excel (Office Scripts)
// Note that you need to register your function before calling runPython
async function main(workbook: ExcelScript.Workbook) {
 registerCallback(wrapText);
 await runPython(workbook, "url", { auth: "DEVELOPMENT" });
}

// The first parameter has to be the workbook, the others
// are those parameters that you will provide via Python
function wrapText(
 workbook: ExcelScript.Workbook,
 sheetName: string,
 cellAddress: string
) {
 const range = workbook.getWorksheet(sheetName).getRange(cellAddress);
 range.getFormat().setWrapText(true);
}

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("wrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

Google Sheets
// The first parameter has to be the workbook, the others
// are those parameters that you will provide via Python
function wrapText(workbook, sheetName, cellAddress) {
 workbook.getSheetByName(sheetName).getRange(cellAddress).setWrap(true);
}

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("wrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

Limitations

	Currently, only a subset of the xlwings API is covered, mainly the Range and Sheet classes with a focus on reading and writing values and sending pictures (including Matplotlib plots). This, however, includes full support for type conversion including pandas DataFrames, NumPy arrays, datetime objects, etc.

	You are moving within the web’s request/response cycle, meaning that values that you write to a range will only be written back to Google Sheets/Excel once the function call returns. Put differently, you’ll get the state of the sheets at the moment the call was initiated, but you can’t read from a cell you’ve just written to until the next call.

	You will need to use the same xlwings version for the Python package and the JavaScript module, otherwise, the server will raise an error.

	For users with no experience in web development, this documentation may not be quite good enough just yet.

Platform-specific limitations:

Excel on the web

	xlwings relies on the fetch command in Office Scripts that cannot be used via Power Automate and that can be disabled by your Microsoft 365 administrator.

	While Excel on the web feels generally slow, it seems to have an extreme lag depending on where in the world you open the browser with Excel on the web. For example, a hello world call takes ~4.5s if you open a browser in Amsterdam/Netherlands while it takes ~8.5s if you do it Buenos Aires/Argentina.

	Platform limits with Office Scripts [https://docs.microsoft.com/en-us/office/dev/scripts/testing/platform-limits] apply.

Google Sheets

	Quotas for Google Services [https://developers.google.com/apps-script/guides/services/quotas] apply.

Roadmap

	Complete the RunPython API by adding features that currently aren’t supported yet, e.g., charts, shapes, etc.

	Perfomance improvements

Office.js Add-ins

Requirements

	xlwings edition: PRO

	Server OS: Windows, macOS, Linux

	Excel platform: Windows, macOS, Web

	Google Sheets: not supported

	Minimum xlwings version: 0.29.0

	Minimum Excel version: 2016 or 365

Office.js add-ins (officially called Office add-ins) are web apps that traditionally require you to use the Excel JavaScript API [https://learn.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview] by writing JavaScript or TypeScript code. Note that the Excel JavaScript API (“Office.js”) is not to be confused with Office Scripts [https://learn.microsoft.com/en-us/office/dev/scripts/overview/excel], which is a layer on top of Office.js. While Office Scripts is much easier to use than Office.js, it only works for writing scripts that run via Excel’s Automate tab and can’t be used to create add-ins. This documentation will teach you how to build Office.js add-ins with xlwings Server.

备注

Office.js add-ins are just one option to talk to xlwings Server. The other options are VBA, Office Scripts, and Google Apps Script, see xlwings Server documentation.

Why is this useful?

Compared to using Office.js’ original Node.js implementation, using Office.js with xlwings has the following advantages:

	No need to learn JavaScript and the Excel JavaScript API. Instead, use the familiar xlwings syntax in Python.

	No need to install Node.js or use any JavaScript build tool such as Webpack.

	The Python source code stays on your server and can’t be accessed by the end-user.

	xlwings alerts saves you from having to use the Office dialog API [https://learn.microsoft.com/en-us/office/dev/add-ins/develop/dialog-api-in-office-add-ins] and from designing your own HTML for simple pop-ups.

	Error handling is built-in.

备注

While xlwings will reduce the amount of JavaScript code to almost zero, you still have to use HTML and CSS if you want to use a task pane. However, task panes aren’t mandatory as you can link your function directly to a Ribbon button, see Commands.

Introduction to Office.js add-ins

Office.js add-ins are web apps that can interact with Excel. In their simplest form, they consist of just two files:

	Manifest XML file: This is a configuration file that is loaded in Excel (either manually during development or via the add-in store for production). It defines the Ribbon buttons and includes the URL to the backend/web server.

	HTML file: The HTML file has to be served by a web server and defines the layout and functionality of the task pane as well as commands (commands are functions that are directly linked to Ribbon buttons).

To get a better understanding about how the simplest possible add-in works (without Python or xlwings), have a look at the following repo: https://github.com/xlwings/officejs-helloworld. Follow the repo’s README to load the add-in in development mode, a process that is called sideloading.

Now that you know the basic structure of an Office.js add-in, let’s see how we can replace the Excel JavaScript API with xlwings.runPython() calls!

Quickstart

This quickstart shows you how you can call Python both from a button on the task pane and directly from a Ribbon button. xlwings can be used with any web framework and the quickstart repo therefore contains various implementations such as app/server_fastapi.py or app/server_django.py: you only need to use one of them. At the end of this quickstart, you’ll have a working environment for local development.

	Download quickstart repo: Use Git to clone the following repository: https://github.com/xlwings/xlwings-officejs-quickstart. If you don’t want to use Git, you could also download the repo by clicking on the green Code button, followed by Download ZIP, then unzipping it locally.

	Update manifest: If you want to build your own add-in based off this quickstart repo, replace <Id>xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx</Id> in manifest-xlwings-officejs-quickstart.xml with a unique ID that you can create by visiting https://www.guidgen.com or by running the following command in Python: import uuid;print(uuid.uuid4()).

	Create certificates: Generate development certificates as the development server needs to be accessed via https instead of http (even on localhost). Otherwise, icons and alerts won’t work and Excel on the web won’t load the manifest at all. Download mkcert [https://github.com/FiloSottile/mkcert/releases] (pick the correct file according to your platform), rename the file to mkcert, then run the following commands from a Terminal/Command Prompt (make sure you’re in the same directory as mkcert):

$./mkcert -install
$./mkcert localhost 127.0.0.1 ::1

This will generate two files localhost+2.pem and localhost+2-key.pem: move them to the certs directory in the root of the xlwings-officejs-quickstart quickstart repo.

	Install Python dependencies:

	Local Python installation: create a virtual or Conda environment and install the Python dependencies by running: pip install -r requirements.txt.

	Docker: skip this step.

	xlwings license key:

Get a free trial license key [https://www.xlwings.org/trial] and install it as follows:

	Local Python installation: xlwings license update -k your-license-key

	Docker: set the license key as XLWINGS_LICENSE_KEY environment variable. The easiest way to do this is to run cp .env.template .env in a Terminal/Command Prompt and fill in the license key in the .env file.

	Start web app:

	Local Python installation: with the previously created virtual/Conda env activated, start the Python development server by running the Python file with the desired implementation. For example, to run the backend with FastAPI, run the following: python app/server_fastapi.py. You could also run the file via the capabilities offered by your editor.

	Docker: run docker compose up instead. Note that Docker by default uses the FastAPI implementation, so you’ll need to edit docker-compose.yaml if you want to change that.

If you see the following, the server is up and running:

$ python app/server_fastapi.py
INFO: Will watch for changes in these directories: ['/Users/fz/Dev/xlwings-officejs-quickstart']
INFO: Uvicorn running on https://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [56708] using WatchFiles
INFO: Started server process [56714]
INFO: Waiting for application startup.
INFO: Application startup complete.

	Sideload the add-in: Manually load manifest-xlwings-officejs-quickstart.xml in Excel. This is called sideloading and the process differs depending on the platform you’re using, see Office.js docs [https://learn.microsoft.com/en-us/office/dev/add-ins/testing/test-debug-office-add-ins#sideload-an-office-add-in-for-testing] for instructions. Once you’ve sideloaded the manifest, you’ll see the Quickstart tab in the Ribbon.

	Time to play: You’re now ready to play around with the add-in in Excel and make changes to the source code under app/server_fastapi.py or under the respective file of your framework. Every time you edit and save the Python code, the development server will restart automatically so that you can instantly try out the code changes in Excel. If you make changes to the HTML file, you’ll need to right-click on the task pane and select Reload.

With a working development environment, let’s see how everything works step-by-step. Let’s start with looking at the Python backend server.

Backend

The backend exposes your Python functions by using a Python web framework: you need to handle a POST request as shown in the following sample. Please have a look at the respective Python file in the app directory for the full context:

FastAPI
from fastapi import Body, FastAPI

app = FastAPI()

@app.post("/hello")
async def hello(data: dict = Body):
 # Instantiate a Book object with the deserialized request body
 with xw.Book(json=data) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 cell = sheet["A1"]
 if cell.value == "Hello xlwings!":
 cell.value = "Bye xlwings!"
 else:
 cell.value = "Hello xlwings!"

 # Pass the following back as the response
 return book.json()

Flask
from flask import Flask, request

app = Flask(__name__)

@app.route("/hello", methods=["POST"])
def hello():
 # Instantiate a Book object with the deserialized request body
 with xw.Book(json=request.json) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 cell = sheet["A1"]
 if cell.value == "Hello xlwings!":
 cell.value = "Bye xlwings!"
 else:
 cell.value = "Hello xlwings!"

 # Pass the following back as the response
 return book.json()

Starlette
from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route

async def hello(request):
 # Instantiate a Book object with the deserialized request body
 data = await request.json()
 with xw.Book(json=data) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 cell = sheet["A1"]
 if cell.value == "Hello xlwings!":
 cell.value = "Bye xlwings!"
 else:
 cell.value = "Hello xlwings!"

 # Pass the following back as the response
 return JSONResponse(book.json())

routes = [
 Route("/hello", hello, methods=["POST"]),
]

app = Starlette(debug=True, routes=routes)

Django
def hello(request):
 # Instantiate a book object with the parsed request body
 data = json.loads(request.body.decode("utf-8"))
 with xw.Book(json=data) as book:

 # Use xlwings as usual
 sheet = book.sheets[0]
 cell = sheet["A1"]
 if cell.value == "Hello xlwings!":
 cell.value = "Bye xlwings!"
 else:
 cell.value = "Hello xlwings!"

 # Return a JSON response
 return JsonResponse(book.json())

小心

To prevent a memory leak, it is important to close the book at the end of the request either by invoking book.close() or, as shown in the example, by using book as context manager via the with statement. Note that your framework may offer better means to automatically close the book at the end of a request via middleware or similar mechanism. As an example, for FastAPI, you can use dependency injection, see https://github.com/xlwings/xlwings-server-helloworld-fastapi.

Let’s now move over to the frontend to learn how we can call these Python functions from the Office.js add-in!

Frontend

In the following code snippet (an excerpt from app/taskpane.html), the highlighted lines represent the relevant ones—the rest is just HTML boilerplate.

app/taskpane.html (excerpt)

 <!doctype html>
 <html lang="en">

 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>My Task Pane</title>
 <!-- ➊ Load office.js and xlwings.min.js -->
 <script type="text/javascript" src="https://appsforoffice.microsoft.com/lib/1/hosted/office.js"></script>
 <script type="text/javascript" src="https://cdn.jsdelivr.net/gh/xlwings/xlwings@0.30.1/xlwingsjs/dist/xlwings.min.js"></script>
 </head>

 <body>
 <!-- ➋ Put a button on the task pane -->
 <button id="btn-hello-taskpane" type="button">Run hello</button>
 <script>
 // ➌ Initialize Office.js
 Office.onReady(function (info) { });

 // ➍ Add click event listeners to button
 document.getElementById("btn-hello-taskpane").addEventListener("click", helloTaskpane);

 // ❺ Use runPython with the desired endpoint of your web app
 function helloTaskpane() {
 xlwings.runPython(window.location.origin + "/hello");
 }
 </script>
 </body>

 </html>

Let’s see what’s happening here by walking through the numbered sections!

➊ Load JavaScript libraries

Before anything else, we need to load office.js and xlwings.min.js in the head of the HTML file. While office.js is giving us access to the Excel JavaScript API, xlwings.min.js will make the runPython function available.

For xlwings.min.js, make sure to adjust the version number after the @ sign to match the version of the xlwings Python package you’re using on the backend. In the quickstart repo, this would have to correspond to the version of xlwings defined in requirements.txt.

While xlwings.min.js is not available via npm package manager at the moment, you could also download the file and its corresponding map file (by adding .map to the URL). Then refer to the file path of xlwings.min.js instead of using the URL of the CDN.

Note, however, that office.js requires you to use the CDN version in case you want to distribute the add-in publicly via the add-in store.

➋ Put a button on the task pane

Putting a button on the task pane is a single line of HTML. Note the id that we will need under ➍ to attach a click event handler to it. To keep things as simple as possible, the button isn’t styled in any way using CSS, so it will look spectacularly boring.

➌ Initialize Office.js

In the body, as the first line in your script tag, you have to initialize Office.js.

Usually, this is all you need to worry about, but if you want to block your addin from running on certain versions of Excel, Office.onReady() is where you would handle this, see the official docs [https://learn.microsoft.com/en-us/office/dev/add-ins/develop/initialize-add-in].

➍ Add click event listeners

To define what should happen when you click the button, you need to attach an event listener to it. In our case, we’re telling the event listener to call the helloTaskpane function when the button with id=btn-hello-taskpane is clicked.

❺ Use runPython

To call a function of your backend, you have to provide the xlwings.runPython() function the respective URL. Use window.location.origin + "/myendpoint" instead of hardcoding the full URL. This will ensure that everything still works when you change the URL, e.g., when moving from development to production. Note that runPython accepts optional arguments, such as auth to send an Authorization header:

function hello() {
 xlwings.runPython(window.location.origin + "/hello", { auth: "mytoken" });
}

	For more details on the optional runPython arguments, see xlwings Server Config.

	For more details on authentication, see xlwings Server Auth.

Task pane

To have a Ribbon button show the task pane, you’ll need to configure it properly in the manifest. The relevant blocks are the following (these lines are out of context, so search for them in manifest-xlwings-officejs-quickstart.xml):

<!-- ... -->

<Control xsi:type="Button" id="TaskpaneButton">
 <!-- ... -->
 <!-- Action type must be ShowTaskpane -->
 <Action xsi:type="ShowTaskpane">
 <TaskpaneId>ButtonId1</TaskpaneId>
 <!-- resid must point to a Url Resource -->
 <SourceLocation resid="Taskpane.Url"/>
 </Action>
</Control>

<!-- ... -->

<!-- This must point to the HTML document with the task pane -->
<bt:Url id="Taskpane.Url" DefaultValue="https://127.0.0.1:8000/taskpane.html"/>

Commands

To understand how you can call xlwings.runPython() directly from a Ribbon button, have a look at Sample 2 in app/taskpane.html in the quickstart repo. Its body reads as follows:

function helloRibbon(event) {
 xlwings.runPython(window.location.origin + "/hello");
 event.completed();
}
Office.actions.associate("hello-ribbon", helloRibbon);

The code looks almost the same as when you call it from a button on the task pane with these differences:

	You need to provide event as argument

	You need to call event.completed() at the end of the function

	You have to associate the function (helloRibbon) with the id (hello-ribbon) that you use in the manifest via Office.actions.associate()

The relevant blocks in the manifest are the following (again, these lines are out of context, so search for them in manifest-xlwings-officejs-quickstart.xml). Note that compared to task panes, you need the additional reference to FunctionFile:

<!-- ... -->

<!-- resid must point to a Url Resource -->
<FunctionFile resid="Taskpane.Url"/>

<!-- ... -->

<Control xsi:type="Button" id="MyFunctionButton">
 <!-- ... -->
 <!-- Action type must be ExecuteFunction -->
 <Action xsi:type="ExecuteFunction">
 <!-- This is the name that you use in Office.actions.associate()
 to connect it to a function -->
 <FunctionName>hello-ribbon</FunctionName>
 </Action>
</Control>

Having seen how you can call Python from task panes and Ribbon buttons, let’s move on with alerts!

Alerts

Alerts require a bit of boilerplate on the Python side. Because alerts are used for unhandled exceptions, you should implement the boilerplate code even if you don’t use alerts in your own code. The quickstart repo already contains all the code.

Alerts boilerplate

The boilerplate consists of:

	Implementing the /xlwings/alert endpoint

	Giving your templating engine access to the xlwings-alert.html template, which is included in the xlwings Python package under xlwings.html

Here is the relevant code. As usual, have a look at app/server_fastapi.py for the full context.

FastAPI + Jinja2
import jinja2
from fastapi import Request
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates

@app.get("/xlwings/alert", response_class=HTMLResponse)
async def alert(
 request: Request, prompt: str, title: str, buttons: str, mode: str, callback: str
):
 """This endpoint is required by myapp.alert() and to show unhandled exceptions"""
 return templates.TemplateResponse(
 "xlwings-alert.html",
 {
 "request": request,
 "prompt": prompt
 "title": title,
 "buttons": buttons,
 "mode": mode,
 "callback": callback,
 },
)

Add the xlwings alert template as source by making use of an additional template loader
loader = jinja2.ChoiceLoader(
 [
 jinja2.FileSystemLoader("mytemplates"), # this is your default templates folder
 jinja2.PackageLoader("xlwings", "html"),
]
)
templates = Jinja2Templates(directory="mytemplates", loader=loader)

Starlette + Jinja2
import jinja2
from starlette.templating import Jinja2Templates

async def alert(request):
 """Boilerplate required by book.app.alert() and to show unhandled exceptions"""
 params = request.query_params
 return templates.TemplateResponse(
 "xlwings-alert.html",
 {
 "request": request,
 "prompt": prompt,
 "title": params["title"],
 "buttons": params["buttons"],
 "mode": params["mode"],
 "callback": params["callback"],
 },
)

Add xlwings.html as additional source for templates so the /xlwings/alert endpoint
will find xlwings-alert.html. "mytemplates" can be a dummy if the app doesn't use
own templates
loader = jinja2.ChoiceLoader(
 [
 jinja2.FileSystemLoader("mytemplates"),
 jinja2.PackageLoader("xlwings", "html"),
]
)
templates = Jinja2Templates(directory="mytemplates", loader=loader)

routes = [
 Route("/xlwings/alert", alert),
]

With the boilerplate in place, you’re now ready to use alerts, as we’ll see next.

Showing alerts

备注

Except in Excel on the web, alerts are non-modal, i.e., allow the user to continue using Excel while the alert is open. This is a limitation of Office.js.

Calling an alert with an OK button is as simple as:

book is an xlwings Book object
book.app.alert(
 "Some text",
 title="Some Title", # optional
)

Clicking either the “x” at the top right or the OK button will close the alert and you’re done with it.

However, if you need to react differently depending on whether the user clicks on OK or Cancel, you can supply a callback argument that accepts the name of a JavaScript function. To understand how this works, consider the following example:

book.app.alert(
 prompt="This will capitalize all sheet names!",
 title="Are you sure?",
 buttons="ok_cancel",
 callback="capitalizeSheetNames",
)

When the user clicks a button, it will call the JavaScript function capitalizeSheetNames with the name of the clicked button as argument in lower case. For example, if the user clicks on Cancel, it would call capitalizeSheetNames("cancel"). Depending on the answer, you can run another xlwings.runPython() call or do something directly in JavaScript. To make this work, we’ll need to add our callback function to the script tag in the body of our HTML file. You’ll also need to register that function using the xlwings.registerCallback function:

function capitalizeSheetNames(arg) {
 if (arg == "ok") {
 xlwings.runPython(window.location.origin + "/capitalize-sheet-names");
 } else {
 // cancel
 }
}
// Make sure to register the callback function
xlwings.registerCallback(capitalizeSheetNames);

As usual, to get a better understanding, check out app/taskpane.html and app/server_fastapi.py for the full context and play around with the respective button on the task pane.

Debugging

If you need to debug errors on the client side, you’ll need to open the developer tools of the browser that’s being used so you can inspect the error messages in the console. Depending on the platform and version of Excel, the process is different:

	Excel on the web: open the developer tools of the browser you’re using. For example, in Chrome you can type Ctrl+Shift+I (Windows) or Cmd-Option-I (macOS), then switch to the Console tab.

	Desktop Excel on Windows: right-click on the task pane and select Inspect, then switch to the Console tab.

	Desktop Excel on macOS: to be able to get the Web Inspector showing up, you’ll need to run the following command in a Terminal once:

defaults write com.microsoft.Excel OfficeWebAddinDeveloperExtras -bool true

Then, after restarting Excel, right-click on the task pane and select Inspect Element and switch to the Console tab. Note that after running this command, you’ll also see an empty page loaded when you call a command from the Ribbon button directly. To hide it, you would need to disable debugging again by running the same command in the Terminal with false instead of true.

Production deployment

	Make sure that the Id in the manifest is your own unique UUID.

	Make sure you have authentication implemented.

	The Python backend can be deployed anywhere you like, there are some suggestions under xlwings Server production deployment.

	Once you have your backend deployed, you’ll need to replace https://127.0.0.1:8000 with your production URL. You may want to keep multiple copies of the manifest, one for local development and one for each environment like production.

	
	Depending on whether you want to deploy your add-in within your company or to the whole world, there’s a different process for deploying the manifest XML:
	
	Company-internal (must be done by a Microsoft 365 admin): on office.com, click on Admin > Show all > Settings > Integrated Apps > Add-ins. There, click on the Deploy Add-in button which allows you to upload the manifest or point to it via URL.

	Public: you’ll need to submit your add-in for approval to Microsoft AppSource, see: https://learn.microsoft.com/en-us/azure/marketplace/submit-to-appsource-via-partner-center

Workaround for missing features

In the classic version of xlwings, you can use the .api property to fall back to the underlying automation library and work around missing features in xlwings. That’s not possible with xlwings Server.

Instead, call the book.app.macro() method to run functions in JavaScript. The first parameter will have to be the request context, which gives you access to the Excel JavaScript API. Note that you have to register JavaScript functions that you want to call from Python via xlwings.registerCallback() (last line):

async function wrapText(context, sheetName, cellAddress) {
 // The first parameter has to be the request context, the others
 // are those parameters that you will provide via Python
 const range = context.workbook.worksheets
 .getItem(sheetName)
 .getRange(cellAddress);
 range.format.wrapText = true;
 await context.sync();
}
// Make sure to register the function as callback
xlwings.registerCallback(wrapText);

Now you can call this function from Python like so:

book is an xlwings Book object
wrap_text = book.app.macro("wrapText")
wrap_text("Sheet1", "A1")
wrap_text("Sheet2", "B2")

Limitations

	Currently, only a subset of the xlwings API is covered, mainly the Range and Sheet classes with a focus on reading and writing values. This, however, includes full support for type conversion including pandas DataFrames, NumPy arrays, datetime objects, etc.

	Excel 2016 and 2019 won’t support automatic Date conversion when reading from Excel to Python. It works properly though on Excel 2021 and Excel 365 and for previous versions, you can use either xw.to_datetime() or the datetime.date or datetime.datetime converters. For pandas DataFrames, you can use the parse_dates converter.

	You are moving within the web’s request/response cycle, meaning that values that you write to a range will only be written back to Google Sheets/Excel once the function call returns. Put differently, you’ll get the state of the sheets at the moment the call was initiated, but you can’t read from a cell you’ve just written to until the next call.

	You will need to use the same xlwings version for the Python package and the JavaScript module, otherwise, the server will raise an error.

Office.js Custom Functions

Requirements

	xlwings edition: PRO

	Server OS: Windows, macOS, Linux

	Excel platform: Windows, macOS, Web

	Google Sheets: not supported (planned)

	Minimum xlwings version: 0.30.0

	Minimum Excel version: 2021 or 365

Quickstart

Custom functions are based on Office.js add-ins. It’s therefore a good idea to revisit the Office.js Add-in docs.

	Follow the full Office.js Add-in Quickstart. At the end of it, you should have the backend server running and the manifest sideloaded.

	That’s it! You can now use the custom functions that are defined in the quickstart project under app/custom_functions.py: e.g., type =HELLO("xlwings") into a cell and hit Enter—you’ll be greeted by Hello xlwings!.

As long as you don’t change the name or arguments of the function, you can edit the code in the app/custom_functions.py file and see the effect immediately by recalculating your formula. You can recalculate by either editing the cell and hitting Enter again, or by hitting Ctrl-Alt-F9 (Windows) or Ctrl-Option-F9 (macOS). If you add new functions or make changes to function names or arguments of existing functions, you’ll need to sideload the add-in again.

Basic syntax

As you could see in the quickstart sample, the simplest custom function only requires the @server.func decorator:

from xlwings import server

@server.func
def hello(name):
 return f"Hello {name}!"

备注

The decorators for Office.js are imported from xlwings.server instead of xlwings and therefore read server.func instead of xw.func. See also Custom functions vs. legacy UDFs.

Python modules

By default, xlwings expects the functions to live in a module called custom_functions.py.

	If you want to call your module differently, import it like so: import your_module as custom_functions

	If you want to store your custom functions across different modules/packages, import them into custom_functions.py:

custom_functions.py
from mypackage.subpackage import func1, func2
from mymodule import func3, func4

Note that custom_functions needs to be imported where you define the required endpoints in your web framework, see Backend and Manifest.

pandas DataFrames

By using the @server.arg and @server.ret decorators, you can apply converters and options to arguments and the return value, respectively.

For example, to read in the values of a range as pandas DataFrame and return the correlations without writing out the header and the index, you would write:

import pandas as pd
from xlwings import server

@server.func
@server.arg("df", pd.DataFrame, index=False, header=False)
@server.ret(index=False, header=False)
def correl2(df):
 return df.corr()

For an overview of the available converters and options, have a look at 转换器及选项.

Variable number of arguments (*args)

Added in version 0.30.15.

Varargs are supported. You can also use a converter, which will be applied to all arguments provided by *args:

from xlwings import server

@server.func
@server.arg("*args", pd.DataFrame, index=False)
def concat(*args):
 return pd.concat(args)

Doc strings

To describe your function and its arguments, you can use a function docstring or the arg decorator, respectively:

from xlwings import server

@server.func
@server.arg("name", doc='A name such as "World"')
def hello(name):
 """This is a classic Hello World example"""
 return f"Hello {name}!"

These doc strings will appear in Excel’s function wizard/formula builder. Note that the name of the arguments will automatically be shown when typing the formula into a cell (intellisense).

Date and time

Depending on whether you’re reading from Excel or writing to Excel, there are different tools available to work with date and time.

Reading

In the context of custom functions, xlwings will detect numbers, strings, and booleans but not cells with a date/time format. Hence, you need to use converters. For single datetime arguments do this:

import datetime as dt
from xlwings import server

@server.func
@server.arg("date", dt.datetime)
def isoformat(date):
 return date.isoformat()

Instead of dt.datetime, you can also use dt.date to get a date object instead.

If you have multiple values that you need to convert, you can use the xlwings.to_datetime() function:

import datetime as dt
import xlwings as xw
from xlwings import server

@server.func
def isoformat(dates):
 dates = [xw.to_datetime(d) for d in dates]
 return [d.isoformat() for d in dates]

And if you are dealing with pandas DataFrames, you can simply use the parse_dates option. It behaves the same as with pandas.read_csv():

import pandas as pd
from xlwings import server

@server.func
@server.arg("df", pd.DataFrame, parse_dates=[0])
def timeseries_start(df):
 return df.index.min()

Like pandas.read_csv(), you could also provide parse_dates with a list of columns names instead of indices.

Writing

When writing datetime object to Excel, xlwings automatically formats the cells as date if your version of Excel supports data types, so no special handling is required:

import datetime as dt
import xlwings as xw
from xlwings import server

@server.func
def pytoday():
 return dt.date.today()

By default, it will format the date according to the content language of your Excel instance, but you can also override this by explicitly providing the date_format option:

import datetime as dt
import xlwings as xw
from xlwings import server

@server.func
@server.ret(date_format="yyyy-m-d")
def pytoday():
 return dt.date.today()

For the accepted date_format string, consult the official Excel documentation [https://support.microsoft.com/en-us/office/format-numbers-as-dates-or-times-418bd3fe-0577-47c8-8caa-b4d30c528309].

备注

Some older builds of Excel don’t support date formatting and will display the date as date serial instead, requiring you format it manually. See also Limitations.

Namespace

A namespace groups related custom functions together by prepending the namespace to the function name, separated with a dot. For example, to have NumPy-related functions show up under the numpy namespace, you would do:

import numpy as np
from xlwings import server

@server.func(namespace="numpy")
def standard_normal(rows, columns):
 rng = np.random.default_rng()
 return rng.standard_normal(size=(rows, columns))

This function will be shown as NUMPY.STANDARD_NORMAL in Excel.

Sub-namespace

You can create sub-namespaces by including a dot like so:

@server.func(namespace="numpy.random")

This function will be shown as NUMPY.RANDOM.STANDARD_NORMAL in Excel.

Default namespace

If you want all your functions to appear under a common namespace, you can include the following line under the ShortStrings sections in the manifest XML:

<bt:String id="Functions.Namespace" DefaultValue="XLWINGS"/>

Have a look at manifest-xlwings-officejs-quickstart.xml where the respective line is commented out.

If you define a namespace as part of the function decorator while also having a default namespace defined, the namespace from the function decorator will define the sub-namespace.

Help URL

You can include a link to an internet page with more information about your function by using the help_url option. The function wizard/formula builder will show that link under “More help on this function”.

from xlwings import server

@server.func(help_url="https://www.xlwings.org")
def hello(name):
 return f"Hello {name}!"

Array Dimensions

If you want your function to accept arguments of any dimensions (as single cell or one- or two-dimensional ranges), you may need to use the ndim option to make your code work in every case. Likewise, there’s an easy trick to return a simple list in a vertical orientation by using the transpose option.

Arguments

Depending on the dimensionality of the function parameters, xlwings either delivers a scalar, a list, or a nested list:

	Single cells (e.g., A1) arrive as scalar, i.e., number, string, or boolean: 1 or "text", or True

	A one-dimensional (vertical or horizontal!) range (e.g. A1:B1 or A1:A2) arrives as list: [1, 2]

	A two-dimensional range (e.g., A1:B2) arrives as nested list: [[1, 2], [3, 4]]

This behavior is not only consistent in itself, it’s also in line with how NumPy works and is often what you want: for example, you can directly loop over a vertical 1-dimensional range of cells.

However, if the argument can be anything from a single cell to a one- or two-dimensional range, you’ll want to use the ndim option: this allows you to always get the inputs as a two-dimensional list, no matter what the input dimension is:

from xlwings import server

@server.func
@server.arg("x", ndim=2)
def add_one(x):
 return [[cell + 1 for cell in row] for row in data]

The above sample would raise an error if you’d leave away the ndim=2 and use a single cell as argument x.

Return value

If you need to write out a list in vertical orientation, the transpose option comes in handy:

from xlwings import server

@server.func
@server.ret(transpose=True)
def vertical_list():
 return [1, 2, 3, 4]

Error handling and error cells

Error cells in Excel such as #VALUE! are used to display an error from Python. xlwings reads error cells as None by default but also allows you to read them as strings. When writing to Excel, you can Excel have an cell formatted as error. Let’s get into the details!

Error handling

Whenever there’s an error in Python, the cell value will show #VALUE!. To understand what’s going on, click on the cell with the error, then hover (don’t click!) on the exclamation mark that appears: you’ll see the error message.

If you see Internal Server Error, you need to consult the Python server logs or you can add an exception handler for the type of Exception that you’d like to see in more detail on the frontend, see the function xlwings_exception_handler in the quickstart project under app/server_fastapi.py.

Writing NaN values

np.nan and pd.NA will be converted to Excel’s #NUM! error type.

Error cells

Reading

By default, error cells are converted to None (scalars and lists) or np.nan (NumPy arrays and pandas DataFrames). If you’d like to get them in their string representation, use err_to_str option:

from xlwings import server

@server.func
@server.arg("x", err_to_str=True)
def myfunc(x):
 ...

Writing

To format cells as proper error cells in Excel, simply use their string representation (#DIV/0!, #N/A, #NAME?, #NULL!, #NUM!, #REF!, #VALUE!):

from xlwings import server

@server.func
def myfunc(x):
 return ["#N/A", "#VALUE!"]

备注

Some older builds of Excel don’t support proper error types and will display the error as string instead, see also Limitations.

Dynamic arrays

If your return value is not just a single value but a one- or two-dimensional list, Excel will automatically spill the values into the surrounding cells by using the native dynamic arrays. There are no code changes required:

Returning a simple list:

from xlwings import server

@server.func
def programming_languages():
 return ["Python", "JavaScript"]

Returning a NumPy array with standard normally distributed random numbers:

import numpy as np
from xlwings import server

@server.func
def standard_normal(rows, columns):
 rng = np.random.default_rng()
 return rng.standard_normal(size=(rows, columns))

Returning a pandas DataFrame:

import pandas as pd
from xlwings import server

@server.func
def get_dataframe():
 df = pd.DataFrame({"Language": ["Python", "JavaScript"], "Year": [1991, 1995]})
 return df

Volatile functions

Volatile functions are recalculated whenever Excel calculates something, even if none of the function arguments have changed. To mark a function as volatile, use the volatile argument in the func decorator:

import datetime as dt
from xlwings import server

@server.func(volatile=True)
def last_calculated():
 return f"Last calculated: {dt.datetime.now()}"

Asynchronous functions

Custom functions are always asynchronous, meaning that the cell will show #BUSY! during calculation, allowing you to continue using Excel: custom function don’t block Excel’s user interface.

Streaming functions (“RTD functions”)

In the traditional version of Excel, streaming functions were called “RTD functions” or “RealTimeData functions”. However, unlike traditional RTD functions, streaming functions don’t use a local COM server. Instead, the process runs as a background task on xlwings Server and pushes updates via WebSockets (using Socket.io) to Excel. What’s great about streaming functions is that you can connect to your data source in a single place and stream the values to every Excel installation in your entire company.

To create a streaming function, you simply need to write an asynchronous generator. That is, you need to use async def and yield instead of return, e.g.:

import asyncio
from xlwings import server

@server.func
async def streaming_random(rows, cols):
 """A streaming function pushing updates of a random DataFrame every second"""
 rng = np.random.default_rng()
 while True:
 matrix = rng.standard_normal(size=(rows, cols))
 df = pd.DataFrame(matrix, columns=[f"col{i+1}" for i in range(matrix.shape[1])])
 yield df
 await asyncio.sleep(1)

As a bit of a more real-world sample, here’s how you can transform a REST API into a streaming function to stream the BTC price:

import asyncio
from xlwings import server

@server.func
@server.ret(date_format="hh:mm:ss", index=False)
async def btc_price(base_currency="USD"):
 while True:
 async with httpx.AsyncClient() as client:
 response = await client.get(
 f"https://cex.io/api/ticker/BTC/{base_currency}"
)
 response_data = response.json()
 response_data["timestamp"] = pd.to_datetime(
 int(response_data["timestamp"]), unit="s"
)
 df = pd.DataFrame(response_data, index=[0])
 df = df[["pair", "timestamp", "bid", "ask"]]
 yield df
 await asyncio.sleep(1)

Key to remember is that you’re moving in the async world with streaming functions, so you shouldn’t use long-running blocking operations. For example, instead of using requests to fetch the data, you should use one of the async libraries such as httpx or aiohttp.

If you use the official xlwings Server [https://github.com/xlwings/xlwings-server] implementation, that’s all you need because it supports streaming functions out-of-the-box. If you’re using your own server implementation, you’ll need to implement the Socket.io endpoints according to the official xlwings Server implementation.

Backend and Manifest

This section highlights which part of the code in app/server_fastapi.py, app/taskpane.html and manifest-xlwings-officejs-quickstart.xml are responsible for handling custom functions. They are already implemented in the quickstart project.

Backend

The backend needs to implement the following three endpoints to support custom functions. You can check them out under app/server_fastapi.py or in one of the other framework implementations.

FastAPI
import xlwings as xw
import custom_functions

@app.get("/xlwings/custom-functions-meta")
async def custom_functions_meta():
 return xw.server.custom_functions_meta(custom_functions)

@app.get("/xlwings/custom-functions-code")
async def custom_functions_code():
 return PlainTextResponse(xw.server.custom_functions_code(custom_functions))

@app.post("/xlwings/custom-functions-call")
async def custom_functions_call(data: dict = Body):
 rv = await xw.server.custom_functions_call(data, custom_functions)
 return {"result": rv}

Starlette
import xlwings as xw
import custom_functions

async def custom_functions_meta(request):
 return JSONResponse(xw.server.custom_functions_meta(custom_functions))

async def custom_functions_code(request):
 return PlainTextResponse(xw.server.custom_functions_code(custom_functions))

async def custom_functions_call(request):
 data = await request.json()
 rv = await xw.server.custom_functions_call(data, custom_functions)
 return JSONResponse({"result": rv})

You’ll also need to load the custom functions by adding the following line at the end of the head element in your HTML file, see app/taskpane.html in the quickstart project:

<head>
 <!-- ... -->
 <script type="text/javascript" src="/xlwings/custom-functions-code"></script>
</head>

Manifest

The relevant parts in the manifest XML are:

<Requirements>
 <Sets DefaultMinVersion="1.1">
 <Set Name="SharedRuntime" MinVersion="1.1"/>
 </Sets>
</Requirements>

And:

<Runtimes>
 <Runtime resid="Taskpane.Url" lifetime="long"/>
</Runtimes>
<AllFormFactors>
 <ExtensionPoint xsi:type="CustomFunctions">
 <Script>
 <SourceLocation resid="Functions.Script.Url"/>
 </Script>
 <Page>
 <SourceLocation resid="Taskpane.Url"/>
 </Page>
 <Metadata>
 <SourceLocation resid="Functions.Metadata.Url"/>
 </Metadata>
 <Namespace resid="Functions.Namespace"/>
 </ExtensionPoint>
</AllFormFactors>

As mentioned under Namespace: if you want to set a default namespace for your functions, you’d do that with this line:

<bt:String id="Functions.Namespace" DefaultValue="XLWINGS"/>

As usual, for the full context, have a look at manifest-xlwings-officejs-quickstart.xml in the quickstart sample.

Authentication

To authenticate (and possibly authorize) the users of your custom functions, you’ll need to implement a global getAuth() function under app/taskpane.html. In the quickstart project, it’s set up to give back an empty string:

globalThis.getAuth = async function () {
 return ""
};

The string that this function returns will be provided as Authorization header whenever a custom function executes so the backend can authenticate the user. Hence, to activate authentication, you’ll need to change this function to give back the desired token/credentials.

备注

The getAuth function is required for custom functions to work, even if you don’t want to authenticate users, so don’t delete it.

SSO / Entra ID (previously called AzureAD) authentication

The most convenient way to authenticate users is to use single-sign on (SSO) based on Entra ID (previously called Azure AD), which will use the identity of the signed-in Office user:

globalThis.getAuth = async function () {
 return await xlwings.getAccessToken();
};

	This requires you to set up an Entra ID (previously called Azure AD) app as well as adjusting the manifest accordingly, see SSO/Entra ID (previously called Azure AD) for Office.js.

	You’ll also need to verify the AzureAD access token on the backend. This is already implemented in https://github.com/xlwings/xlwings-server

Deployment

To deploy your custom functions, please refer to Production deployment in the Office.js Add-ins docs.

Custom functions vs. legacy UDFs

While Office.js-based custom functions are mostly compatible with the VBA-based UDFs, there are a few differences, which you should be aware of when switching from UDFs to custom functions or vice versa:

	
	Custom functions (Office.js-based)

	User-defined functions UDFs (VBA-based)

	Supported platforms

	
	Windows

	macOS

	Excel on the web

	
	Windows

	Empty cells are converted to

	0 => If you want None, you have to set the following formula in Excel: =""

	None

	Cells with integers are converted to

	Integers

	Floats

	Reading Date/Time-formatted cells

	Requires the use of dt.datetime or parse_dates in the arg decorators

	Automatic conversion

	Writing datetime objects

	Automatic cell formatting

	No cell formatting

	Can write proper Excel cell error

	Yes

	No

	Writing NaN (np.nan or pd.NA) arrives in Excel as

	#NUM!

	Empty cell

	Functions are bound to

	Add-in

	Workbook

	Asynchronous functions

	Always and automatically

	Requires @xw.func(async_mode="threading")

	Decorators

	from xlwings import server, then server.func etc.

	import xlwings as xw, then xw.func etc.

	Formula Intellisense

	Yes

	No

	Supports namespaces e.g., NAMESPACE.FUNCTION

	Yes

	No

	Capitalization of function name

	Excel formula gets automatically capitalized

	Excel formula has same capitalization as Python function

	Supports (SSO) Authentication

	Yes

	No

	caller function argument

	N/A

	Returns Range object of calling cell

	@xw.arg(vba=...)

	N/A

	Allows to access Excel VBA objects

	Supports pictures

	No

	Yes

	Requires a local installation of Python

	No

	Yes

	Python code must be shared with end-user

	No

	Yes

	Requires License Key

	Yes

	No

	License

	PolyForm Noncommercial License 1.0.0 or xlwings PRO License

	BSD 3-clause Open Source License

Limitations

	The Office.js Custom Functions API was introduced in 2018 and therefore requires at least Excel 2021 or Excel 365.

	Note that some functionality requires specific build versions, such as error cells and date formatting, but if your version of Excel doesn’t support these features, xlwings will fall back to either string-formatted error messages or unformatted date serials. For more details on which builds support which function, see Custom Functions requirement sets [https://learn.microsoft.com/en-us/javascript/api/requirement-sets/excel/custom-functions-requirement-sets].

	xlwings custom functions must be run with the shared runtime, i.e., the runtime that comes with a task pane add-in. The JavaScript-only runtime is not supported.

Roadmap

	Streaming functions

	Object handlers

	Client-side caching

	Add support for Google Sheets

Server Authentication

This feature requires xlwings PRO.

Authentication (and potentially authorization) is an important step in securing your xlwings Server app. On the server side, you can handle authentication

	within your app (via your web framework)

	outside of your app (via e.g. a reverse proxy such as nginx or oauth2-proxy that sits in front of your app)

Furthermore, you can use different authentication techniques such as HTTP Basic Auth or Bearer tokens in the form of API keys or OAuth2 access tokens. The most reliable and comfortable authentication is available for Office.js add-ins in connection with Excel 365 as this allows you to leverage the built-in SSO capabilities, see pro/server/server_authentication:SSO/Azure AD for Excel 365.

On the client side, you set the Authorization header when you make a request from Excel or Google Sheets to your xlwings backend. To set the Authorization header, xlwings offers the auth parameter:

VBA
Sub Main()
 RunRemotePython "url", auth:="mytoken"
End Sub

Office Scripts
async function main(workbook: ExcelScript.Workbook) {
 await runPython(workbook, "url", { auth: "mytoken" });
}

Office.js
async function hello {
 // This requires getAuth to be properly implemented, see below under SSO
 let token = await globalThis.getAuth();
 xlwings.runPython("your-url", { auth: token });
}

Google Apps Script
function main() {
 let accessToken = ScriptApp.getOAuthToken()
 runPython("url", { auth: "Bearer " + accessToken });
}

Your backend will then have to validate the Authorization header. Let’s get started with the simplest implementation of an API key before looking at HTTP Basic Auth and more advanced options like Azure AD/SSO and Google access tokens (for Google Sheets).

API Key

Generate a secure random string, for example by running the following from a Terminal/Command Prompt:

python -c "import secrets; print(secrets.token_hex(32))"

Provide this value as your auth argument in the RunRemotePython or runPython, respectively, and validate it on your backend along the following lines (these are changes meant to be introduced to a quickstart project or https://github.com/xlwings/xlwings-server-helloworld-fastapi):

Only showing additional imports
import os
import secrets
from fastapi import HTTPException, Security, status
from fastapi.security.api_key import APIKeyHeader

async def authenticate(api_key: str = Security(APIKeyHeader(name="Authorization"))):
 """Validate the Authorization header"""

 if not secrets.compare_digest(api_key, os.environ["APP_API_KEY"]):
 raise HTTPException(
 status_code=status.HTTP_401_UNAUTHORIZED,
 detail="Invalid API Key",
)

If you want to require the API Key for every endpoint
app = FastAPI(dependencies=[Security(authenticate)])

This sample assumes that you have a single APP_API_KEY key set as an environment variable on your backend: if you provide the same key as auth parameter in your RunRemotePython or runPython call, everybody with the workbook gets anonymous access. So this approach merely protects your backend from unauthorized access, but it isn’t really secure, as there is no secure way to store the API key in the workbook securely, so everybody with the workbook can look up the API key.

If you use the VBA client, you could use a solution where users have to store an individual API Key in an external config file and read it from there. This way, users with the workbook alone would not be able to run the xlwings functionality and you could search for the individual API keys in a database to identify the user.

A much more secure approach is to use Azure AD authentication, see below.

HTTP Basic Auth

Basic auth is a simple and popular method that sends the username and password via the Authorization header.
Reverse proxies such as nginx allow you to easily protect your app with HTTP Basic Auth but you can also handle it directly in your app.

With your username and password, run the following Python script to get the value that you need to provide for auth:

import base64
username = "myusername"
password = "mypassword"
print("Basic " + base64.b64encode(f"{username}:{password}".encode()).decode())

In this case, you’d provide "Basic bXl1c2VybmFtZTpteXBhc3N3b3Jk" as your auth argument.

	To validate HTTP Basic Auth with FastAPI, see: https://fastapi.tiangolo.com/advanced/security/http-basic-auth/

	If you use ngrok, there’s an easy way to protect the exposed URL via Basic auth:

ngrok http 8000 -auth='myusername:mypassword'

警告

ngrok HTTP Basic auth will NOT work with Excel via Office Scripts as it doesn’t support CORS. It’s, however, an easy method for protecting your app during development if you use xlwings via VBA or Google Sheets.

SSO/Entra ID (previously called Azure AD) for Office.js

Added in version 0.29.0.

Single Sign-on (SSO) means that users who are signed into Office 365 get access to an add-in’s Azure AD-protected backend and to Microsoft Graph without needing to sign-in again. Start by reading the official Microsoft documentation:

	Overview of authentication and authorization in Office Add-ins [https://learn.microsoft.com/en-us/office/dev/add-ins/develop/overview-authn-authz]

	Enable single sign-on (SSO) in an Office Add-in [https://learn.microsoft.com/en-us/office/dev/add-ins/develop/sso-in-office-add-ins]

As a summary, here are the components needed to enable SSO:

	SSO is only available for Office.js add-ins. If you want to enable multi-tenant access (i.e, access for users outside your own organization) external users need to install the add-in via their internal Office add-in store, sideloading the add-in won’t work.

	You must use a supported version of Office, see: https://learn.microsoft.com/en-us/javascript/api/requirement-sets/common/identity-api-requirement-sets

	Register your add-in as an app on the Microsoft Identity Platform [https://learn.microsoft.com/en-us/office/dev/add-ins/develop/register-sso-add-in-aad-v2]

	Add the following to the end of the <VersionOverrides ... xsi:type="VersionOverridesV1_0"> section of your manifest XML (replace 127.0.0.1:8000 with your domain if you’re not running the server locally):

<WebApplicationInfo>
 <Id>Your Client ID</Id>
 <Resource>api://127.0.0.1:8000/Your Client ID</Resource>
 <Scopes>
 <Scope>openid</Scope>
 <Scope>profile</Scope>
 </Scopes>
</WebApplicationInfo>

	Acquire an access token in your client-side code and send it as Authorization header to your backend where you can verify it using e.g., Azure functions or parse/verify it manually. You could also use it to authenticate with Microsoft Graph API. The officejs quickstart repo has a dummy global function globalThis.getAuth() in the app/taskpane.html file that you can activate as follows:

globalThis.getAuth = async function () {
 return await xlwings.getAccessToken();
};

NOTE: xlwings.getAccessToken() was added in 0.13.14

This then allows you to call runPython like so (note that custom functions do this automatically):

async function hello() {
 let token = await globalThis.getAuth();
 xlwings.runPython("your-url", { auth: token })
}

	For a sample implementation on how to validate the token on the backend, have a look at https://github.com/xlwings/xlwings-server-auth-azuread

	A good walkthrough is also Create a Node.js Office Add-in that uses single sign-on [https://learn.microsoft.com/en-us/office/dev/add-ins/develop/create-sso-office-add-ins-nodejs], but as the title says, it uses Node.js on the backend instead of Python.

	For a reference of the error codes, see: https://learn.microsoft.com/en-us/office/dev/add-ins/develop/troubleshoot-sso-in-office-add-ins

Entra ID (previously called Azure AD) for Excel VBA

Added in version 0.28.6:

备注

Azure AD authentication is only available for Desktop Excel via VBA.

Azure Active Directory (Azure AD) [https://azure.microsoft.com/en-us/products/active-directory] is Microsoft’s enterprise identity service. If you’re using the xlwings add-in or VBA standalone module, xlwings allows you to comfortably log in users on their desktops, allowing you to securely validate their identity on the server and optionally implement role-base access control (RBAC).

Download xlwings.exe, the standalone xlwings CLI, from the GitHub Release page [https://github.com/xlwings/xlwings/releases] and place it in a specific folder, e.g., under C:\Program and Files\xlwings\xlwings.exe or %LOCALAPPDATA%\xlwings\xlwings.exe.

Now you can call the following function in VBA:

Sub Main()
 RunRemotePython "url", _
 auth:="Bearer " & GetAzureAdAccessToken(_
 tenantId:="...", _
 clientId:="...", _
 scopes:="...", _
 port:="...", _
 username:="...", _
 cliPath:="C:\Program and Files\xlwings\xlwings.exe" _
)
End Sub

port and username are optional:

	Use port if the randomly assigned default port causes issues

	Use username if the user is logged in with multiple Microsoft accounts

备注

Instead of relying on xlwings.exe, you could also use a normal Python installation with xlwings and msal installed. In this case, simply leave away the cliPath argument.

You can also use the xlwings.conf file or xlwings.conf sheet for configuration. In this case, the settings are the following:

AZUREAD_TENANT_ID
AZUREAD_CLIENT_ID
AZUREAD_SCOPES
AZUREAD_USERNAME
AZUREAD_PORT
CLI_PATH

Note that if you use the xlwings add-in rather than relying on the xlwings standalone VBA module, you will need to make sure that there’s a reference set to xlwings in the VBA editor under Tools > References.

When you now call the Main function the very first time, a browser Window will open where the user needs to login to Azure AD. The acquired OAuth2 access token is then cached for 60-90 minutes. Once an access token has expired, a new one will be requested using the refresh token, i.e., without user intervention, but it will slow that that request.

For a complete walk-through on how to set up an app on Azure AD and how to validate the access token on the backend, see: https://github.com/xlwings/xlwings-server-auth-azuread

OAuth2 Access Token for Google Sheets

Google makes it easy to verify the logged-in user via OAuth2 access token. Simply provide the following as your auth argument:

ScriptApp.getOAuthToken()

To see how you can validate that token on the backend, see:

https://github.com/xlwings/xlwings-server-auth-google

xlwings Reports

This feature requires xlwings PRO.

xlwings Reports is a solution for template-based Excel and PDF reporting, making the generation of pixel-perfect factsheets really simple. xlwings Reports allows business users without Python knowledge to create and maintain Excel templates without having to rely on a Python developer after the initial setup has been done: xlwings Reports separates the Python code (pre- and post-processing) from the Excel template (layout/formatting).

xlwings Reports supports all commonly required components:

	Text: Easily format your text via Markdown syntax.

	Tables (dynamic): Write pandas DataFrames to Excel cells and Excel tables and format them dynamically based on the number of rows.

	Charts: Use your favorite charting engine: Excel charts, Matplotlib, or Plotly.

	Images: You can include both raster (e.g., png) or vector (e.g., svg) graphics, including dynamically generated ones, e.g., QR codes or plots.

	Multi-column Layout: Split your content up into e.g. a classic two column layout by using Frames.

	Single Template: Generate reports in various languages, for various funds etc. based on a single template.

	PDF Report: Generate PDF reports automatically and “print” the reports on PDFs in your corporate layout for pixel-perfect results including headers, footers, backgrounds and borderless graphics.

	Easy Pre-processing: Since everything is based on Python, you can connect with literally any data source and clean it with pandas or some other library.

	Easy Post-processing: Again, with Python you’re just a few lines of code away from sending an email with the reports as attachment or uploading the reports to your web server, S3 bucket etc.

Quickstart

You can work on the sheet, book or app level:

	mysheet.render_template(**data): replaces the placeholders in mysheet

	mybook.render_template(**data): replaces the placeholders in all sheets of mybook

	myapp.render_template(template, output, **data): convenience wrapper that copies a template book before replacing the placeholder with the values. Since this approach allows you to work with hidden Excel instances, it is the most commonly used method for production.

Let’s go through a typical example: start by creating the following Python script report.py:

report.py
from pathlib import Path

import pandas as pd
import xlwings as xw

We'll place this file in the same directory as the Excel template
this_dir = Path(__file__).resolve().parent

data = dict(
 title='MyTitle',
 df=pd.DataFrame(data={'one': [1, 2], 'two': [3, 4]})
)

Change visible=False to run this in a hidden Excel instance
with xw.App(visible=True) as app:
 book = app.render_template(this_dir / 'mytemplate.xlsx',
 this_dir / 'myreport.xlsx',
 **data)
 book.to_pdf(this_dir / 'myreport.pdf')

Then create the following Excel file called mytemplate.xlsx:

[image: ../../_images/mytemplate.png]

Run the Python script (or run the code from a Jupyter notebook):

python report.py

This will copy the template and create the following output by replacing the variables in double curly braces with
the value from the Python variable:

[image: ../../_images/myreport.png]

If you like, you could also create a classic xlwings tool to call this script or you could design a GUI app by using a framework like PySimpleGUI and turn it into an executable by using a freezer (e.g., PyInstaller). This, however, is beyond the scope of this tutorial.

备注

By default, xlwings Reports overwrites existing values in templates if there is not enough free space for your variable. If you want your rows to dynamically shift according to the height of your array, use Frames.

备注

Unlike xlwings, xlwings Reports never writes out the index of pandas DataFrames. If you need the index to appear in Excel, use df.reset_index(), see DataFrames.

See also render_templates (API reference).

Render Books and Sheets

Sometimes, it’s useful to render a single book or sheet instead of using the myapp.render_template method. This is a workbook stored as Book1.xlsx:

[image: ../../_images/sheet_rendering1.png]

Running the following code:

import xlwings as xw

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(title='A Demo!', table=[[1, 2], [3, 4]])
book.to_pdf()

Copies the template sheet first and then fills it in:

[image: ../../_images/sheet_rendering2.png]

See also the mysheet.render_template (API reference) and mybook.render_template (API reference).

Added in version 0.22.0.

Components and Filters

DataFrames

To write DataFrames in a consistent manner to Excel, xlwings Reports ignores the DataFrame indices. If you need to pass the index over to Excel, reset the index before passing in the DataFrame to render_template: df.reset_index().

When working with pandas DataFrames, the report designer often needs to tweak the data. Thanks to filters, they can do the most common operations directly in the template without the need to write Python code. A filter is added to the placeholder in Excel by using the pipe character: {{ myplaceholder | myfilter }}. You can combine multiple filters by using multiple pipe characters: they are applied from left to right, i.e. the result from the first filter will be the input for the next filter. Let’s start with an example before listing each filter with its details:

import xlwings as xw
import pandas as pd

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
df = pd.DataFrame({'one': [1, 2, 3], 'two': [4, 5, 6], 'three': [7, 8, 9]})
sheet.render_template(df=df)

[image: ../../_images/reports_df_filters.png]

DataFrames Filters

noheader

Hide the column headers

Example:

{{ df | noheader }}

header

Only return the header

Example:

{{ df | header }}

sortasc

Sort in ascending order (indices are zero-based)

Example: sort by second, then by first column:

{{ df | sortasc(1, 0) }}

sortdesc

Sort in descending order (indices are zero-based)

Example: sort by first, then by second column in descending order:

{{ df | sortdesc(0, 1) }}

columns

Select/reorder columns and insert empty columns (indices are zero-based)

See also: colslice

Example: introduce an empty column (None) as the second column and switch the order of the second and third column:

{{ df | columns(0, None, 2, 1) }}

备注

Merged cells: you’ll also have to introduce empty columns if you are using merged cells in your Excel template.

mul, div, sum, sub

Apply an arithmetic operation (multiply, divide, sum, subtract) on a column (indices are zero-based)

Syntax:

{{ df | operation(value, col_ix[, fill_value]) }}

fill_value is optional and determines whether empty cells are included in the operation or not. To include empty values and thus make it behave like in Excel, set it to 0.

Example: multiply the first column by 100:

{{ df | mul(100, 0) }}

Example: multiply the first column by 100 and the second column by 2:

{{ df | mul(100, 0) | mul(2, 1) }}

Example: add 100 to the first column including empty cells:

{{ df | add(100, 0, 0) }}

maxrows

Maximum number of rows (currently, only sum is supported as aggregation function)

If your DataFrame has 12 rows and you use maxrows(10, "Other") as filter, you’ll get a table that shows the first 9 rows as-is and sums up the remaining 3 rows under the label Other. If your data is unsorted, make sure to call sortasc/sortdesc first to make sure the correct rows are aggregated.

See also: aggsmall, head, tail, rowslice

Syntax:

{{ df | maxrows(number_rows, label[, label_col_ix]) }}

label_col_ix is optional: if left away, it will label the first column of the DataFrame (index is zero-based)

Examples:

{{ df | maxrows(10, "Other") }}
{{ df | sortasc(1)| maxrows(5, "Other") }}
{{ df | maxrows(10, "Other", 1) }}

aggsmall

Aggregate rows with values below a certain threshold (currently, only sum is supported as aggregation function)

If the values in the specified row are below the threshold values, they will be summed up in a single row.

See also: maxrows, head, tail, rowslice

Syntax:

{{ df | aggsmall(threshold, threshold_col_ix, label[, label_col_ix][, min_rows]) }}

label_col_ix and min_rows are optional: if label_col_ix is left away, it will label the first column of the DataFrame (indices are zero-based). min_rows has the effect that it skips rows from aggregating if it otherwise the number of rows falls below min_rows. This prevents you from ending up with only one row called “Other” if you only have a few rows that are all below the threshold. NOTE that this parameter only makes sense if the data is sorted!

Examples:

{{ df | aggsmall(0.1, 2, "Other") }}
{{ df | sortasc(1) | aggsmall(0.1, 2, "Other") }}
{{ df | aggsmall(0.5, 1, "Other", 1) }}
{{ df | aggsmall(0.5, 1, "Other", 1, 10) }}

head

Only show the top n rows

See also: maxrows, aggsmall, tail, rowslice

Example:

{{ df | head(3) }}

tail

Only show the bottom n rows

See also: maxrows, aggsmall, head, rowslice

Example:

{{ df | tail(5) }}

rowslice

Slice the rows

See also: maxrows, aggsmall, head, tail

Syntax:

{{ df | rowslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show rows 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is including and the end is excluding):

{{ df | rowslice(2, 5) }}

Example: Show rows 2 to the end of the DataFrame:

{{ df | rowslice(2) }}

colslice

Slice the columns

See also: columns

Syntax:

{{ df | colslice(start_index[, stop_index]) }}

stop_index is optional: if left away, it will stop at the end of the DataFrame

Example: Show columns 2 to 4 (indices are zero-based and interval is half-open, i.e. the start is including and the end is excluding):

{{ df | colslice(2, 5) }}

Example: Show columns 2 to the end of the DataFrame:

{{ df | colslice(2) }}

vmerge

Merge cells vertically for adjacent cells with the same value — can be used to represent hierarchies

备注

The vmerge filter does not work in Excel tables, as Excel tables don’t support merged cells!

[image: ../../_images/vmerge.png]

Note that the screenshot uses 4 Frames and the text is centered/vertically aligned in the template.

Syntax (arguments are optional):

{{ df | vmerge(col_index1, col_index2, ...) }}

Example (default): Hierarchical mode across all columns — this is helpful if the number of columns is dynamic. In hierarchical mode, cells are merged vertically in the first column (indices are zero-based) and cells in the next columns are merged only within the merged cells of the previous column:

{{ df | vmerge }}

Example: Hierarchical mode across the specified columns only:

{{ df | vmerge(0, 1) }}

Example: Independent mode: If you want to merge cells within columns independently of each other, use the filter multiple times. This sample merge cells vertically in the first two columns (indices are zero-based):

{{ df | vmerge(0) | vmerge(1) }}

formatter

备注

You can’t use formatters with Excel tables.

The formatter filter accepts the name of a function. The function will be called after writing the values to Excel and allows you to easily style the range in a very flexible way:

{{ df | formatter("myformatter") }}

The formatter’s signature is: def myformatter(rng, df) where rng corresponds to the range where the original DataFrame df is written to. Adding type hints (as shown in the example below) will help your editor with auto-completion.

备注

Within the reports framework, formatters need to be decorated with xlwings.reports.formatter (see example below)! This isn’t necessary though when you use them as part of the standard xlwings API.

Let’s run through the Quickstart example again, amended by a formatter.

Example:

from pathlib import Path

import pandas as pd
import xlwings as xw
from xlwings.reports import formatter

We'll place this file in the same directory as the Excel template
this_dir = Path(__file__).resolve().parent

@formatter
def table(rng: xw.Range, df: pd.DataFrame):
 """This is the formatter function"""
 # Header
 rng[0, :].color = "#A9D08E"

 # Rows
 for ix, row in enumerate(rng.rows[1:]):
 if ix % 2 == 0:
 row.color = "#D0CECE" # Even rows

 # Columns
 for ix, col in enumerate(df.columns):
 if 'two' in col:
 rng[1:, ix].number_format = '0.0%'

data = dict(
 title='MyTitle',
 df=pd.DataFrame(data={'one': [1, 2, 3, 4], 'two': [5, 6, 7, 8]})
)

Change visible=False to run this in a hidden Excel instance
with xw.App(visible=True) as app:
 book = app.render_template(this_dir / 'mytemplate.xlsx',
 this_dir / 'myreport.xlsx',
 **data)

[image: ../../_images/formatter_reports.png]

Excel Tables

Using Excel tables is the recommended way to format tables as the styling can be applied dynamically across columns and rows. You can also use themes and apply alternating colors to rows/columns. Go to Insert > Table and make sure that you activate My table has headers before clicking on OK. Add the placeholder as usual on the top-left of your Excel table (note that this example makes use of Frames):

[image: ../../_images/excel_table_template.png]

Running the following script:

import pandas as pd

nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],
 columns=[f'col {i}' for i in range(ncols)])

with xw.App(visible=True) as app:
 book = app.render_template('template.xlsx', 'output.xlsx', df=df)

Will produce the following report:

[image: ../../_images/excel_table_report.png]

Headers of Excel tables are relatively strict, e.g. you can’t have multi-line headers or merged cells. To get around these limitations, uncheck the Header Row checkbox under Table Design and use the noheader filter (see DataFrame filters). This will allow you to design your own headers outside of the Excel Table.

备注

	At the moment, you can only assign pandas DataFrames to tables

Excel Charts

To use Excel charts in your reports, follow this process:

	Add some sample/dummy data to your Excel template:

[image: ../../_images/reports_chart1.png]

	If your data source is dynamic, turn it into an Excel Table (Insert > Table). Make sure you do this before adding the chart in the next step.

[image: ../../_images/reports_chart2.png]

	Add your chart and style it:

[image: ../../_images/reports_chart3.png]

	Reduce the Excel table to a 2 x 2 range and add the placeholder in the top-left corner (in our example {{ chart_data }}) . You can leave in some dummy data or clear the values of the Excel table:

[image: ../../_images/reports_chart4.png]

	Assuming your file is called mytemplate.xlsx and your sheet template like on the previous screenshot, you can run the following code:

import xlwings as xw
import pandas as pd

df = pd.DataFrame(data={'Q1': [1000, 2000, 3000],
 'Q2': [4000, 5000, 6000],
 'Q3': [7000, 8000, 9000]},
 index=['North', 'South', 'West'])

book = xw.Book("mytemplate.xlsx")
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(chart_data=df.reset_index())

This will produce the following report, with the chart source correctly adjusted:

[image: ../../_images/reports_chart5.png]

备注

If you don’t want the source data on your report, you can place it on a separate sheet. It’s easiest if you add and design the chart on the separate sheet, before cutting the chart and pasting it on your report template. To prevent the data sheet from being printed when calling to_pdf, you can give it a name that starts with # and it will be ignored. NOTE that if you start your sheet name with ##, it won’t be printed but also not rendered!

Images

Images are inserted so that the cell with the placeholder will become the top-left corner of the image. For example, write the following placeholder into you desired cell: {{ logo }}, then run the following code:

import xlwings as xw
from xlwings.reports import Image

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(logo=Image(r'C:\path\to\logo.png'))

备注

Image also accepts a pathlib.Path object instead of a string.

If you want to use vector-based graphics, you can use svg on Windows and pdf on macOS. You can control the appearance of your image by applying filters on your placeholder.

Available filters for Images:

	width: Set the width in pixels (height will be scaled proportionally).

Example:

{{ logo | width(200) }}

	height: Set the height in pixels (width will be scaled proportionally).

Example:

{{ logo | height(200) }}

	width and height: Setting both width and height will distort the proportions of the image!

Example:

{{ logo | height(200) | width(200) }}

	scale: Scale your image using a factor (height and width will be scaled proportionally).

Example:

{{ logo | scale(1.2) }}

	top: Top margin. Has the effect of moving the image down (positive pixel number) or up (negative pixel number), relative to the top border of the cell. This is very handy to fine-tune the position of graphics object.

See also: left

Example:

{{ logo | top(5) }}

	left: Left margin. Has the effect of moving the image right (positive pixel number) or left (negative pixel number), relative to the left border of the cell. This is very handy to fine-tune the position of graphics object.

See also: top

Example:

{{ logo | left(5) }}

Matplotlib and Plotly Plots

For a general introduction on how to handle Matplotlib and Plotly, see also: Matplotlib & Plotly Charts. There, you’ll also find the prerequisites to be able to export Plotly charts as pictures.

Matplotlib

Write the following placeholder in the cell where you want to paste the Matplotlib plot: {{ lineplot }}. Then run the following code to get your Matplotlib Figure object:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

Plotly

Plotly works practically the same:

import plotly.express as px
import xlwings as xw

fig = px.line(x=["a","b","c"], y=[1,3,2], title="A line plot")
book = xw.Book('Book1.xlsx')
sheet = book.sheets['template'].copy(name='report')
sheet.render_template(lineplot=fig)

To change the appearance of the Matplotlib or Plotly plot, you can use the same filters as with images. Additionally, you can use the following filter:

	format: allows to change the default image format from png to e.g., vector, which will export the plot as vector graphics (svg on Windows and pdf on macOS). As an example, to make the chart smaller and use the vector format, you would write the following placeholder:

{{ lineplot | scale(0.8) | format("vector") }}

Text

You can work with placeholders in text that lives in cells or shapes like text boxes. If you have more than just a few words, text boxes usually make more sense as they won’t impact the row height no matter how you style them. Using the same gird formatting across worksheets is key to getting a consistent multi-page report.

Simple Text without Formatting

Added in version 0.21.4.

You can use any shapes like rectangles or circles, not just text boxes:

with xw.App(visible=True) as app:
 app.render_template('template.xlsx', 'output.xlsx', temperature=12.3)

This code turns this template:

[image: ../../_images/shape_text_template.png]

into this report:

[image: ../../_images/shape_text_report.png]

While this works for simple text, you will lose the formatting if you have any. To prevent that, use a Markdown object, as explained in the next section.

If you will be printing on a PDF Layout with a dark background, you may need to change the font color to white. This has the nasty side effect that you won’t see anything on the screen anymore. To solve that issue, use the fontcolor filter:

	fontcolor: Change the color of the whole (!) cell or shape. The primary purpose of this filter is to make white fonts visible in Excel. For most other colors, you can just change the color in Excel itself. Note that this filter changes the font of the whole cell or shape and only has an effect if there is just a single placeholder—if you need to manipulate single words, use Markdown instead, see below. Black and white can be used as word, otherwise use a hex notation of your desired color.

Example:

{{ mytitle | fontcolor("white") }}
{{ mytitle | fontcolor("#efefef") }}

Markdown Formatting

Added in version 0.23.0.

You can format text in cells or shapes via Markdown syntax. Note that you can also use placeholders in the Markdown text that will take the values from the variables you supply via the render_template method:

import xlwings as xw
from xlwings.reports import Markdown

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

{{ second_title }}

This paragraph has a line break.
Another line.
"""

The first sheet requires a shape as shown on the screenshot
sheet = xw.sheets.active
sheet.render_template(myplaceholder=Markdown(mytext),
 second_title='Another Title')

This will render this template with the placeholder in a cell and a shape:

[image: ../../_images/markdown_template.png]

Like this (this uses the default formatting):

[image: ../../_images/markdown1.png]

For more details about Markdown, especially about how to change the styling, see Markdown Formatting.

Date and Time

If a placeholder corresponds to a Python datetime object, by default, Excel will format that cell as a date-formatted cell. This isn’t always desired as the formatting depends on the user’s regional settings. To prevent that, format the cell in the Text format or use a TextBox and use the datetime filter to format the date in the desired format. The datetime filter accepts the strftime syntax—for a good reference, see e.g., strftime.org [https://strftime.org/].

To control the language of month and weekday names, you’ll need to set the locale in your Python code. For example, for German, you would use the following:

import locale
locale.setlocale(locale.LC_ALL, 'de_DE')

Example: The default formatting is December 1, 2020:

{{ mydate | datetime }}

Example: To apply a specific formatting, provide the desired format as filter argument. For example, to get it in the 12/31/20 format:

{{ mydate | datetime("%m/%d/%y") }}

Number Format

The format filter allows you to format numbers by using the same mechanism as offered by Python’s f-strings. For example, to format the placeholder performance=0.13 as 13.0%, you would do the following:

{{ performance | format(".1%") }}

This corresponds to the following f-string in Python: f"{performance:0.1%}". To get an introduction to the formatting string syntax, have a look at the Python String Format Cookbook [https://mkaz.blog/code/python-string-format-cookbook/].

Frames: Multi-column Layout

Frames are vertical containers in which content is being aligned according to their height. That is,
within Frames:

	Variables do not overwrite existing cell values as they do without Frames.

	Formatting is applied dynamically, depending on the number of rows your object uses in Excel

To use Frames, insert a Note with the text <frame> into row 1 of your Excel template wherever you want a new dynamic column
to start. Frames go from one <frame> to the next <frame> or the right border of the used range.

How Frames behave is best demonstrated with an example:
The following screenshot defines two frames. The first one goes from column A to column E and the second one
goes from column F to column I, since this is the last column that is used.

[image: ../../_images/frame_template.png]

You can define and format DataFrames by formatting

	one header and

	one data row

If you use the noheader filter for DataFrames, you can leave the header away and format a single data row.
Alternatively, you could also use Excel Tables, as they can make formatting easier.

Running the following code:

import pandas as pd

df1 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df2 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]])

data = dict(df1=df1.reset_index(), df2=df2.reset_index())

with xw.App(visible=True) as app:
 book = app.render_template('my_template.xlsx',
 'my_report.xlsx',
 **data)

will generate this report:

[image: ../../_images/frame_report.png]

PDF Layout

Using the layout parameter in the to_pdf() command, you can “print” your Excel workbook on professionally designed PDFs for pixel-perfect reports in your corporate layout including headers, footers, backgrounds and borderless graphics:

import pandas as pd

df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

with xw.App(visible=True) as app:
 book = app.render_template('template.xlsx',
 'report.xlsx',
 month_year = 'May 21',
 summary_text = '...')
 book.to_pdf('report.pdf', layout='monthly_layout.pdf')

Note that the layout PDF either needs to consist of a single page (will be used for each reporting page) or will need to have the same number of pages as the report (each report page will be printed on the corresponding layout page).

To create your layout PDF, you can use any program capable of exporting a file in PDF format such as PowerPoint or Word, but for the best results consider using a professional desktop publishing software such as Adobe InDesign.

[image: ../../_images/reports_pdf_layout.png]

Markdown Formatting

This feature requires xlwings PRO and at least v0.23.0.

Markdown offers an easy and intuitive way of styling text components in your cells and shapes. For an introduction to Markdown, see e.g., Mastering Markdown [https://guides.github.com/features/mastering-markdown/].

Markdown support is in an early stage and currently only supports:

	First-level headings

	Bold (i.e., strong)

	Italic (i.e., emphasis)

	Unordered lists

It doesn’t support nested objects yet such as 2nd-level headings, bold/italic within bullet points or nested bullet points.

Let’s go through an example to see how everything works!

from xlwings.reports import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext)

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text:

[image: ../../_images/markdown1.png]

But why not make things a tad more stylish? By providing a MarkdownStyle object, you can define your style. Let’s change the previous example like this:

from xlwings.reports import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]

Styling
style = MarkdownStyle()
style.h1.font.color = (255, 0, 0)
style.h1.font.size = 14
style.h1.font.name = 'Comic Sans MS' # No, that's not a font recommendation...
style.h1.blank_lines_after = 0
style.unordered_list.bullet_character = '\N{heavy black heart}' # Emojis are fun!

Range
sheet['A1'].clear()
sheet['A1'].value = Markdown(mytext, style) # <= provide your style object here

Shape: The following expects a shape like a Rectangle on the sheet
sheet.shapes[0].text = ""
sheet.shapes[0].text = Markdown(mytext, style)

Here is the output of this:

[image: ../../_images/markdown2.png]

You can override all properties, i.e., you can change the emphasis from italic to a red font or anything else you want:

>>> style.strong.bold = False
>>> style.strong.color = (255, 0, 0)
>>> style.strong
strong.color: (255, 0, 0)

Markdown objects can also be used with template-based reporting, see Quickstart.

备注

macOS currently doesn’t support the formatting (bold, italic, color etc.) of Markdown text due to a bug with AppleScript/Excel. The text will be rendered correctly though, including bullet points.

See also the API reference:

	Markdown class

	MarkdownStyle class

xlwings Reader

This feature requires xlwings PRO and at least v0.28.0.

xlwings PRO comes with an ultra fast Excel file reader. Compared with pandas.read_excel(), you should be able to see speedups anywhere between 5 to 25 times when reading a single sheet. The exact speed will depend on your content, file format, and Python version. The following Excel file formats are supported:

	xlsx / xlsm / xlam

	xlsb

	xls

Other advantages include:

	Support for named ranges.

	Support for dynamic ranges via myrange.expand() or myrange.options(expand="table"), respectively.

	Support for converters so you can read in ranges not just as pandas DataFrames, but also as NumPy arrays, lists, scalar values, dictionaries, etc.

	You can read out cell errors like #DIV/0! or #N/A as strings instead of converting them all into NaN

	Datetime conversion is supported across all file formats, including xlsb.

Unlike the classic (“interactive”) use of xlwings that requires Excel to be installed, reading a file doesn’t depend on an installation of Excel and therefore works everywhere where Python runs. However, reading directly from a file requires the workbook to be saved before xlwings is able to pick up any changes.

Reading a specific range

To open a file in read mode, provide the mode="r" argument: xw.Book("myfile.xlsx", mode="r"). You usually want to use Book as a context manager so that the file is automatically closed and resources cleaned up once the code leaves the body of the with statement:

import xlwings as xw

with xw.Book("myfile.xlsx", mode="r") as book:
 sheet1 = book.sheets[0]
 data = sheet1["A1:B2"].value

If you don’t use the with statement, make sure to close the book manually via book.close().

Reading an entire sheet

To read an entire sheet, use the cells property:

with xw.Book("myfile.xlsx", mode="r") as book:
 sheet1 = book.sheets[0]
 data = sheet1.cells.value

Converters: DataFrames etc.

You can use the usual converters, for example to read in a range as a DataFrame:

with xw.Book("myfile.xlsx", mode="r") as book:
 sheet1 = book.sheets[0]
 df = sheet1["A1:B2"].options("df").value
 # As usual, you can also provide more options
 df = sheet1["A1:B2"].options("df", index=False).value

For more details, see 转换器及选项.

Named Ranges

Named ranges can be accessed like so:

with xw.Book("myfile.xlsx", mode="r") as book:
 sheet1 = book.sheets[0]
 data = sheet1["myname"].value # get values
 address = sheet1["myname"].address # get address

Alternatively, you can also access them via the Names collection:

with xw.Book("myfile.xlsx", mode="r") as book:
 for name in book.names:
 print(name.refers_to_range.value)

Dynamic Ranges

You can make use of the usual range expansion to read in a range of dynamic size:

with xw.Book("myfile.xlsx", mode="r") as book:
 sheet1 = book.sheets[0]
 data = sheet1["A1"].expand().value

Cell errors

While xlwings reads in cell errors such as #N/A as None by default, you may want to read them in as strings if you’re specifically looking for these by using the err_to_str option:

with xw.Book("myfile.xlsx", mode="r") as book:
 sheet1 = book.sheets[0]
 data = sheet1["A1:B2"].option(err_to_str=True).value

Limitations

	The reader is currently only available via pip install xlwings. Installation via conda is not yet supported, but you can still use pip to install xlwings into a Conda environment!

	Dynamic ranges: myrange.expand() is currently inefficient, so will slow down the reading considerably if the dynamic range is big.

	Named ranges: Named ranges with sheet scope are currently not shown with their proper name: E.g. mybook.names[0].name will show the name mylocalname instead of including the sheet name like so Sheet1!mylocalname. Along the same lines, the names property can only be accessed via book object, not via sheet object. Other defined names (formulas and constants) are currently not supported.

	Excel tables: Accessing data via table names isn’t supported at the moment.

	Options: except for err_to_str, non-default options are currently inefficient and will slow down the read operation. This includes dates, empty, and numbers.

	Formulas: currently only the cell values are supported, but not the cell formulas.

	This is only a file reader, writing files is currently not supported.

1-click Installer/Embedded Code

xlwings PRO offers a simple way to deploy your xlwings tools to your end users without the usual hassle that’s involved when installing and configuring Python and xlwings. End users don’t need to know anything about Python as they only need to:

	Run an installer (one installer can power many different Excel workbooks)

	Use the Excel workbook as if it was a normal macro-enabled workbook

Advantages:

	Zero-config: The end user doesn’t have to configure anything throughout the whole process.

	No add-in required: No installation of the xlwings add-in required.

	Easy to update: If you want to deploy an update of your Python code, it’s often good enough to distribute a new version of your workbook.

	No conflicts: The installer doesn’t touch any environment variables or registry keys and will therefore not conflict with any existing Python installations.

	Deploy key: The release command will add a deploy key as your LICENSE_KEY. A deploy key won’t expire and end users won’t need a paid subscription.

You as a developer need to create the one-click installer and run the xlwings release command on the workbook. Let’s go through these two steps in detail!

There is a video walkthrough at: https://www.youtube.com/watch?v=yw36VT_n1qg

Step 1: One-Click Installer

As a subscriber of one of our paid plans [https://www.xlwings.org/pricing], you will get access to a private GitHub repository, where you can build your one-click installer:

	Update your requirements.txt file with your dependencies: in your repository, start by clicking on the requirements.txt file. This will open the following screen where you can click on the pencil icon to edit the file (if you know your way around Git, you can also clone the repository and use your local commit/push workflow instead):

[image: ../_images/gh_edit_requirements.png]

After you’re done with your edits, click on the green Commit changes button.

备注

If you are unsure about your dependencies, it’s best to work locally with a virtual or Conda environment. In the virtual/Conda environment, only install packages that you need, then run: pip list --format=freeze.

	On the right-hand side of the landing page, click on Releases:

[image: ../_images/gh_releases.png]

On the next screen, click on Draft a new release (note, the very first time, you will see a green button called Create a new release instead):

[image: ../_images/gh_create_release.png]

This will bring up the following screen, where you’ll only have to fill in a Tag version (e.g., 1.0.0), then click on the green button Publish release:

[image: ../_images/gh_publish_release.png]

After 3-5 minutes (you can follow the progress under the Actions tab), you’ll find the installer ready for download under Releases (ignore the zip and tar.gz files):

[image: ../_images/gh_installer_download.png]

备注

The one-click installer is a normal Python installation that you can use with multiple Excel workbooks. Hence, you don’t need to create a separate installer for each workbook as long as they all work with the same set of dependencies as defined by the requirements.txt file.

Step 2: Release Command (CLI)

The release command is part of the xlwings CLI (command-line client) and will prepare your Excel file to work with the one-click installer generated in the previous step. Before anything else:

	Make sure that you have enabled Trust access to the VBA project object model under File > Options > Trust Center > Trust Center Settings > Macro Settings. You only need to do this once and since this is a developer setting, your end users won’t need to bother about this. This setting is needed so that xlwings can update the Excel file with the correct version of the VBA code.

	Run the installer from the previous step. This will not interfere with your existing Python installation as it won’t touch your environment variables or registry. Instead, it will only write to the following folder: %LOCALAPPDATA%\<installer-name>.

	Make sure that your local version of xlwings corresponds to the version of xlwings in the requirements.txt from the installer. The easiest way to double-check this is to run pip freeze on a Command Prompt or Anaconda Prompt. If your local version of xlwings differs, install the same version as the installer uses via: pip install xlwings==<version from installer>.

To work with the release command, you should have your workbook in the xlsm format next to your Python code:

myworkbook.xlsm
mymodule_one.py
mypackage/
 mymodule_two.py
...

Make sure that your Excel workbook is the active workbook, then run the following command on a Command/Anaconda Prompt:

xlwings release

If this is the first time you run this command, you will be asked a few questions. If you are shown a [Y/n], you can hit Enter to accept the default as expressed by the capitalized letter:

	Name of your one-click installer? Type in the name of your one-click installer. If you want to use a different Python distribution (e.g., Anaconda), you can leave this empty (but you will need to update the xlwings.conf sheet with the Conda settings once the release command has been run).

	Embed your Python code? [Y/n] This will copy the Python code into the sheets of the Excel file.

	Hide the config sheet? [Y/n] This will hide the xlwings.conf sheet.

	Hide the sheets with the embedded Python code? [Y/n] If you embed your Python code, this will hide all sheets with a .py ending.

	Allow your tool to run without the xlwings add-in? [Y/n] This will remove the VBA reference to xlwings and copy in the xlwings VBA modules so that the end users don’t need to have the xlwings add-in installed. Note that in this case, you will need to have your RunPython calls bound to a button as you can’t use the Ribbon’s Run main button anymore.

Whatever answers you pick, you can always change them later by editing the xlwings.conf sheet or by deleting the xlwings.conf sheet and re-running the xlwings release command. If you go with the defaults, you only need to provide your end users with the one-click installer and the Excel workbook, no external Python files are required.

Updating a Release

To edit your Python code, it’s easiest to work with external Python files and not with embedded code. To stop xlwings from using the embedded code, simply delete all sheets with a .py ending and the workbook will again use the external Python modules. Once you are done editing the files, simply run the xlwings release command again, which will embed the updated code. If you haven’t done any changes to your dependencies (i.e., you haven’t upgraded a package or introduced a new one), you only need to redeploy your Excel workbook to have the end users get the update.

If you did make changes to the requirements.txt and release a new one-click installer, you will need to have the users install the new version of the installer first.

备注

Every time you change the xlwings version in requirements.txt of your one-click installer, make sure to upgrade your local xlwings installatino to the same version and run xlwings release again!

Embedded Code Explained

When you run the xlwings release command, your code will be embedded automatically (except if you switch this behavior off). You can, however, also embed code directly: on a command line, run the following command:

xlwings code embed

This will import all Python files from the current directory and paste them into Excel sheets of the currently active workbook. Now, you can use RunPython as usual: RunPython "import mymodule;mymodule.myfunction()".

Note that you can have multiple Excel sheets and import them like normal Python files. Consider this example:

[image: ../_images/embedded_code1.png]

[image: ../_images/embedded_code2.png]

You can call the main function from VBA like so:

Sub RandomNumbers()
 RunPython "import random_numbers;random_numbers.main()"
End Sub

备注

	UDFs modules don’t have to be added to the UDF Modules explicitly when using embedded code. However, in contrast to how it works with external files, you currently need to re-import the functions when you change them.

	While you can hide your sheets with your code, they will be written to a temporary directory in clear text.

Changelog

v0.31.1 (Apr 2, 2024)

	Enhancement xlwings Server: The xlwings.js functions now await the Office.onReady event and the alert endpoint does not need to handle line breaks anymore (GH 2425 [https://github.com/xlwings/xlwings/issues/2425]).

v0.31.0 (Mar 26, 2024)

	Feature PRO This release adds support for streaming functions (the successor of RealTimeData/RTD functions) in connection with xlwings Server and Office.js add-ins. A streaming function is defined as an asynchronous generator (GH 2423 [https://github.com/xlwings/xlwings/issues/2423]):

import asyncio
from xlwings import server

@server.func
async def streaming_random(rows, cols):
 """A streaming function pushing updates of a random DataFrame every second"""
 rng = np.random.default_rng()
 while True:
 matrix = rng.standard_normal(size=(rows, cols))
 df = pd.DataFrame(matrix, columns=[f"col{i+1}" for i in range(matrix.shape[1])])
 yield df
 await asyncio.sleep(1)

For more details, see: Streaming functions (“RTD functions”)

v0.30.16 (Mar 16, 2024)

	Bug Fix Fixed a regression with files synced to Sharepoint that was introduced in v0.30.14 (GH 2413 [https://github.com/xlwings/xlwings/issues/2413]).

	Enhancement xw.arg now allows you to use *args as argument in addition to args for converting multiple arguments as provided by *args (GH 2407 [https://github.com/xlwings/xlwings/issues/2407]).

v0.30.15 (Feb 22, 2024)

	Enhancement PRO New xlwings Server methods: Range.clear(), Range.clear_formats(), Sheet.clear(), Sheet.clear_contents(), Sheet.clear_formats(), and Sheet.delete() (GH 2325 [https://github.com/xlwings/xlwings/issues/2325]).

	Bug Fix PRO Custom functions now handle *args properly and allow to use the @server.arg("*args") decorator (GH 2398 [https://github.com/xlwings/xlwings/issues/2398]).

	Bug Fix PRO Added xlwings.getActiveBookName as convenience method in xlwings.js (GH 2405 [https://github.com/xlwings/xlwings/issues/2405]).

v0.30.14 (Feb 21, 2024)

	Bug Fix When files are auto-saved to SharePoint, the xlwings configuration is now checked before trying to derive the local path via registry/env variables (GH 2396 [https://github.com/xlwings/xlwings/issues/2396]).

	Enhancement PRO xlwings Reports now chunks the writing of big ranges (GH 2384 [https://github.com/xlwings/xlwings/issues/2384]).

	Enhancement PRO Office.js add-ins can now use xlwings.getAccessToken() via xlwings.js to acquire an Entra ID access token (GH 2399 [https://github.com/xlwings/xlwings/issues/2399]).

v0.30.13 (Dec 12, 2023)

	Enhancement Wheels are now built for Python 3.12 (GH 2341 [https://github.com/xlwings/xlwings/issues/2341]).

	Bug Fix PRO The timeout argument in the RunRemotePython call has been fixed for high values (GH 2363 [https://github.com/xlwings/xlwings/issues/2363]).

	Bug Fix Various bug fixes (GH 2335 [https://github.com/xlwings/xlwings/issues/2335], GH 2356 [https://github.com/xlwings/xlwings/issues/2356]).

	Breaking Change PRO Permissioning has been removed and replaced by the authentication in Office.js add-ins (GH 2336 [https://github.com/xlwings/xlwings/issues/2336]).

v0.30.12 (Sep 18, 2023)

	Feature New CLI command xlwings py edit: this allows you to edit Microsoft’s Python in Excel cells (=PY) in an external editor of your choice with auto-sync (GH 2331 [https://github.com/xlwings/xlwings/issues/2331]).

v0.30.11 (Aug 26, 2023)

	Bug Fix Enabled a conflict-free co-existence with Microsoft’s new Python in Excel feature as xlwings was internally also using =PY(). This requires that you re-import your User-defined functions (UDFs) (GH 2319 [https://github.com/xlwings/xlwings/issues/2319]).

	Breaking Change xlwings Server: The @pro decorators have been deprecated in favor of @server decorators, so e.g., functions are now decorated with @server.func instead of @pro.func. The latter keeps working though for now (GH 2320 [https://github.com/xlwings/xlwings/issues/2320]).

v0.30.10 (Jun 23, 2023)

	Breaking Change Dropped support for Python 3.7

	Enhancement PRO xlwings Server: added custom_function_call_path parameter in xw.pro.custom_functions_code() (GH 2289 [https://github.com/xlwings/xlwings/issues/2289]).

v0.30.9 (Jun 12, 2023)

	Enhancement PRO Custom functions: added support for help_url, which allows you to link to more information via the function wizard/formula builder. See Help URL (GH 2283 [https://github.com/xlwings/xlwings/issues/2283]).

	Bug Fix PRO Fixed a bug with sheet-scoped named ranges in case the scope and refers_to point to different sheets (GH 2280 [https://github.com/xlwings/xlwings/issues/2280]).

v0.30.8 (May 27, 2023)

	Enhancement PRO xlwings File Reader: when reading xls and xlsb formats, date cells are now properly converted into datetime objects (GH 2059 [https://github.com/xlwings/xlwings/issues/2059]).

v0.30.7 (May 18, 2023)

	Enhancement PRO xlwings Server: added named range support for Office Scripts, Office.js, and Google Apps Script clients in addition to the VBA client (GH 2257 [https://github.com/xlwings/xlwings/issues/2257]).

	Enhancement PRO xlwings Server: the documentation has been improved to point out that the book object has to be closed at the end of a request in oder to prevent a memory leak. This can be done via mybook.close() or by using Book as a context manager (with xw.Book(json=data) as book:`). Note that your framework may offer better means to automatically close the book at the end of a request via middleware or similar mechanism. As an example, for FastAPI, you can use dependency injection. See Introduction (GH 2260 [https://github.com/xlwings/xlwings/issues/2260]).

v0.30.6 (May 5, 2023)

	Bug Fix PRO xlwings Server (Office Scripts client): named ranges with sheet scope were ignored (GH 2245 [https://github.com/xlwings/xlwings/issues/2245]).

	Bug Fix PRO xlwings Server (Office.js client): excluded sheets were still loading sheet values (GH 2251 [https://github.com/xlwings/xlwings/issues/2251]).

v0.30.5 (Apr 25, 2023)

	Enhancement PRO xlwings Server: this version adds picture support for Office Scripts and Office.js, meaning that pictures are now supported across all clients (GH 2235 [https://github.com/xlwings/xlwings/issues/2235] and GH 2238 [https://github.com/xlwings/xlwings/issues/2238]).

	Enhancement PRO xlwings Server: Excel tables can now be accessed via the mysheet['MyTable'] syntax in addition to mysheet.tables (GH 2229 [https://github.com/xlwings/xlwings/issues/2229]).

	Bug Fix PRO Stability fixes with xw.apps.cleanup() (GH 2225 [https://github.com/xlwings/xlwings/issues/2225] and GH 2239 [https://github.com/xlwings/xlwings/issues/2239]).

v0.30.4 (Mar 31, 2023)

	Bug Fix Fixed a bug that could cause a CoInitialize has not been called error on Windows when xlwings was used inside a web framework (GH 2213 [https://github.com/xlwings/xlwings/issues/2213]).

	Bug Fix PRO xlwings.min.js: Fixed a regression introduced with 0.30.3 that caused a pop-up error to show when calling xlwings.runPython (GH 2214 [https://github.com/xlwings/xlwings/issues/2214]).

	Bug Fix PRO Fixed a regression introduced with 0.30.3 that was causing the xlwings license CLI command to fail on Linux (GH 2211 [https://github.com/xlwings/xlwings/issues/2211]).

v0.30.3 (Mar 26, 2023)

	Enhancement PRO xlwings Server now supports Excel tables (GH 2072 [https://github.com/xlwings/xlwings/issues/2072]), range.insert() (GH 2073 [https://github.com/xlwings/xlwings/issues/2073]), and range.copy() (GH 2204 [https://github.com/xlwings/xlwings/issues/2204]).

	Enhancement Improved error message when no engines is available either because of missing dependencies (OSS) or a missing license key (PRO) (GH 2072 [https://github.com/xlwings/xlwings/issues/2072]).

	Breaking Change range.insert() now requires the shift argument. The previous default was to let Excel guess the shift direction (GH 2073 [https://github.com/xlwings/xlwings/issues/2073]).

v0.30.2 (Mar 16, 2023)

	Enhancement On Windows, xlwings now actively cleans up Excel zombie processes when quitting or killing App objects and when exiting the Python process. You can also remove zombies manually by calling xw.apps.cleanup() (GH 2001 [https://github.com/xlwings/xlwings/issues/2001]).

	Bug Fix PRO xlwings Reports: fixed a regression introduced with 0.30.1 that was causing issues when using Excel tables in frames (GH 2192 [https://github.com/xlwings/xlwings/issues/2192]).

v0.30.1 (Mar 6, 2023)

	Enhancement Added support for Range.autofill() (interactive engines on Windows and macOS) (GH 2180 [https://github.com/xlwings/xlwings/issues/2180]).

	Bug Fix PRO xlwings Reports: improved stability of dynamic range formatting by removing the use of the clipboard (GH 2175 [https://github.com/xlwings/xlwings/issues/2175]).

v0.30.0 (Mar 2, 2023)

	Feature PRO xlwings Server now supports custom functions (a.k.a. user-defined functions or UDFs) on Windows, macOS, and Web via the Office.js add-ins. See Office.js Custom Functions (GH 2177 [https://github.com/xlwings/xlwings/issues/2177]).

	Bug Fix PRO xlwings Reports: fixed render_template() on Windows when the template had hidden sheets (GH 2166 [https://github.com/xlwings/xlwings/issues/2166]).

v0.29.1 (Feb 5, 2023)

	Enhancement PRO xlwings Server (VBA client): the default timeout for RunRemotePython has been increased from 5s to 30s (GH 2153 [https://github.com/xlwings/xlwings/issues/2153]).

	Enhancement PRO xlwings Server (all clients): added support for app.macro() (GH 2157 [https://github.com/xlwings/xlwings/issues/2157]).

	Enhancement PRO xlwings Server (all clients): added support for range.delete() (GH 2157 [https://github.com/xlwings/xlwings/issues/2157]).

v0.29.0 (Jan 29, 2023)

	Feature PRO xlwings Server now supports Office.js add-ins! Check out the comprehensive documentation (GH 2151 [https://github.com/xlwings/xlwings/issues/2151]).

v0.28.9 (Jan 21, 2023)

	Enhancement PRO xlwings Server: add full support for named ranges when called from VBA. JavaScript client implementations are still pending (GH 2145 [https://github.com/xlwings/xlwings/issues/2145]).

	Bug Fix On macOS, opening a file was turning its name into lower case (GH 2052 [https://github.com/xlwings/xlwings/issues/2052]).

	Bug Fix The xlwings CLI was removing the xlwings addin when the remove command was called with the --dir flag. Also, the xlwings.exe builds are now 32-bit (GH 2142 [https://github.com/xlwings/xlwings/issues/2142]).

v0.28.8 (Jan 13, 2023)

	Bug Fix PRO xlwings Server: make include/exclude parameters respect all objects in a sheet, not just values (GH 2139 [https://github.com/xlwings/xlwings/issues/2139]).

	Bug Fix PRO xlwings Server (VBA client): ignore shapes that aren’t real pictures in the pictures collection (GH 2140 [https://github.com/xlwings/xlwings/issues/2140]).

v0.28.7 (Dec 27, 2022)

	Enhancement New CLI commands xlwings copy vba and xlwings copy vba --addin: They can help you to upgrade existing standalone projects and custom add-ins more easily (GH 2129 [https://github.com/xlwings/xlwings/issues/2129]).

	Bug Fix PRO xlwings Server: Google Sheets was failing when cells contained a Date, caused by a recent Chromium V8 bug (GH 2126 [https://github.com/xlwings/xlwings/issues/2126]).

	Bug Fix PRO xlwings Server: Writing datetime objects from Python to Google Sheets (with a time part not being zero) weren’t formatting the cell properly as Date Time (GH 2126 [https://github.com/xlwings/xlwings/issues/2126]).

v0.28.6 (Dec 15, 2022)

	Feature xlwings now allows to authenticate and authorize users via Azure AD in connection with the Ribbon add-in or VBA standalone module. This is useful in connection with a server component, such as xlwings Server, where the acquired access tokens can be validated, see Server Auth (GH 2122 [https://github.com/xlwings/xlwings/issues/2122]).

	Enhancement PRO xlwings Server: added support for reading the Names collection via mybook.names and mysheet.names (GH 2123 [https://github.com/xlwings/xlwings/issues/2123]).

	Feature The xlwings CLI (command-line interface) is now also available as a standalone executable for a limited set of uses cases. It can be downloaded from the GitHub Release page [https://github.com/xlwings/xlwings/releases] and can be useful to run xlwings vba ..., xlwings auth ..., and xlwings addin ... -f without having to install a full Python installation (GH 2121 [https://github.com/xlwings/xlwings/issues/2121]).

	Breaking Change PRO: xlwings Server: auth replaces the apiKey argument in the runPython and RunRemotePython calls respectively. Technically it’s only a deprecation, so apiKey still works for now (GH 2104 [https://github.com/xlwings/xlwings/issues/2104]).

	Bug Fix PRO xlwings Server: Fixed an error with setting custom headers in VBA (GH 2081 [https://github.com/xlwings/xlwings/issues/2081]).

v0.28.4 and v0.28.5 (Oct 29, 2022)

	Enhancement Added possibility to install the add-in globally for all users via xlwings addin install -g (GH 2075 [https://github.com/xlwings/xlwings/issues/2075]).

	Enhancement Added App.path property (GH 2074 [https://github.com/xlwings/xlwings/issues/2074]).

	Enhancement Build wheels for Python 3.11 (GH 2071 [https://github.com/xlwings/xlwings/issues/2071]).

	Bug Fix 0.28.5 fixes an issue with the global add-in install (GH 2076 [https://github.com/xlwings/xlwings/issues/2076]).

v0.28.3 (Oct 21, 2022)

	Bug Fix PRO xlwings File Reader: To be in line with the rest of the API, integers are now delivered as floats (GH 2066 [https://github.com/xlwings/xlwings/issues/2066]).

	Bug Fix PRO xlwings File Reader: Fixed a bug that sometimes read in incorrect decimals with the legacy xls file formats (GH 2062 [https://github.com/xlwings/xlwings/issues/2062]).

	Bug Fix PRO Fixed a bug introduced with 0.28.1 when xlwings code embed was run with the --file flag and a relative path (GH 2061 [https://github.com/xlwings/xlwings/issues/2061]).

v0.28.2 (Oct 17, 2022)

	Breaking Change PRO xlwings File Reader: The reader was including Chartsheets etc. in mybook.sheets, which was inconsistent with the rest of the API. Accordingly, it now only shows Worksheets (GH 2058 [https://github.com/xlwings/xlwings/issues/2058]).

	Bug Fix PRO xlwings File Reader: With xlsb formats, slightly unusual defined names caused the reader to fail (GH 2057 [https://github.com/xlwings/xlwings/issues/2057]).

	Enhancement PRO xlwings Reports: the imports have been flattened. What previously was available via xlwings.pro.reports is now also available via xlwings.reports (GH 2055 [https://github.com/xlwings/xlwings/issues/2055]).

	Enhancement PRO xlwings Reports: the registration of formatters for use with templates has been simplified by allowing you to use the @formatter decorator instead of having to register the function via register_formatter(myfunc) (GH 2055 [https://github.com/xlwings/xlwings/issues/2055]).

v0.28.1 (Oct 10, 2022)

	Feature You can now use formatters to format the data you write to Excel or Google Sheets in a very flexible manner (see also 缺省转换器):

import pandas as pd
import xlwings as xw

sheet = xw.Book().sheets[0]

def table(rng: xw.Range, df: pd.DataFrame):
 """This is the formatter function"""
 # Header
 rng[0, :].color = "#A9D08E"

 # Rows
 for ix, row in enumerate(rng.rows[1:]):
 if ix % 2 == 0:
 row.color = "#D0CECE" # Even rows

 # Columns
 for ix, col in enumerate(df.columns):
 if "two" in col:
 rng[1:, ix].number_format = "0.0%"

df = pd.DataFrame(data={"one": [1, 2, 3, 4], "two": [5, 6, 7, 8]})
sheet["A1"].options(formatter=table, index=False).value = df

[image: _images/formatter.png]

	Feature PRO Formatters are also available for xlwings Reports via filters: {{ df | formatter("myformatter") }}, see DataFrames Filters.

	Feature You can now export a sheet to an HTML page via mysheet.to_html()

	Feature New convenience property to get a list of the sheet names: mybook.sheet_names

	Enhancement PRO The Excel File Reader now supports the Names collection. I.e., you can now run code like this:

with xw.Book("myfile.xlsx", mode="r") as book:
 for name in book.names:
 print(name.refers_to_range.value)

	Enhancement PRO Code embedding via xlwings release or xlwings code embed now allows you to work with Python packages, i.e., nested directories.

v0.28.0 (Oct 4, 2022)

	Feature PRO xlwings PRO adds an ultra fast file reader, allowing you to read Excel files much faster than via pandas.read_excel():

with xw.Book("myfile.xlsx", mode="r") as book:
 sheet1 = book.sheets[0]
 df = sheet1["A1:B2"].options("df", index=False).value

For all the details, see Excel File Reader.

	Enhancement Book can now be used as context manager (i.e., with the with statement, see previous bullet point), which will close the book automatically when leaving the body of the with statement.

	Enhancement The new option err_to_str allows you to deliver cell errors like #N/A as strings instead of None (default): xw.Book("mybook.xlsx").options(err_to_str=True).value.

	Breaking Change PRO xlwings Server used to deliver cell errors as strings, which wasn’t consistent with the rest of xlwings. This has now been fixed by delivering them as None by default. To get the previous behavior, use the err_to_str option, see the previous bullet point.

	Enhancement PRO The Remote Interpreter has been rebranded to xlwings Server.

v0.27.15 (Sep 16, 2022)

	Enhancement PRO Reports: Added new vmerge filter to vertically merge cells with the same values, for details, see vmerge (GH 2020 [https://github.com/xlwings/xlwings/issues/2020]).

v0.27.14 (Aug 26, 2022)

	Enhancement Allow to install/remove the addin via xlwings addin install while Excel is running (GH 1999 [https://github.com/xlwings/xlwings/issues/1999]).

v0.27.13 (Aug 22, 2022)

	Feature Add support for alerts: myapp.alert("Hello World"), see myapp.alert() for more details (GH 756 [https://github.com/xlwings/xlwings/issues/756]).

	Enhancement Handle Timedelta dtypes in pandas DataFrames and Series (GH 1991 [https://github.com/xlwings/xlwings/issues/1991]).

	Enhancement PRO Remove the cryptography dependency from xlwings PRO (GH 1992 [https://github.com/xlwings/xlwings/issues/1992]).

v0.27.12 (Aug 8, 2022)

	Enhancement PRO: xlwings Server: added support for named ranges via mysheet["myname"] or mysheet.range("myname") (GH 1975 [https://github.com/xlwings/xlwings/issues/1975]).

	Enhancement PRO: xlwings Server: in addition to Google Sheets, pictures.add() is now also supported on Desktop Excel (Windows and macOS). This includes support for Matplotlib plots (GH 1974 [https://github.com/xlwings/xlwings/issues/1974]).

	Enhancement Faster UDFs (GH 1976 [https://github.com/xlwings/xlwings/issues/1976]).

	Bug Fix Made myapp.range() behave the same as mysheet.range() (GH 1982 [https://github.com/xlwings/xlwings/issues/1982]).

	Bug Fix PRO: xlwings Server: cell errors were causing a bug with Desktop Excel (GH 1968 [https://github.com/xlwings/xlwings/issues/1968]).

	Bug Fix PRO: xlwings Server: sending large payloads with Desktop Excel on macOS is now possible (GH 1977 [https://github.com/xlwings/xlwings/issues/1977]).

v0.27.11 (Jul 6, 2022)

	Enhancement Added support for pandas pd.NA (GH 1939 [https://github.com/xlwings/xlwings/issues/1939]).

	Bug Fix Empty cells in UDFs are now properly returned as None / NaN instead of an empty string (GH 1947 [https://github.com/xlwings/xlwings/issues/1947]).

	Bug Fix Resolved an issue with OneDrive/SharePoint files that are unsynced locally (GH 1946 [https://github.com/xlwings/xlwings/issues/1946]).

v0.27.10 (Jun 8, 2022)

	Bug Fix PRO This release fixes a FileNotFound error that could sometimes happen with embedded code (GH 1931 [https://github.com/xlwings/xlwings/issues/1931]).

v0.27.9 (Jun 4, 2022)

	Bug Fix Fixes a bug on Windows that caused an Excel Zombie process with pywin32 > v301 (GH 1929 [https://github.com/xlwings/xlwings/issues/1929]).

v0.27.8 (May 22, 2022)

	Enhancement Smarter shrinking of Excel tables when using mytable.update(df) as it doesn’t delete rows below the table anymore (GH 1908 [https://github.com/xlwings/xlwings/issues/1908]).

	Bug Fix Fixed a regression when RunPyhon was used with Use UDF Server = True (introduced in v0.26.2) (GH 1912 [https://github.com/xlwings/xlwings/issues/1912]).

	Bug Fix PRO The xlwings release command would sometimes incorrectly show a version mismatch error (GH 1918 [https://github.com/xlwings/xlwings/issues/1918]).

	Bug Fix PRO xlwings Reports now raises an explicit error when Jinja2 is missing (GH 1637 [https://github.com/xlwings/xlwings/issues/1637]).

v0.27.7 (May 1, 2022)

	Feature PRO Google Sheets now support pictures via mysheet.pictures.add() incl. Matplotlib/Plotly (note that Excel on the web and Desktop Excel via xlwings Server are not yet supported). Also note that Google Sheets allows a maximum of 1 million pixels as calculated by (width in inches * dpi) * (height in inches * dpi), see also Matplotlib & Plotly Charts (GH 1906 [https://github.com/xlwings/xlwings/issues/1906]).

	Breaking Change Matplotlib plots are now written to Excel/Google Sheets with a default of 200 dpi instead of 300 dpi. You can change this (and all other options that Matplotlib’s savefig() and Plotly’s write_image() offer via sheet.pictures.add(image=myfigure, export_options={"bbox_inches": "tight", "dpi": 300}) (GH 665 [https://github.com/xlwings/xlwings/issues/665], GH 519 [https://github.com/xlwings/xlwings/issues/519]).

v0.27.6 (Apr 11, 2022)

	Bug Fix macOS: Python modules on OneDrive Personal are now found again in the default setup even if they have been migrated to the new location (GH 1891 [https://github.com/xlwings/xlwings/issues/1891]).

	Enhancement PRO xlwings Server now shows nicely formatted error messages across all platforms (GH 1889 [https://github.com/xlwings/xlwings/issues/1889]).

v0.27.5 (Apr 1, 2022)

	Enhancement PRO xlwings Server: added support for setting the number format of a range via myrange.number_format = "..." (GH 1887 [https://github.com/xlwings/xlwings/issues/1887]).

	Bug Fix PRO xlwings Server: Google Sheets/Excel on the web were formatting strings like "1" as date (GH 1885 [https://github.com/xlwings/xlwings/issues/1885]).

v0.27.4 (Mar 29, 2022)

	Enhancement Further SharePoint enhancements on Windows, increasing the chance that mybook.fullname returns the proper local filepath (by taking into account the info in the registry) (GH 1829 [https://github.com/xlwings/xlwings/issues/1829]).

	Enhancement The ribbon, i.e., the config, now allows you to uncheck the box Add workbook to PYTHONPATH to not automatically add the directory of your workbook to the PYTHONPATH. The respective config is called ADD_WORKBOOK_TO_PYTHONPATH. This can be helpful if you experience issues with OneDrive/SharePoint: uncheck this box and provide the path where your source file is manually via the PYTHONPATH setting (GH 1873 [https://github.com/xlwings/xlwings/issues/1873]).

	Enhancement PRO Added support for myrange.add_hyperlink() with remote interpreter (GH 1882 [https://github.com/xlwings/xlwings/issues/1882]).

	Enhancement PRO Added a new optional parameter include in connection with runPython (JS) and RunRemotePython (VBA), respectively. It’s the counterpart to exclude and allows you to submit the names of the sheets that you want to send to the server. Like exclude, include accepts a comma-delimited string, e.g., “Sheet1,Sheet2” (GH 1882 [https://github.com/xlwings/xlwings/issues/1882]).

	Enhancement PRO On Google Sheets, the xlwings JS module now automatically asks for the proper permission to allow authentication based on OAuth Token (GH 1876 [https://github.com/xlwings/xlwings/issues/1876]).

v0.27.3 (Mar 18, 2022)

	Bug Fix PRO Fixes an issue with Date formatting on Google Sheets in case you’re not using the U.S. locale (GH 1866 [https://github.com/xlwings/xlwings/issues/1866]).

	Bug Fix PRO Fixes the truncating of ranges with xlwings Server in case the range was partly outside the used range (GH 1822 [https://github.com/xlwings/xlwings/issues/1822]).

v0.27.2 (Mar 11, 2022)

	Bug Fix PRO Fixes an issue with xlwings Server that occurred on 64-bit versions of Excel.

v0.27.0 and v0.27.1 (Mar 8, 2022)

	Feature PRO This release adds support for xlwings Server to the Excel Desktop apps on both Windows and macOS. The new VBA function RunRemotePython is equivalent to runPython in the JavaScript modules of Google Sheets and Excel on the web, see xlwings Server (GH 1841 [https://github.com/xlwings/xlwings/issues/1841]).

	Enhancement The xlwings package is now uploaded as wheel to PyPI in addition to the source format (GH 1855 [https://github.com/xlwings/xlwings/issues/1855]).

	Enhancement The xlwings package is now compatible with Poetry (GH 1265 [https://github.com/xlwings/xlwings/issues/1265]).

	Enhancement The add-in and the dll files are now code signed (GH 1848 [https://github.com/xlwings/xlwings/issues/1848]).

	Breaking Change PRO The JavaScript modules (Google Sheet/Excel on the web) changed the parameters in runPython, see xlwings Server (GH 1852 [https://github.com/xlwings/xlwings/issues/1852]).

	Breaking Change xlwings vba edit has been refactored and there is an additional command xlwings vba import to edit your VBA code outside of the VBA editor, e.g., in VS Code or any other editor, see Command Line Client (CLI) (GH 1843 [https://github.com/xlwings/xlwings/issues/1843]).

	Breaking Change The --unprotected flag has been removed from the xlwings addin install command. You can still manually remove the password (xlwings) though (GH 1850 [https://github.com/xlwings/xlwings/issues/1850]).

	Bug Fix PRO The Markdown class has been fixed in case the first line was empty (GH 1856 [https://github.com/xlwings/xlwings/issues/1856]).

	Bug Fix PRO 0.27.1 fixes an issue with the version string in the new RunRemotePython VBA call (GH 1859 [https://github.com/xlwings/xlwings/issues/1859]).

v0.26.3 (Feb 19, 2022)

	Feature If you still have to write VBA code, you can now use the new CLI command xlwings vba edit: this will export all the VBA modules locally so that you can edit them with any editor like e.g., VS Code. Every local change is synced back whenever you save the local file, see Command Line Client (CLI) (GH 1839 [https://github.com/xlwings/xlwings/issues/1839]).

	Enhancement PRO The permissioning feature now allows you to send an Authorization header via the new PERMISSION_CHECK_AUTHORIZATION setting (GH 1840 [https://github.com/xlwings/xlwings/issues/1840]).

v0.26.2 (Feb 10, 2022)

	Feature Added support for myrange.clear_formats and mysheet.clear_formats (GH 1802 [https://github.com/xlwings/xlwings/issues/1802]).

	Feature Added support for mychart.to_pdf() and myrange.to_pdf() (GH 1708 [https://github.com/xlwings/xlwings/issues/1708]).

	Feature PRO xlwings Server: added support for mybook.selection (GH 1819 [https://github.com/xlwings/xlwings/issues/1819]).

	Enhancement The quickstart command now makes sure that the project name is a valid Python module name (GH 1773 [https://github.com/xlwings/xlwings/issues/1773]).

	Enhancement The to_pdf method now accepts an additional parameter quality that defaults to "standard" but can be set to "minimum" for smaller PDFs (GH 1697 [https://github.com/xlwings/xlwings/issues/1697]).

	Bug Fix Allow space in path to Python interpreter when using UDFs / UDF Server (GH 974 [https://github.com/xlwings/xlwings/issues/974]).

	Bug Fix A few issues were fixed in case your files are synced with OneDrive or SharePoint (GH 1813 [https://github.com/xlwings/xlwings/issues/1813] and GH 1810 [https://github.com/xlwings/xlwings/issues/1810]).

	Bug Fix PRO Reports: fixed the aggsmall filter to work without the optional min_rows parameter (GH 1824 [https://github.com/xlwings/xlwings/issues/1824]).

v0.26.0 and v0.26.1 (Feb 1, 2022)

	PRO Feature Added experimental support for Google Sheets and Excel on the web via a remote Python interpreter. For all the details, see xlwings Server.

	PRO Bug Fix 0.26.1 fixes an issue with the xlwings copy gs command.

	xlwings PRO is now free for noncommercial usage under the PolyForm Noncommercial License 1.0.0 [https://polyformproject.org/licenses/noncommercial/1.0.0], see xlwings PRO for the details.

Older Releases

v0.25.3 (Dec 16, 2021)

	PRO Bug Fix The xlwings Reports filters aggsmall and maxrows don’t fail with empty DataFrames anymore (GH 1788 [https://github.com/xlwings/xlwings/issues/1788]).

v0.25.2 (Dec 3, 2021)

	PRO Enhancement xlwings Reports now ignores sheets whose name start with ## for both rendering and printing to PDF (GH 1779 [https://github.com/xlwings/xlwings/issues/1779]).

	PRO Enhancement The aggsmall filter in xlwings Reports now accepts a new parameter min_rows (GH 1780 [https://github.com/xlwings/xlwings/issues/1780]).

v0.25.1 (Nov 21, 2021)

	Enhancement mybook.save() now supports the password parameter (GH 1568 [https://github.com/xlwings/xlwings/issues/1568]).

	PRO Bug Fix xlwings Reports would sometimes cause a Could not activate App instance error (GH 1764 [https://github.com/xlwings/xlwings/issues/1764]).

	PRO Enhancement xlwings now warns about expiring developer license keys 30 days before they expire (GH 1758 [https://github.com/xlwings/xlwings/issues/1758]).

v0.25.0 (Oct 27, 2021)

	Bug Fix Finally, xlwings adds proper support for OneDrive, OneDrive for Business, and SharePoint. This means that the quickstart setup (Excel file and Python file in the same folder with the same name) works even if the files are stored on OneDrive/SharePoint—as long as they are being synced locally. It also makes mybook.fullname return the local file path instead of a URL. Sometimes, this requires editing the configuration, see: OneDrive and SharePoint for the details (GH 1630 [https://github.com/xlwings/xlwings/issues/1630]).

	Feature The update() method of Excel tables has been moved from PRO to open source. You can now easily update an existing table in Excel with the data from a new pandas DataFrame without messing up any formulas that reference that table: mytable.update(df), see: Table.update() (GH 1751 [https://github.com/xlwings/xlwings/issues/1751]).

	PRO Breaking Change: Reports: create_report() is now deprecated in favor of render_template() that is available via app, book (new), and sheet objects, see: Quickstart (GH 1738 [https://github.com/xlwings/xlwings/issues/1738]).

	Bug Fix Running UDFs from other Office apps has been fixed (GH 1729 [https://github.com/xlwings/xlwings/issues/1729]).

	Bug Fix Writing to a protected sheet or using an invalid sheet name etc. caused xlwings to hang instead of raising an Exception (GH 1725 [https://github.com/xlwings/xlwings/issues/1725]).

v0.24.9 (Aug 26, 2021)

	Bug Fix Fixed a regression introduced with 0.24.8 that was causing an error with pandas DataFrames that have repeated column headers (GH 1711 [https://github.com/xlwings/xlwings/issues/1711]).

v0.24.8 (Aug 25, 2021)

	Feature New methods mychart.to_png(), myrange.to_png() and myrange.copy_picture() (GH 1707 [https://github.com/xlwings/xlwings/issues/1707] and GH 582 [https://github.com/xlwings/xlwings/issues/582]).

	Enhancement You can now use the alias 'df' to convert to a pandas DataFrame: mysheet['A1:C3'].options('df').value is equivalent to import pandas as pd; mysheet['A1:C3'].options(pd.DataFrame).value (GH 1533 [https://github.com/xlwings/xlwings/issues/1533]).

	Enhancement Added --dir option to xlwings addin install to allow the installation of all files in a directory as add-ins (GH 1702 [https://github.com/xlwings/xlwings/issues/1702]).

	Bug Fix Pandas DataFrames now properly work with PeriodIndex / PeriodDtype (GH 1084 [https://github.com/xlwings/xlwings/issues/1084]).

	PRO Reports: If there’s just one Frame, keep height of rows (GH 1698 [https://github.com/xlwings/xlwings/issues/1698]).

v0.24.7 (Aug 5, 2021)

	PRO Breaking Change: Reports: Changed the order of the arguments of the arithmetic DataFrame filters: sum, div, mul and div to align them with the other filters. E.g., to multiply column 2 by 100, you now have to write your filter as {{ df | mul(100, 2) }} (GH 1696 [https://github.com/xlwings/xlwings/issues/1696]).

	PRO Bug Fix Reports: Fixed an issue with images when pillow wasn’t installed (GH 1695 [https://github.com/xlwings/xlwings/issues/1695]).

v0.24.6 (Jul 31, 2021)

	Enhancement You can now also define the color of cells, shapes and font objects with a hex string instead of just an RGB tuple, e.g., mysheet["A1"].color = "#efefef" (GH 1535 [https://github.com/xlwings/xlwings/issues/1535]).

	Enhancement When you print a workbook or sheet to a pdf, you can now automatically open the PDF document via the new show argument: mybook.to_pdf(show=True) (GH 1683 [https://github.com/xlwings/xlwings/issues/1683]).

	Bug Fix: This release includes another round of fixing the cleanup actions of the App() context manager (GH 1687 [https://github.com/xlwings/xlwings/issues/1687]).

	PRO Enhancement Reports: New filter fontcolor, allowing you to write text in black and turn it into e.g., white for the report. This gets around the issue that white text isn’t visible in Excel on a white background: {{ myplaceholder | fontcolor("white") }}. Alternatively, you can also use a hex color (GH 1692 [https://github.com/xlwings/xlwings/issues/1692]).

	PRO Bug Fix Positioning shapes wasn’t always respecting the top/left filters (GH 1687 [https://github.com/xlwings/xlwings/issues/1687]).

	PRO Bug Fix Fixed a bug with non-string headers when calling table.update (GH 1687 [https://github.com/xlwings/xlwings/issues/1687]).

v0.24.5 (Jul 27, 2021)

	PRO Bug Fix Reports: Using the header filter in a Frame was causing rows to be inserted (GH 1681 [https://github.com/xlwings/xlwings/issues/1681]).

v0.24.4 (Jul 26, 2021)

	Feature myapp.properties is a new context manager that allows you to easily change the app’s properties temporarily. Once the code leaves the with block, the properties are changed back to their previous state (GH 254 [https://github.com/xlwings/xlwings/issues/254]). For example:

import xlwings as xw
app = App()

with app.properties(display_alerts=False):
 # Alerts are disabled until you leave the with block again

	Enhancement The app properties myapp.enable_events and myapp.interactive are now supported (GH 254 [https://github.com/xlwings/xlwings/issues/254]).

	Enhancement mybook.to_pdf now ignores sheet names that start with a #. This can be changed by setting the new parameter exclude_start_string (GH 1667 [https://github.com/xlwings/xlwings/issues/1667]).

	Enhancement New method mytable.resize() (GH 1662 [https://github.com/xlwings/xlwings/issues/1662]).

	Bug Fix The new App context manager introduced with v0.24.3 was sometimes causing an error on Windows during the cleanup actions (GH 1668 [https://github.com/xlwings/xlwings/issues/1668]).

PRO xlwings.pro.reports:

	Breaking Change: DataFrame placeholders will now ignore the DataFrame’s index. If you need the index, reset it via : df.reset_index() before passing the DataFrame to create_report or render_template. This was required as the same column index used in filters would point to seemingly different columns in Excel depending on whether the index was included or not. This also means that the noindex and body filters are no obsolete and have been removed (GH 1676 [https://github.com/xlwings/xlwings/issues/1676]).

	Enhancement Dataframe filters now respect the order in which they are called and can be used multiple times (GH 1675 [https://github.com/xlwings/xlwings/issues/1675]).

	Enhancement New filters: format (to apply f-string like formatting), datetime (to format datetime objects), top and left (to position graphics outside of the grid structure) header, add, sub, mul, div (to only return the header of a DataFrame or apply an arithmetic operation, respectively) (GH 1666 [https://github.com/xlwings/xlwings/issues/1666], GH 1660 [https://github.com/xlwings/xlwings/issues/1660], GH 1677 [https://github.com/xlwings/xlwings/issues/1677]).

	Enhancement: create_report can now be accessed as method of the app object like so: myapp.create_report (GH 1665 [https://github.com/xlwings/xlwings/issues/1665]).

	Bug Fix: Excel tables that had the Header Row unchecked were sometimes causing row shifts in the template (GH 1663 [https://github.com/xlwings/xlwings/issues/1663]).

	Bug Fix: Rendering a template was sometimes causing the following error PasteSpecial method of Range class failed (GH 1672 [https://github.com/xlwings/xlwings/issues/1672]).

v0.24.3 (Jul 15, 2021)

	Enhancement xlwings.App() can now be used as context manager, making sure that there are no zombie processes left over on Windows, even if you use a hidden instance and your code fails. It is therefore recommended to use it whenever you can, like so:

with xw.App(visible=True) as app:
 print(app.books)

	Enhancement mysheet.pictures.add now accepts a new anchor argument that you can use as an alternative to top/left to position the picture by providing an anchor range object, e.g.: mysheet.pictures.add(img, anchor=mysheet['A1']) (GH 1648 [https://github.com/xlwings/xlwings/issues/1648]).

	Bug Fix macOS: Plots are now sent to Excel in PDF format when you set format='vector' which is supporting transparency unlike the previously used eps format (GH 1647 [https://github.com/xlwings/xlwings/issues/1647]).

	PRO Enhancement mybook.to_pdf now accepts a layout parameter so you can “print” your reports onto a PDF with your corporate layout including headers, footers and borderless graphics. See PDF Layout.

v0.24.2 (Jul 6, 2021)

	Feature Added very basic support for mysheet.page_setup and myrange.note (GH 1551 [https://github.com/xlwings/xlwings/issues/1551] and GH 896 [https://github.com/xlwings/xlwings/issues/896]).

	Enhancement DataFrames are now displayed in Excel tables with empty column names if the DataFrame doesn’t have a column or index name. This effect is e.g. visible when using xw.view() (GH 1643 [https://github.com/xlwings/xlwings/issues/1643]).

	Enhancement mysheet.pictures.add() now supports format='vector' which translates to 'svg' on Windows and 'eps' on macOS (GH 1640 [https://github.com/xlwings/xlwings/issues/1640]).

	PRO Enhancement: The reports package now offers the additional DataFrame filters rowslice and colslice, see xlwings Reports (GH 1645 [https://github.com/xlwings/xlwings/issues/1645]).

	PRO Bug Fix: Bug fix with handling Excel tables without headers.

Breaking Change

	PRO Enhancement: <frame> markers now have to be defined as cell notes in the first row, see Frames: Multi-column Layout. This has the advantage that the Layout view corresponds to the print view (GH 1641 [https://github.com/xlwings/xlwings/issues/1641]). Also, the print area is now preserved even if you use Frames.

v0.24.1 (Jun 27, 2021)

	PRO Enhancement: The reports package now offers the additional DataFrame filters head and tail, see xlwings Reports (GH 1633 [https://github.com/xlwings/xlwings/issues/1633]).

v0.24.0 (Jun 25, 2021)

	Enhancement pictures.add() now accepts every picture format (including vector-based formats) that your Excel version supports. For example, on Windows you can use the svg format (only supported with Excel that comes with Microsoft 365) and on macOS, you can use eps (GH 1624 [https://github.com/xlwings/xlwings/issues/1624]).

	[Enhancements] Support for Plotly images was moved from PRO to the Open Source version, i.e. you can now provide a Plotly image directly to pictures.add().

	Enhancement Matplotlib and Plotly plots can now be sent to Excel in a vector-based format by providing the format argument, e.g. svg on Windows or eps on macOS.

	Enhancement Removed dependency on pillow/PIL to properly size images via pictures.add().

	Bug Fix Various fixes with scaling and positioning images via pictures.add() (GH 1491 [https://github.com/xlwings/xlwings/issues/1491]).

	Feature New methods mypicture.lock_aspect_ratio and myapp.cut_copy_mode (GH 1622 [https://github.com/xlwings/xlwings/issues/1622] and GH 1625 [https://github.com/xlwings/xlwings/issues/1625]).

	PRO Feature: Reports: DataFrames and Images are now offering various filters to influence the behavior of how DataFrames and Images are displayed, giving the template designer the ability to change a lot of things that previously had to be taken care of by the Python developer. For example, to hide a DataFrame’s index, you can now do {{ df | noindex }} or to scale the image to double its size, you can do {{ img | scale(2) }}. You’ll find all available filters under xlwings Reports (GH 1602 [https://github.com/xlwings/xlwings/issues/1602]).

Breaking Change

	Enhancement: When using pictures.add(), pictures arrive now in Excel in the same size as if you would manually add them via the Excel UI and setting width/height now behaves consistently during initial adding and resizing. Consequently, you may have to fix your image sizes when you upgrade. (GH 1491 [https://github.com/xlwings/xlwings/issues/1491]).

	PRO The default MarkdownStyle removed the empty space after a h1 heading. You can always reintroduce it by applying a custom style (GH 1628 [https://github.com/xlwings/xlwings/issues/1628]).

v0.23.4 (Jun 15, 2021)

	Bug Fix Windows: Fixed the ImportUDFs function in the VBA standalone module (GH 1601 [https://github.com/xlwings/xlwings/issues/1601]).

	Bug Fix Fixed configuration hierarchy: if you have a setting with an empty value in the xlwings.conf sheet, it will not be overridden by the same key in the directory or user config file anymore. If you wanted it to be overridden, you’d have to get the key out of the “xlwings.conf” sheet (GH 1617 [https://github.com/xlwings/xlwings/issues/1617]).

	PRO Feature Added the ability to block the execution of Python modules based on the file hash and/or machine name (GH 1586 [https://github.com/xlwings/xlwings/issues/1586]).

	PRO Feature Added the xlwings release command for an easy release management in connection with the one-click installer, see 1-click Installer/Embedded Code. (GH 1429 [https://github.com/xlwings/xlwings/issues/1429]).

v0.23.3 (May 17, 2021)

	Bug Fix Windows: UDFs returning a pandas.NaT were causing a #VALUE! error (GH 1590 [https://github.com/xlwings/xlwings/issues/1590]).

v0.23.2 (May 7, 2021)

	Feature Added support for myrange.wrap_text (GH 173 [https://github.com/xlwings/xlwings/issues/173]).

	Enhancement xlwings.view() and xlwings.load() now use chunking by default (GH 1570 [https://github.com/xlwings/xlwings/issues/1570]).

	Bug Fix Allow to save non-Excel file formats (GH 1569 [https://github.com/xlwings/xlwings/issues/1569])

	Bug Fix Calculate formulas by default in the Function Wizard (GH 1574 [https://github.com/xlwings/xlwings/issues/1574]).

	PRO Bug Fix Properly embed code with unicode characters (GH 1575 [https://github.com/xlwings/xlwings/issues/1575]).

v0.23.1 (Apr 19, 2021)

	Feature You can now save your workbook in any format you want, simply by specifying its extension:

mybook.save('binaryfile.xlsb')
mybook.save('macroenabled.xlsm')

	Feature Added support for the chunksize option: when you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will depend on your system and size of the array, so you will have to try out a few different chunksizes to find one that works well (GH 77 [https://github.com/xlwings/xlwings/issues/77]):

import pandas as pd
import numpy as np
sheet = xw.Book().sheets[0]
data = np.arange(75_000 * 20).reshape(75_000, 20)
df = pd.DataFrame(data=data)
sheet['A1'].options(chunksize=10_000).value = df

And the same for reading:

As DataFrame
df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
As list of list
df = sheet['A1'].expand().options(chunksize=10_000).value

	Enhancement xw.load() now expands to the current_region instead of relying on expand() (GH 1565 [https://github.com/xlwings/xlwings/issues/1565]).

	Enhancement The OneDrive setting has been split up into a Windows and macOS-specific paths: ONEDRIVE_WIN and ONEDRIVE_MAC (GH 1556 [https://github.com/xlwings/xlwings/issues/1556]).

	Bug Fix macOS: There are no more timeouts when opening or saving large workbooks that take longer than 60 seconds (GH 618 [https://github.com/xlwings/xlwings/issues/618]).

	Bug Fix RunPython was failing when there was a & in the Excel file name (GH 1557 [https://github.com/xlwings/xlwings/issues/1557]).

v0.23.0 (Mar 5, 2021)

	PRO Feature: This release adds support for Markdown-based formatting of text, both in cells as well as in shapes, see Markdown Formatting for the details. This is also supported for template-based reports.

from xlwings.pro import Markdown, MarkdownStyle

mytext = """\
Title

Text **bold** and *italic*

* A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.
"""

sheet = xw.Book("Book1.xlsx").sheets[0]
sheet['A1'].value = Markdown(mytext)
sheet.shapes[0].text = Markdown(mytext)

Running this code will give you this nicely formatted text, but you can also define your own style to match your corporate style guide as explained under Markdown Formatting:

[image: _images/markdown1.png]

	Feature Added support for the Font object via range or shape objects, see Font (GH 897 [https://github.com/xlwings/xlwings/issues/897] and GH 559 [https://github.com/xlwings/xlwings/issues/559]).

	Feature Added support for the Characters object via range or shape objects, see Characters.

v0.22.3 (Mar 3, 2021)

	Enhancement As a convenience method, you can now directly export sheets to PDF instead of having to go through the book: mysheet.to_pdf() (GH 1517 [https://github.com/xlwings/xlwings/issues/1517]).

	PRO Bug Fix Running RunPython with embedded code was broken in 0.22.0 (GH 1530 [https://github.com/xlwings/xlwings/issues/1530]).

v0.22.2 (Feb 8, 2021)

	Bug Fix Windows: If the path of the Excel file included a single quote, UDFs were failing (GH 1511 [https://github.com/xlwings/xlwings/issues/1511]).

	Bug Fix macOS: Prevent Excel from showing up when using hidden Excel instances via xw.App(visible=False) (GH 1508 [https://github.com/xlwings/xlwings/issues/1508]).

v0.22.1 (Feb 4, 2021)

	PRO Bug Fix: Table.update has been fixed so it also works when the table is the data source of a chart (GH 1507 [https://github.com/xlwings/xlwings/issues/1507]).

	PRO [Docs]: New documentation about how to work with Excel charts in templates; see Quickstart.

v0.22.0 (Jan 29, 2021)

	Feature While it’s always been possible to somehow create your own xlwings-based add-ins, this release adds a toolchain to make it a lot easier to create your own white-labeled add-in, see Custom Add-ins (GH 1488 [https://github.com/xlwings/xlwings/issues/1488]).

	Enhancement xw.view now formats the pandas DataFrames as Excel table and with the new xw.load function, you can easily load a DataFrame from your active workbook into a Jupyter notebook. See Jupyter Notebooks: Interact with Excel for a full tutorial (GH 1487 [https://github.com/xlwings/xlwings/issues/1487]).

	Feature New method mysheet.copy() (GH 123 [https://github.com/xlwings/xlwings/issues/123]).

	PRO Feature: in addition to xw.create_report(), you can now also work within a workbook by using the new mysheet.render_template() method, see also Quickstart (GH 1478 [https://github.com/xlwings/xlwings/issues/1478]).

v0.21.4 (Nov 23, 2020)

	Enhancement New property Shape.text to read and write text to the text frame of shapes (GH 1456 [https://github.com/xlwings/xlwings/issues/1456]).

	PRO Feature: xlwings Reports now supports template text in shapes, see xlwings Reports.

v0.21.3 (Nov 22, 2020)

	PRO Breaking Change: The Table.update method has been changed to treat the DataFrame’s index consistently whether or not it’s being written to an Excel table: by default, the index is now transferred to Excel in both cases.

v0.21.2 (Nov 15, 2020)

	Bug Fix The default quickstart setup now also works when you store your workbooks on OneDrive (GH 1275 [https://github.com/xlwings/xlwings/issues/1275])

	Bug Fix Excel files that have single quotes in their paths are now working correctly (GH 1021 [https://github.com/xlwings/xlwings/issues/1021])

v0.21.1 (Nov 13, 2020)

	Enhancement Added new method Book.to_pdf() to easily export PDF reports. Needless to say, this integrates very nicely with xlwings Reports (GH 1363 [https://github.com/xlwings/xlwings/issues/1363]).

	Enhancement Added support for Sheet.visible (GH 1459 [https://github.com/xlwings/xlwings/issues/1459]).

v0.21.0 (Nov 9, 2020)

	Enhancement Added support for Excel tables, see: Table and Tables and range.table (GH 47 [https://github.com/xlwings/xlwings/issues/47] and GH 1364 [https://github.com/xlwings/xlwings/issues/1364])

	Enhancement: When using UDFs, you can now use 'range' for the convert argument where you would use before xw.Range. The latter will be removed in a future version (GH 1455 [https://github.com/xlwings/xlwings/issues/1455]).

	Enhancement Windows: The comtypes requirement has been dropped (GH 1443 [https://github.com/xlwings/xlwings/issues/1443]).

	PRO Feature: Table.update offers an easy way to keep your Excel tables in sync with your DataFrame source (GH 1454 [https://github.com/xlwings/xlwings/issues/1454]).

	PRO Enhancement: The reports package now supports Excel tables in the templates. This is e.g. helpful to style the tables with striped rows, see Excel Tables (GH 1364 [https://github.com/xlwings/xlwings/issues/1364]).

v0.20.8 (Oct 18, 2020)

	Enhancement Windows: With UDFs, you can now get easy access to the caller (an xlwings range object) by using caller as a function argument (GH 1434 [https://github.com/xlwings/xlwings/issues/1434]). In that sense, caller is now a reserved argument by xlwings and if you have any existing arguments with this name, you’ll need to rename them:

@xw.func
def get_caller_address(caller):
 # caller will not be exposed in Excel, so use it like so:
 # =get_caller_address()
 return caller.address

	Bug Fix Windows: The setting Show Console now also shows/hides the command prompt properly when using the UDF server with Conda. There is no more switching between python and pythonw required (GH 1435 [https://github.com/xlwings/xlwings/issues/1435] and GH 1421 [https://github.com/xlwings/xlwings/issues/1421]).

	Bug Fix Windows: Functions called via RunPython with Use UDF Server activated don’t require the xw.sub decorator anymore (GH 1418 [https://github.com/xlwings/xlwings/issues/1418]).

v0.20.7 (Sep 3, 2020)

	Bug Fix Windows: Fix a regression introduced with 0.20.0 that would cause an AttributeError: Range.CLSID with async and legacy dynamic array UDFs (GH 1404 [https://github.com/xlwings/xlwings/issues/1404]).

	Enhancement: Matplotlib figures are now converted to 300 dpi pictures for better quality when using them with pictures.add (GH 1402 [https://github.com/xlwings/xlwings/issues/1402]).

v0.20.6 (Sep 1, 2020)

	Bug Fix macOS: App(visible=False) has been fixed (GH 652 [https://github.com/xlwings/xlwings/issues/652]).

	Bug Fix macOS: The regression with Book.fullname that was introduced with 0.20.1 has been fixed (GH 1390 [https://github.com/xlwings/xlwings/issues/1390]).

	Bug Fix Windows: The retry mechanism has been improved (GH 1398 [https://github.com/xlwings/xlwings/issues/1398]).

v0.20.5 (Aug 27, 2020)

	Bug Fix The conda version check was failing with spaces in the installation path (GH 1396 [https://github.com/xlwings/xlwings/issues/1396]).

	Bug Fix Windows: when running app.quit(), the application is now properly closed without leaving a zombie process behind (GH 1397 [https://github.com/xlwings/xlwings/issues/1397]).

v0.20.4 (Aug 20, 2020)

	Enhancement The add-in can now optionally be installed without the password protection: xlwings addin install --unprotected (GH 1392 [https://github.com/xlwings/xlwings/issues/1392]).

v0.20.3 (Aug 15, 2020)

	Bug Fix The conda version check was erroneously triggered when importing UDFs on systems without conda. (GH 1389 [https://github.com/xlwings/xlwings/issues/1389]).

v0.20.2 (Aug 13, 2020)

	PRO Feature: Code can now be embedded by calling the new xlwings code embed [--file] CLI command (GH 1380 [https://github.com/xlwings/xlwings/issues/1380]).

	Bug Fix Made the import UDFs functionality more robust to prevent an Automation 440 error that some users would see (GH 1381 [https://github.com/xlwings/xlwings/issues/1381]).

	Enhancement The standalone Excel file now includes all VBA dependencies to make it work on Windows and macOS (GH 1349 [https://github.com/xlwings/xlwings/issues/1349]).

	Enhancement xlwings now blocks the call if the Conda Path/Env settings are used with legacy Conda installations (GH 1384 [https://github.com/xlwings/xlwings/issues/1384]).

v0.20.1 (Aug 7, 2020)

	Bug Fix macOS: password-protected sheets caused an alert when calling xw.Book (GH 1377 [https://github.com/xlwings/xlwings/issues/1377]).

	Bug Fix macOS: calling wb.save('newname.xlsx') wasn’t updating the wb object properly and caused an alert (GH 1129 [https://github.com/xlwings/xlwings/issues/1129] and GH 626 [https://github.com/xlwings/xlwings/issues/626] and GH 957 [https://github.com/xlwings/xlwings/issues/957]).

v0.20.0 (Jul 22, 2020)

This version drops support for Python 3.5

	Feature New property xlwings.App.status_bar (GH 1362 [https://github.com/xlwings/xlwings/issues/1362]).

	Enhancement xlwings.view() now becomes the active window, making it easier to work with in interactive workflows (please speak up if you feel differently) (GH 1353 [https://github.com/xlwings/xlwings/issues/1353]).

	Bug Fix The UDF server has received a serious upgrade by njwhite [https://github.com/njwhite], getting rid of the many issues that were around with using a combination of async functions and legacy dynamic arrays. You can now also call functions defined via async def, although for the time being they are still called synchronously from Excel (GH 1010 [https://github.com/xlwings/xlwings/issues/1010] and GH 1164 [https://github.com/xlwings/xlwings/issues/1164]).

v0.19.5 (Jul 5, 2020)

	Enhancement When you install the add-in via xlwings addin install, it autoconfigures the add-in if it can’t find an existing user config file (GH 1322 [https://github.com/xlwings/xlwings/issues/1322]).

	Feature New xlwings config create [--force] command that autogenerates the user config file with the Python settings from which you run the command. Can be used to reset the add-in settings with the --force option (GH 1322 [https://github.com/xlwings/xlwings/issues/1322]).

	Feature: There is a new option to show/hide the console window. Note that with Conda Path and Conda Env set, the console always pops up when using the UDF server. Currently only available on Windows (GH 1182 [https://github.com/xlwings/xlwings/issues/1182]).

	Enhancement The Interpreter setting has been deprecated in favor of platform-specific settings: Interpreter_Win and Interpreter_Mac, respectively. This allows you to use the sheet config unchanged on both platforms (GH 1345 [https://github.com/xlwings/xlwings/issues/1345]).

	Enhancement On macOS, you can now use a few environment-like variables in your settings: $HOME, $APPLICATIONS, $DOCUMENTS, $DESKTOP (GH 615 [https://github.com/xlwings/xlwings/issues/615]).

	Bug Fix: Async functions sometimes caused an error on older Excel versions without dynamic arrays (GH 1341 [https://github.com/xlwings/xlwings/issues/1341]).

v0.19.4 (May 20, 2020)

	Feature xlwings addin install is now available on macOS. On Windows, it has been fixed so it should now work reliably (GH 704 [https://github.com/xlwings/xlwings/issues/704]).

	Bug Fix Fixed a dll load failed issue with pywin32 when installed via pip on Python 3.8 (GH 1315 [https://github.com/xlwings/xlwings/issues/1315]).

v0.19.3 (May 19, 2020)

	PRO Feature: Added possibility to create deployment keys.

v0.19.2 (May 11, 2020)

	Feature New methods xlwings.Shape.scale_height() and xlwings.Shape.scale_width() (GH 311 [https://github.com/xlwings/xlwings/issues/311]).

	Bug Fix Using Pictures.add is not distorting the proportions anymore (GH 311 [https://github.com/xlwings/xlwings/issues/311]).

	PRO Feature: Added support for Plotly static charts (GH 1309 [https://github.com/xlwings/xlwings/issues/1309]).

[image: _images/plotly.png]

v0.19.1 (May 4, 2020)

	Bug Fix Fixed an issue with the xlwings PRO license key when there was no xlwings.conf file (GH 1308 [https://github.com/xlwings/xlwings/issues/1308]).

v0.19.0 (May 2, 2020)

	Bug Fix Native dynamic array formulas can now be used with async formulas (GH 1277 [https://github.com/xlwings/xlwings/issues/1277])

	Enhancement Quickstart references the project’s name when run from Python instead of the active book (GH 1307 [https://github.com/xlwings/xlwings/issues/1307])

Breaking Change:

	Conda Base has been renamed into Conda Path to reduce the confusion with the Conda Env called base. Please adjust your settings accordingly! (GH 1194 [https://github.com/xlwings/xlwings/issues/1194])

v0.18.0 (Feb 15, 2020)

	Feature Added support for merged cells: xlwings.Range.merge_area, xlwings.Range.merge_cells, xlwings.Range.merge()
xlwings.Range.unmerge() (GH 21 [https://github.com/xlwings/xlwings/issues/21]).

	Bug Fix RunPython now works properly with files that have a URL as fullname, i.e. OneDrive and SharePoint (GH 1253 [https://github.com/xlwings/xlwings/issues/1253]).

	Bug Fix Fixed a bug with wb.names['...'].refers_to_range on macOS (GH 1256 [https://github.com/xlwings/xlwings/issues/1256]).

v0.17.1 (Jan 31, 2020)

	Bug Fix Handle np.float64('nan') correctly (GH 1116 [https://github.com/xlwings/xlwings/issues/1116]).

v0.17.0 (Jan 6, 2020)

This release drops support for Python 2.7 in xlwings CE. If you still rely on Python 2.7, you will need to stick to v0.16.6.

v0.16.6 (Jan 5, 2020)

	Enhancement CLI changes with respect to xlwings license (GH 1227 [https://github.com/xlwings/xlwings/issues/1227]).

v0.16.5 (十二月 30, 2019)

	Enhancement Improvements with regards to the Run main ribbon button (GH 1207 [https://github.com/xlwings/xlwings/issues/1207] and GH 1222 [https://github.com/xlwings/xlwings/issues/1222]).

v0.16.4 (十二月 17, 2019)

	Enhancement Added support for xlwings.Range.copy() (GH 1214 [https://github.com/xlwings/xlwings/issues/1214]).

	Enhancement Added support for xlwings.Range.paste() (GH 1215 [https://github.com/xlwings/xlwings/issues/1215]).

	Enhancement Added support for xlwings.Range.insert() (GH 80 [https://github.com/xlwings/xlwings/issues/80]).

	Enhancement Added support for xlwings.Range.delete() (GH 862 [https://github.com/xlwings/xlwings/issues/862]).

v0.16.3 (十二月 12, 2019)

	Bug Fix Sometimes, xlwings would show an error of a previous run. Moreover, 0.16.2 introduced an issue that would
not show errors at all on non-conda setups (GH 1158 [https://github.com/xlwings/xlwings/issues/1158] and GH 1206 [https://github.com/xlwings/xlwings/issues/1206])

	Enhancement The xlwings CLI now prints the version number (GH 1200 [https://github.com/xlwings/xlwings/issues/1200])

Breaking Change

	LOG FILE 退休了，已经从配置/加载项(configuration/add-in)中移除。

v0.16.2 (十二月 5, 2019)

	Bug Fix RunPython can now be called in parallel from different Excel instances (GH 1196 [https://github.com/xlwings/xlwings/issues/1196]).

v0.16.1 (十二月 1, 2019)

	Enhancement xlwings.Book() and myapp.books.open() now accept parameters like
update_links, password etc. (GH 1189 [https://github.com/xlwings/xlwings/issues/1189]).

	Bug Fix Conda Env now works correctly with base for UDFs, too (GH 1110 [https://github.com/xlwings/xlwings/issues/1110]).

	Bug Fix Conda Base now allows spaces in the path (GH 1176 [https://github.com/xlwings/xlwings/issues/1176]).

	Enhancement The UDF server timeout has been increased to 2 minutes (GH 1168 [https://github.com/xlwings/xlwings/issues/1168]).

v0.16.0 (十月 13, 2019)

本版中增加了一个精悍的特性: 在加载项中新增的 Run main 按钮。有了它，就可以在标准的 xlsx 文件中运行Python代码了-用不着再把工作簿保存为支持宏命令的文件了!

唯一的前提是Python文件的名称要和工作簿文件名称相同，而且里面有一个 main 函数，当按 Run 按钮的时候，这个函数会被调用。因为配置文件和配置表中的设置都还照样生效，所以即便源文件所在的目录（只要在 PYTHONPATH 里有）和工作簿文件是在不同的文件目录里也没有关系。

同时也对 xlwings quickstart myproject 做了相应的改动。它现在仍然产生一个 xlsm 文件，不过如果想通过新的 Run 按钮来运行Python代码的话，是可以存为 xlsx 的。

[image: _images/ribbon.png]

v0.15.10 (八月 31, 2019)

	Bug Fix Fixed a Python 2.7 incompatibility introduced with 0.15.9.

v0.15.9 (八月 31, 2019)

	Enhancement The sql extension now uses the native dynamic arrays if available (GH 1138 [https://github.com/xlwings/xlwings/issues/1138]).

	Enhancement xlwings now support Path objects from pathlib for all file paths (GH 1126 [https://github.com/xlwings/xlwings/issues/1126]).

	Bug Fix Various bug fixes: (GH 1118 [https://github.com/xlwings/xlwings/issues/1118]), (GH 1131 [https://github.com/xlwings/xlwings/issues/1131]), (GH 1102 [https://github.com/xlwings/xlwings/issues/1102]).

v0.15.8 (May 5, 2019)

	Bug Fix Fixed an issue introduced with the previous release that always showed the command prompt when running UDFs,
not just when using conda envs (GH 1098 [https://github.com/xlwings/xlwings/issues/1098]).

v0.15.7 (May 5, 2019)

	Bug Fix Conda Base and Conda Env weren’t stored correctly in the config file from the ribbon (GH 1090 [https://github.com/xlwings/xlwings/issues/1090]).

	Bug Fix UDFs now work correctly with Conda Base and Conda Env. Note, however, that currently there is no
way to hide the command prompt in that configuration (GH 1090 [https://github.com/xlwings/xlwings/issues/1090]).

	Enhancement Restart UDF Server now actually does what it says: it stops and restarts the server. Previously
it was only stopping the server and only when the first call to Python was made, it was started again (GH 1096 [https://github.com/xlwings/xlwings/issues/1096]).

v0.15.6 (Apr 29, 2019)

	Feature New default converter for OrderedDict (GH 1068 [https://github.com/xlwings/xlwings/issues/1068]).

	Enhancement Import Functions now restarts the UDF server to guarantee a clean state after importing. (GH 1092 [https://github.com/xlwings/xlwings/issues/1092])

	Enhancement The ribbon now shows tooltips on Windows (GH 1093 [https://github.com/xlwings/xlwings/issues/1093])

	Bug Fix RunPython now properly supports conda environments on Windows (they started to require proper activation
with packages like numpy etc). Conda >=4.6. required. A fix for UDFs is still pending (GH 954 [https://github.com/xlwings/xlwings/issues/954]).

Breaking Change

	Bug Fix RunFronzenPython now accepts spaces in the path of the executable, but in turn requires to be called
with command line arguments as a separate VBA argument.
Example: RunFrozenPython "C:\path\to\frozen_executable.exe", "arg1 arg2" (GH 1063 [https://github.com/xlwings/xlwings/issues/1063]).

v0.15.5 (Mar 25, 2019)

	Enhancement wb.macro() now accepts xlwings objects as arguments such as range, sheet etc. when the VBA macro expects the corresponding Excel object (e.g. Range, Worksheet etc.) (GH 784 [https://github.com/xlwings/xlwings/issues/784] and GH 1084 [https://github.com/xlwings/xlwings/issues/1084])

Breaking Change

	Cells that contain a cell error such as #DIV/0!, #N/A, #NAME?, #NULL!, #NUM!, #REF!, #VALUE! return now
None as value in Python. Previously they were returned as constant on Windows (e.g. -2146826246) or k.missing_value on Mac.

v0.15.4 (Mar 17, 2019)

	[Win] BugFix: The ribbon was not showing up in Excel 2007. (GH 1039 [https://github.com/xlwings/xlwings/issues/1039])

	Enhancement: Allow to install xlwings on Linux even though it’s not a supported platform: export INSTALL_ON_LINUX=1; pip install xlwings (GH 1052 [https://github.com/xlwings/xlwings/issues/1052])

v0.15.3 (Feb 23, 2019)

Bug Fix release:

	[Mac] RunPython was broken by the previous release. If you install via conda, make sure to run xlwings runpython install again! (GH 1035 [https://github.com/xlwings/xlwings/issues/1035])

	[Win] Sometimes, the ribbon was throwing errors (GH 1041 [https://github.com/xlwings/xlwings/issues/1041])

v0.15.2 (Feb 3, 2019)

Better support and docs for deployment, see 部署:

	You can now package your python modules into a zip file for easier distribution (GH 1016 [https://github.com/xlwings/xlwings/issues/1016]).

	RunFrozenPython now allows to includes arguments, e.g. RunFrozenPython "C:\path\to\my.exe arg1 arg2" (GH 588 [https://github.com/xlwings/xlwings/issues/588]).

Breaking Change

	Accessing a not existing PID in the apps collection raises now a KeyError instead of an Exception (GH 1002 [https://github.com/xlwings/xlwings/issues/1002]).

v0.15.1 (Nov 29, 2018)

Bug Fix release:

	[Win] Calling Subs or UDFs from VBA was causing an error (GH 998 [https://github.com/xlwings/xlwings/issues/998]).

v0.15.0 (Nov 20, 2018)

Dynamic Array Refactor

While we’re all waiting for the new native dynamic arrays, it’s still going to take another while until the
majority can use them (they are not yet part of Office 2019).

In the meantime, this refactor improves the current xlwings dynamic arrays in the following way:

	Use of native (“legacy”) array formulas instead of having a normal formula in the top left cell and writing around it

	It’s up to 2x faster

	There’s no empty row/col required outside of the dynamic array anymore

	It continues to overwrite existing cells (no change there)

	There’s a small breaking change in the unlikely case that you were assigning values with the expand option:
myrange.options(expand='table').value = [['b'] * 3] * 3. This was previously clearing contiguous cells to
the right and bottom (or one of them depending on the option), now you have to do that explicitly.

Bug Fixes:

	Importing multiple UDF modules has been fixed (GH 991 [https://github.com/xlwings/xlwings/issues/991]).

v0.14.1 (Nov 9, 2018)

This is a bug fix release:

	[Win] Fixed an issue when the new async_mode was used together with numpy arrays (GH 984 [https://github.com/xlwings/xlwings/issues/984])

	[Mac] Fixed an issue with multiple arguments in RunPython (GH 905 [https://github.com/xlwings/xlwings/issues/905])

	[Mac] Fixed an issue with the config file (GH 982 [https://github.com/xlwings/xlwings/issues/982])

v0.14.0 (Nov 5, 2018)

Features:

This release adds support for asynchronous functions (like all UDF related functionality, this is only available on Windows).
Making a function asynchronous is as easy as:

import xlwings as xw
import time

@xw.func(async_mode='threading')
def myfunction(a):
 time.sleep(5) # long running tasks
 return a

See 异步UDF for the full docs.

Bug Fixes:

	See GH 970 [https://github.com/xlwings/xlwings/issues/970] and GH 973 [https://github.com/xlwings/xlwings/issues/973].

v0.13.0 (Oct 22, 2018)

Features:

This release adds a REST API server to xlwings, allowing you to easily expose your workbook over the internet.

Enhancements:

	Dynamic arrays are now more robust. Before, they often didn’t manage to write everything when there was a lot going on in the workbook (GH 880 [https://github.com/xlwings/xlwings/issues/880])

	Jagged arrays (lists of lists where not all rows are of equal length) now raise an error (GH 942 [https://github.com/xlwings/xlwings/issues/942])

	xlwings can now be used with threading, see the docs: 多线程 (GH 759 [https://github.com/xlwings/xlwings/issues/759]).

	[Win] xlwings now enforces pywin32 224 when installing xlwings on Python 3.7 (GH 959 [https://github.com/xlwings/xlwings/issues/959])

	New xlwings.Sheet.used_range property (GH 112 [https://github.com/xlwings/xlwings/issues/112])

Bug Fixes:

	The current directory is now inserted in front of everything else on the PYTHONPATH (GH 958 [https://github.com/xlwings/xlwings/issues/958])

	The standalone files had an issue in the VBA module (GH 960 [https://github.com/xlwings/xlwings/issues/960])

Breaking Change

	Members of the xw.apps collection are now accessed by key (=PID) instead of index, e.g.:
xw.apps[12345] instead of xw.apps[0]. The apps collection also has a new xw.apps.keys() method. (GH 951 [https://github.com/xlwings/xlwings/issues/951])

v0.12.1 (Oct 7, 2018)

[Py27] Bug Fix for a Python 2.7 glitch.

v0.12.0 (Oct 7, 2018)

Features:

This release adds support to call Python functions from VBA in all Office apps (e.g. Access, Outlook etc.), not just Excel. As
this uses UDFs, it is only available on Windows.
See the docs: xlwings与其他Office应用.

Breaking Change

Previously, Python functions were always returning 2d arrays when called from VBA, no matter whether it was actually a 2d array or not.
Now you get the proper dimensionality which makes it easier if the return value is e.g. a string or scalar as you don’t have to
unpack it anymore.

Consider the following example using the VBA Editor’s Immediate Window after importing UDFs from a project created
using by xlwings quickstart:

Old behaviour

?TypeName(hello("xlwings"))
Variant()
?hello("xlwings")(0,0)
hello xlwings

New behaviour

?TypeName(hello("xlwings"))
String
?hello("xlwings")
hello xlwings

Bug Fixes:

	[Win] Support expansion of environment variables in config values (GH 615 [https://github.com/xlwings/xlwings/issues/615])

	Other bug fixes: GH 889 [https://github.com/xlwings/xlwings/issues/889], GH 939 [https://github.com/xlwings/xlwings/issues/939], GH 940 [https://github.com/xlwings/xlwings/issues/940], GH 943 [https://github.com/xlwings/xlwings/issues/943].

v0.11.8 (May 13, 2018)

	[Win] pywin32 is now automatically installed when using pip (GH 827 [https://github.com/xlwings/xlwings/issues/827])

	xlwings.bas has been readded to the python package. This facilitates e.g. the use of xlwings within other addins (GH 857 [https://github.com/xlwings/xlwings/issues/857])

v0.11.7 (Feb 5, 2018)

	[Win] This release fixes a bug introduced with v0.11.6 that wouldn’t allow to open workbooks by name (GH 804 [https://github.com/xlwings/xlwings/issues/804])

v0.11.6 (Jan 27, 2018)

Bug Fixes:

	[Win] When constantly writing to a spreadsheet, xlwings now correctly resumes after clicking into cells, previously it was crashing. (GH 587 [https://github.com/xlwings/xlwings/issues/587])

	Options are now correctly applied when writing to a sheet (GH 798 [https://github.com/xlwings/xlwings/issues/798])

v0.11.5 (Jan 7, 2018)

This is mostly a bug fix release:

	Config files can now additionally be saved in the directory of the workbooks, overriding the global Ribbon config, see Making use of Environment Variables (GH 772 [https://github.com/xlwings/xlwings/issues/772])

	Reading Pandas DataFrames with a simple index was creating a MultiIndex with Pandas > 0.20 (GH 786 [https://github.com/xlwings/xlwings/issues/786])

	[Win] The xlwings dlls are now properly versioned, allowing to use pre 0.11 releases in parallel with >0.11 releases (GH 743 [https://github.com/xlwings/xlwings/issues/743])

	[Mac] Sheet.names.add() was always adding the names on workbook level (GH 771 [https://github.com/xlwings/xlwings/issues/771])

	[Mac] UDF decorators now don’t cause errors on Mac anymore (GH 780 [https://github.com/xlwings/xlwings/issues/780])

v0.11.4 (Jul 23, 2017)

This release brings further improvements with regards to the add-in:

	The add-in now shows the version on the ribbon. This makes it easy to check if you are using the correct version (GH 724 [https://github.com/xlwings/xlwings/issues/724]):

[image: _images/addin_version.png]

	[Mac] On Mac Excel 2016, the ribbon now only shows the available functionality (GH 723 [https://github.com/xlwings/xlwings/issues/723]):

[image: _images/mac_ribbon.png]

	[Mac] Mac Excel 2011 is now supported again with the new add-in. However, since Excel 2011 doesn’t support the ribbon,
the config file has been created/edited manually, see Making use of Environment Variables (GH 714 [https://github.com/xlwings/xlwings/issues/714]).

Also, some new docs:

	[Win] How to use imported functions in VBA, see 从VBA调用UDF.

	For more up-to-date installations via conda, use the conda-forge channel, see 安装.

	A troubleshooting section: 故障排查.

v0.11.3 (Jul 14, 2017)

	Bug Fix: When using the xlwings.conf sheet, there was a subscript out of range error (GH 708 [https://github.com/xlwings/xlwings/issues/708])

	Enhancement: The add-in is now password protected (pw: xlwings) to declutter the VBA editor (GH 710 [https://github.com/xlwings/xlwings/issues/710])

You need to update your xlwings add-in to get the fixes!

v0.11.2 (Jul 6, 2017)

	Bug Fix: The sql extension was sometimes not correctly assigning the table aliases (GH 699 [https://github.com/xlwings/xlwings/issues/699])

	Bug Fix: Permission errors during pip installation should be resolved now (GH 693 [https://github.com/xlwings/xlwings/issues/693])

v0.11.1 (Jul 5, 2017)

	Bug Fix: The sql extension installs now correctly (GH 695 [https://github.com/xlwings/xlwings/issues/695])

v0.11.0 (Jul 2, 2017)

Big news! This release adds a full blown add-in! We also throw in a great In-Excel SQL Extension and a few bug fixes:

Add-in

[image: _images/ribbon.png]

A few highlights:

	Settings don’t have to be manipulated in VBA code anymore, but can be either set globally via Ribbon/config file or
for the workbook via a special worksheet

	UDF server can be restarted directly from the add-in

	You can still use a VBA module instead of the add-in, but the recommended way is the add-in

	Get all the details here: Add-in & Settings

In-Excel SQL Extension

The add-in can be extended with own code. We throw in an sql function, that allows you to perform SQL queries
on data in your spreadsheets. It’s pretty awesome, get the details here: 扩展.

Bug Fixes

	[Win]: Running Debug > Compile is not throwing errors anymore (GH 678 [https://github.com/xlwings/xlwings/issues/678])

	Pandas deprecation warnings have been fixed (GH 675 [https://github.com/xlwings/xlwings/issues/675] and GH 664 [https://github.com/xlwings/xlwings/issues/664])

	[Mac]: Errors are again shown correctly in a pop up (GH 660 [https://github.com/xlwings/xlwings/issues/660])

	[Mac]: Like Windows, Mac now also only shows errors in a popup. Before it was including stdout, too (GH 666 [https://github.com/xlwings/xlwings/issues/666])

Breaking Change

	RunFrozenPython now requires the full path to the executable.

	The xlwings CLI xlwings template functionality has been removed. Use quickstart instead.

Migrate to v0.11 (Add-in)

This migration guide shows you how you can start using the new xlwings add-in as opposed to the old xlwings VBA module
(and the old add-in that consisted of just a single import button).

Upgrade the xlwings Python package

	Check where xlwings is currently installed

>>> import xlwings
>>> xlwings.__path__

	If you installed xlwings with pip, for once, you should first uninstall xlwings: pip uninstall xlwings

	Check the directory that you got under 1): if there are any files left over, delete the xlwings folder and the
remaining files manually

	Install the latest xlwings version: pip install xlwings

	Verify that you have >= 0.11 by doing

>>> import xlwings
>>> xlwings.__version__

Install the add-in

	If you have the old xlwings addin installed, find the location and remove it or overwrite it with the new version (see next step).
If you installed it via the xlwings command line client, you should be able to do: xlwings addin remove.

	Close Excel. Run xlwings addin install from a command prompt. Reopen Excel and check if the xlwings Ribbon
appears. If not, copy xlwings.xlam (from your xlwings installation folder under addin\xlwings.xlam manually
into the XLSTART folder.
You can find the location of this folder under Options > Trust Center > Trust Center Settings… > Trusted Locations,
under the description Excel default location: User StartUp. Restart Excel and you should see the add-in.

Upgrade existing workbooks

	Make a backup of your Excel file

	Open the file and go to the VBA Editor (Alt-F11)

	Remove the xlwings VBA module

	Add a reference to the xlwings addin, see 安装

	If you want to use workbook specific settings, add a sheet xlwings.conf, see 工作簿级配置：xlwings.conf表

Note: To import UDFs, you need to have the reference to the xlwings add-in set!

v0.10.4 (Feb 19, 2017)

	[Win] Bug Fix: v0.10.3 introduced a bug that imported UDFs by default with volatile=True, this has now been fixed.
You will need to reimport your functions after upgrading the xlwings package.

v0.10.3 (Jan 28, 2017)

This release adds new features to User Defined Functions (UDFs):

	categories

	volatile option

	suppress calculation in function wizard

Syntax:

import xlwings as xw
@xw.func(category="xlwings", volatile=False, call_in_wizard=True)
def myfunction():
 return ...

For details, check out the (also new) and comprehensive API docs about the decorators: UDF装饰器

v0.10.2 (Dec 31, 2016)

	[Win] Python 3.6 is now supported (GH 592 [https://github.com/xlwings/xlwings/issues/592])

v0.10.1 (Dec 5, 2016)

	Writing a Pandas Series with a MultiIndex header was not writing out the header (GH 572 [https://github.com/xlwings/xlwings/issues/572])

	[Win] Docstrings for UDF arguments are now working (GH 367 [https://github.com/xlwings/xlwings/issues/367])

	[Mac] Range.clear_contents() has been fixed (it was doing clear() instead) (GH 576 [https://github.com/xlwings/xlwings/issues/576])

	xw.Book(...) and xw.books.open(...) raise now the same error in case the file doesn’t exist (GH 540 [https://github.com/xlwings/xlwings/issues/540])

v0.10.0 (Sep 20, 2016)

Dynamic Array Formulas

This release adds an often requested & powerful new feature to User Defined Functions (UDFs): Dynamic expansion for
array formulas. While Excel offers array formulas, you need to specify their dimensions up front by selecting the
result array first, then entering the formula and finally hitting Ctrl-Shift-Enter. While this makes sense from
a data integrity point of view, in practice, it often turns out to be a cumbersome limitation, especially when working
with dynamic arrays such as time series data.

This is a simple example that demonstrates the syntax and effect of UDF expansion:

import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(r, c):
 return np.random.randn(int(r), int(c))

[image: _images/dynamic_array1.png]

[image: _images/dynamic_array2.png]

Note: Expanding array formulas will overwrite cells without prompting and leave an empty border around them, i.e.
they will clear the row to the bottom and the column to the right of the array.

Bug Fixes

	The int converter works now always as you would expect (e.g.: xw.Range('A1').options(numbers=int).value). Before,
it could happen that the number was off by 1 due to floating point issues (GH 554 [https://github.com/xlwings/xlwings/issues/554]).

v0.9.3 (Aug 22, 2016)

	[Win] App.visible wasn’t behaving correctly (GH 551 [https://github.com/xlwings/xlwings/issues/551]).

	[Mac] Added support for the new 64bit version of Excel 2016 on Mac (GH 549 [https://github.com/xlwings/xlwings/issues/549]).

	Unicode book names are again supported (GH 546 [https://github.com/xlwings/xlwings/issues/546]).

	xlwings.Book.save() now supports relative paths. Also, when saving an existing book under a new name
without specifying the full path, it’ll be saved in Python’s current working directory instead of in Excel’s default
directory (GH 185 [https://github.com/xlwings/xlwings/issues/185]).

v0.9.2 (Aug 8, 2016)

Another round of bug fixes:

	[Mac]: Sometimes, a column was referenced instead of a named range (GH 545 [https://github.com/xlwings/xlwings/issues/545])

	[Mac]: Python 2.7 was raising a LookupError: unknown encoding: mbcs (GH 544 [https://github.com/xlwings/xlwings/issues/544])

	Fixed docs regarding set_mock_caller (GH 543 [https://github.com/xlwings/xlwings/issues/543])

v0.9.1 (Aug 5, 2016)

This is a bug fix release: As to be expected after a rewrite, there were some rough edges that have now been taken care of:

	[Win] Opening a file via xw.Book() was causing an additional Book1 to be opened in case Excel was not running yet (GH 531 [https://github.com/xlwings/xlwings/issues/531])

	[Win] Some users were getting an ImportError (GH 533 [https://github.com/xlwings/xlwings/issues/533])

	[PY 2.7] RunPython was broken with Python 2.7 (GH 537 [https://github.com/xlwings/xlwings/issues/537])

	Some corrections in the docs (GH 538 [https://github.com/xlwings/xlwings/issues/538] and GH 536 [https://github.com/xlwings/xlwings/issues/536])

v0.9.0 (Aug 2, 2016)

Exciting times! v0.9.0 is a complete rewrite of xlwings with loads of syntax changes (hence the version jump). But more
importantly, this release adds a ton of new features and bug fixes that would have otherwise been impossible. Some of the
highlights are listed below, but make sure to check out the full migration guide for the syntax changes in details.
Note, however, that the syntax for user defined functions (UDFs) did not change.
At this point, the API is fairly stable and we’re expecting only smaller changes on our way towards a stable v1.0 release.

	Active book instead of current book: xw.Range('A1') goes against the active sheet of the active book
like you’re used to from VBA. Instantiating an explicit connection to a Book is not necessary anymore:

>>> import xlwings as xw
>>> xw.Range('A1').value = 11
>>> xw.Range('A1').value
11.0

	Excel Instances: Full support of multiple Excel instances (even on Mac!)

>>> app1 = xw.App()
>>> app2 = xw.App()
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

	New powerful object model based on collections and close to Excel’s original, allowing to fully qualify objects:
xw.apps[0].books['MyBook.xlsx'].sheets[0].range('A1:B2').value

It supports both Python indexing (square brackets) and Excel indexing (round brackets):

xw.books[0].sheets[0] is the same as xw.books(1).sheets(1)

It also supports indexing and slicing of range objects:

>>> rng = xw.Range('A1:E10')
>>> rng[1]
<Range [Workbook1]Sheet1!B1>
>>> rng[:2, :2]
<Range [Workbook1]Sheet1!A1:B2>

For more details, see 语法综述.

	UDFs can now also be imported from packages, not just modules (GH 437 [https://github.com/xlwings/xlwings/issues/437])

	Named Ranges: Introduction of full object model and proper support for sheet and workbook scope (GH 256 [https://github.com/xlwings/xlwings/issues/256])

	Excel doesn’t become the active window anymore so the focus stays on your Python environment (GH 414 [https://github.com/xlwings/xlwings/issues/414])

	When writing to ranges while Excel is busy, xlwings is now retrying until Excel is idle again (GH 468 [https://github.com/xlwings/xlwings/issues/468])

	xlwings.view() has been enhanced to accept an optional sheet object (GH 469 [https://github.com/xlwings/xlwings/issues/469])

	Objects like books, sheets etc. can now be compared (e.g. wb1 == wb2) and are properly hashable

	Note that support for Python 2.6 has been dropped

Some of the new methods/properties worth mentioning are:

	xlwings.App.display_alerts

	xlwings.App.macro() in addition to xlwings.Book.macro()

	xlwings.App.kill()

	xlwings.Sheet.cells

	xlwings.Range.rows

	xlwings.Range.columns

	xlwings.Range.end()

	xlwings.Range.raw_value

Bug Fixes

	See here [https://github.com/xlwings/xlwings/issues?q=is%3Aclosed+is%3Aissue+milestone%3Av0.9.0+label%3Abug]
for details about which bugs have been fixed.

Migrate to v0.9

The purpose of this document is to enable you a smooth experience when upgrading to xlwings v0.9.0 and above by laying out
the concept and syntax changes in detail. If you want to get an overview of the new features and bug fixes, have a look at the
release notes. Note that the syntax for User Defined Functions (UDFs) didn’t change.

Full qualification: Using collections

The new object model allows to specify the Excel application instance if needed:

	old: xw.Range('Sheet1', 'A1', wkb=xw.Workbook('Book1'))

	new: xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')

See 语法综述 for the details of the new object model.

Connecting to Books

	old: xw.Workbook()

	new: xw.Book() or via xw.books if you need to control the app instance.

See 连接到Excel工作簿 for the details.

Active Objects

Active app (i.e. Excel instance)
>>> app = xw.apps.active

Active book
>>> wb = xw.books.active # in active app
>>> wb = app.books.active # in specific app

Active sheet
>>> sht = xw.sheets.active # in active book
>>> sht = wb.sheets.active # in specific book

Range on active sheet
>>> xw.Range('A1') # on active sheet of active book of active app

Round vs. Square Brackets

Round brackets follow Excel’s behavior (i.e. 1-based indexing), while square brackets use Python’s 0-based indexing/slicing.

As an example, the following all reference the same range:

xw.apps[0].books[0].sheets[0].range('A1')
xw.apps(1).books(1).sheets(1).range('A1')
xw.apps[0].books['Book1'].sheets['Sheet1'].range('A1')
xw.apps(1).books('Book1').sheets('Sheet1').range('A1')

Access the underlying Library/Engine

	old: xw.Range('A1').xl_range and xl_sheet etc.

	new: xw.Range('A1').api, same for all other objects

This returns a pywin32 COM object on Windows and an appscript object on Mac.

Cheat sheet

Note that sht stands for a sheet object, like e.g. (in 0.9.0 syntax): sht = xw.books['Book1'].sheets[0]

	
	v0.9.0

	v0.7.2

	Active Excel instance

	xw.apps.active

	unsupported

	New Excel instance

	app = xw.App()

	unsupported

	Get app from book

	app = wb.app

	app = xw.Application(wb)

	Target installation (Mac)

	app = xw.App(spec=...)

	wb = xw.Workbook(app_target=...)

	Hide Excel Instance

	app = xw.App(visible=False)

	wb = xw.Workbook(app_visible=False)

	Selected Range

	app.selection

	wb.get_selection()

	Calculation mode

	app.calculation = 'manual'

	app.calculation = xw.constants.Calculation.xlCalculationManual

	All books in app

	app.books

	unsupported

	
	
	

	Fully qualified book

	app.books['Book1']

	unsupported

	Active book in active app

	xw.books.active

	xw.Workbook.active()

	New book in active app

	wb = xw.Book()

	wb = xw.Workbook()

	New book in specific app

	wb = app.books.add()

	unsupported

	All sheets in book

	wb.sheets

	xw.Sheet.all(wb)

	Call a macro in an addin

	app.macro('MacroName')

	unsupported

	
	
	

	First sheet of book wb

	wb.sheets[0]

	xw.Sheet(1, wkb=wb)

	Active sheet

	wb.sheets.active

	xw.Sheet.active(wkb=wb) or wb.active_sheet

	Add sheet

	wb.sheets.add()

	xw.Sheet.add(wkb=wb)

	Sheet count

	wb.sheets.count or len(wb.sheets)

	xw.Sheet.count(wb)

	
	
	

	Add chart to sheet

	chart = wb.sheets[0].charts.add()

	chart = xw.Chart.add(sheet=1, wkb=wb)

	Existing chart

	wb.sheets['Sheet 1'].charts[0]

	xw.Chart('Sheet 1', 1)

	Chart Type

	chart.chart_type = '3d_area'

	chart.chart_type = xw.constants.ChartType.xl3DArea

	
	
	

	Add picture to sheet

	wb.sheets[0].pictures.add('path/to/pic')

	xw.Picture.add('path/to/pic', sheet=1, wkb=wb)

	Existing picture

	wb.sheets['Sheet 1'].pictures[0]

	xw.Picture('Sheet 1', 1)

	Matplotlib

	sht.pictures.add(fig, name='x', update=True)

	xw.Plot(fig).show('MyPlot', sheet=sht, wkb=wb)

	
	
	

	Table expansion

	sht.range('A1').expand('table')

	xw.Range(sht, 'A1', wkb=wb).table

	Vertical expansion

	sht.range('A1').expand('down')

	xw.Range(sht, 'A1', wkb=wb).vertical

	Horizontal expansion

	sht.range('A1').expand('right')

	xw.Range(sht, 'A1', wkb=wb).horizontal

	
	
	

	Set name of range

	sht.range('A1').name = 'name'

	xw.Range(sht, 'A1', wkb=wb).name = 'name'

	Get name of range

	sht.range('A1').name.name

	xw.Range(sht, 'A1', wkb=wb).name

	
	
	

	mock caller

	xw.Book('file.xlsm').set_mock_caller()

	xw.Workbook.set_mock_caller('file.xlsm')

v0.7.2 (May 18, 2016)

Bug Fixes

	[Win] UDFs returning Pandas DataFrames/Series containing nan were failing (GH 446 [https://github.com/xlwings/xlwings/issues/446]).

	[Win] RunFrozenPython was not finding the executable (GH 452 [https://github.com/xlwings/xlwings/issues/452]).

	The xlwings VBA module was not finding the Python interpreter if PYTHON_WIN or PYTHON_MAC contained spaces (GH 461 [https://github.com/xlwings/xlwings/issues/461]).

v0.7.1 (April 3, 2016)

Enhancements

	[Win]: User Defined Functions (UDFs) support now optional/default arguments (GH 363 [https://github.com/xlwings/xlwings/issues/363])

	[Win]: User Defined Functions (UDFs) support now multiple source files, see also under API changes below. For example
(VBA settings): UDF_MODULES="common;myproject"

	VBA Subs & Functions are now callable from Python:

As an example, this VBA function:

Function MySum(x, y)
 MySum = x + y
End Function

can be accessed like this:

>>> import xlwings as xw
>>> wb = xw.Workbook.active()
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3.0

	New xw.view method: This opens a new workbook and displays an object on its first sheet. E.g.:

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
>>> xw.view(df)

	New docs about Matplotlib & Plotly Charts and 自定义转换器

	New method: xlwings.Range.formula_array() (GH 411 [https://github.com/xlwings/xlwings/issues/411])

API changes

	VBA settings: PYTHON_WIN and PYTHON_MAC must now include the interpreter if you are not using the default
(PYTHON_WIN = "") (GH 289 [https://github.com/xlwings/xlwings/issues/289]). E.g.:

PYTHON_WIN: "C:\Python35\pythonw.exe"
PYTHON_MAC: "/usr/local/bin/python3.5"

	[Win]: VBA settings: UDF_PATH has been replaced with UDF_MODULES. The default behaviour doesn’t change though
(i.e. if UDF_MODULES = "", then a Python source file with the same name as the Excel file, but with .py ending
will be imported from the same directory as the Excel file).

New:

UDF_MODULES: "mymodule"
PYTHONPATH: "C:\path\to"

Old:

UDF_PATH: "C:\path\to\mymodule.py"

Bug Fixes

	Numpy scalars issues were resolved (GH 415 [https://github.com/xlwings/xlwings/issues/415])

	[Win]: xlwings was failing with freezers like cx_Freeze (GH 413 [https://github.com/xlwings/xlwings/issues/413])

	[Win]: UDFs were failing if they were returning None or np.nan (GH 390 [https://github.com/xlwings/xlwings/issues/390])

	Multiindex Pandas Series have been fixed (GH 383 [https://github.com/xlwings/xlwings/issues/383])

	[Mac]: xlwings runpython install was failing (GH 424 [https://github.com/xlwings/xlwings/issues/424])

v0.7.0 (March 4, 2016)

This version marks an important first step on our path towards a stable release. It introduces converters, a new and powerful
concept that brings a consistent experience for how Excel Ranges and their values are treated both when reading and writing but
also across xlwings.Range objects and User Defined Functions (UDFs).

As a result, a few highlights of this release include:

	Pandas DataFrames and Series are now supported for reading and writing, both via Range object and UDFs

	New Range converter options: transpose, dates, numbers, empty, expand

	New dictionary converter

	New UDF debug server

	No more pyc files when using RunPython

Converters are accessed via the new options method when dealing with xlwings.Range objects or via the @xw.arg
and @xw.ret decorators when using UDFs. As an introductory sample, let’s look at how to read and write Pandas DataFrames:

[image: _images/df_converter.png]

Range object:

>>> import xlwings as xw
>>> import pandas as pd
>>> wb = xw.Workbook()
>>> df = xw.Range('A1:D5').options(pd.DataFrame, header=2).value
>>> df
 a b
 c d e
ix
10 1 2 3
20 4 5 6
30 7 8 9

Writing back using the defaults:
>>> Range('A1').value = df

Writing back and changing some of the options, e.g. getting rid of the index:
>>> Range('B7').options(index=False).value = df

UDFs:

This is the same sample as above (starting in Range('A13') on screenshot). If you wanted to return a DataFrame with
the defaults, the @xw.ret decorator can be left away.

@xw.func
@xw.arg('x', pd.DataFrame, header=2)
@xw.ret(index=False)
def myfunction(x):
 # x is a DataFrame, do something with it
 return x

Enhancements

	Dictionary (dict) converter:

[image: _images/dict_converter.png]

>>> Range('A1:B2').options(dict).value
{'a': 1.0, 'b': 2.0}
>>> Range('A4:B5').options(dict, transpose=True).value
{'a': 1.0, 'b': 2.0}

	transpose option: This works in both directions and finally allows us to e.g. write a list in column
orientation to Excel (GH 11 [https://github.com/xlwings/xlwings/issues/11]):

Range('A1').options(transpose=True).value = [1, 2, 3]

	dates option: This allows us to read Excel date-formatted cells in specific formats:

>>> import datetime as dt
>>> Range('A1').value
datetime.datetime(2015, 1, 13, 0, 0)
>>> Range('A1').options(dates=dt.date).value
datetime.date(2015, 1, 13)

	empty option: This allows us to override the default behavior for empty cells:

>>> Range('A1:B1').value
[None, None]
>>> Range('A1:B1').options(empty='NA')
['NA', 'NA']

	numbers option: This transforms all numbers into the indicated type.

>>> xw.Range('A1').value = 1
>>> type(xw.Range('A1').value) # Excel stores all numbers interally as floats
float
>>> type(xw.Range('A1').options(numbers=int).value)
int

	expand option: This works the same as the Range properties table, vertical and horizontal but is
only evaluated when getting the values of a Range:

>>> import xlwings as xw
>>> wb = xw.Workbook()
>>> xw.Range('A1').value = [[1,2], [3,4]]
>>> rng1 = xw.Range('A1').table
>>> rng2 = xw.Range('A1').options(expand='table')
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0]]
>>> xw.Range('A3').value = [5, 6]
>>> rng1.value
[[1.0, 2.0], [3.0, 4.0]]
>>> rng2.value
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]

All these options work the same with decorators for UDFs, e.g. for transpose:

@xw.arg('x', transpose=True)
@xw.ret(transpose=True)
def myfunction(x):
 # x will be returned unchanged as transposed both when reading and writing
 return x

Note: These options (dates, empty, numbers) currently apply to the whole Range and can’t be selectively
applied to e.g. only certain columns.

	UDF debug server

The new UDF debug server allows you to easily debug UDFs: just set UDF_DEBUG_SERVER = True in the VBA Settings,
at the top of the xlwings VBA module (make sure to update it to the latest version!). Then add the following lines
to your Python source file and run it:

if __name__ == '__main__':
 xw.serve()

When you recalculate the Sheet, the code will stop at breakpoints or print any statements that you may have. For
details, see: 调试.

	pyc files: The creation of pyc files has been disabled when using RunPython, leaving your directory in an
uncluttered state when having the Python source file next to the Excel workbook (GH 326 [https://github.com/xlwings/xlwings/issues/326]).

API changes

	UDF decorator changes (it is assumed that xlwings is imported as xw and numpy as np):

	New

	Old

	@xw.func

	@xw.xlfunc

	@xw.arg

	@xw.xlarg

	@xw.ret

	@xw.xlret

	@xw.sub

	@xw.xlsub

Pay attention to the following subtle change:

	New

	Old

	@xw.arg("x", np.array)

	@xw.xlarg("x", "nparray")

	Samples of how the new options method replaces the old Range keyword arguments:

	New

	Old

	Range('A1:A2').options(ndim=2)

	Range('A1:A2', atleast_2d=True)

	Range('A1:B2').options(np.array)

	Range('A1:B2', asarray=True)

	Range('A1').options(index=False, header=False).value = df

	Range('A1', index=False, header=False).value = df

	Upon writing, Pandas Series are now shown by default with their name and index name, if they exist. This can be
changed using the same options as for DataFrames (GH 276 [https://github.com/xlwings/xlwings/issues/276]):

import pandas as pd

unchanged behaviour
Range('A1').value = pd.Series([1,2,3])

Changed behaviour: This will print a header row in Excel
s = pd.Series([1,2,3], name='myseries', index=pd.Index([0,1,2], name='myindex'))
Range('A1').value = s

Control this behaviour like so (as with DataFrames):
Range('A1').options(header=False, index=True).value = s

	NumPy scalar values

Previously, NumPy scalar values were returned as np.atleast_1d. To keep the same behaviour, this now has to be
set explicitly using ndim=1. Otherwise they’re returned as numpy scalar values.

	New

	Old

	Range('A1').options(np.array, ndim=1).value

	Range('A1', asarray=True).value

Bug Fixes

A few bugfixes were made: GH 352 [https://github.com/xlwings/xlwings/issues/352], GH 359 [https://github.com/xlwings/xlwings/issues/359].

v0.6.4 (January 6, 2016)

API changes

None

Enhancements

	Quickstart: It’s now easier than ever to start a new xlwings project, simply use the command line client (GH 306 [https://github.com/xlwings/xlwings/issues/306]):

xlwings quickstart myproject will produce a folder with the following files, ready to be used (see Command Line Client (CLI)):

myproject
 |--myproject.xlsm
 |--myproject.py

	New documentation about how to use xlwings with other languages like R and Julia.

Bug Fixes

	[Win]: Importing UDFs with the add-in was throwing an error if the filename was including characters like spaces or dashes (GH 331 [https://github.com/xlwings/xlwings/issues/331]).
To fix this, close Excel completely and run xlwings addin update.

	[Win]: Workbook.caller() is now also accessible within functions that are decorated with @xlfunc. Previously,
it was only available with functions that used the @xlsub decorator (GH 316 [https://github.com/xlwings/xlwings/issues/316]).

	Writing a Pandas DataFrame failed in case the index was named the same as a column (GH 334 [https://github.com/xlwings/xlwings/issues/334]).

v0.6.3 (December 18, 2015)

Bug Fixes

	[Mac]: This fixes a bug introduced in v0.6.2: When using RunPython from VBA, errors were not shown in a pop-up window (GH 330 [https://github.com/xlwings/xlwings/issues/330]).

v0.6.2 (December 15, 2015)

API changes

	LOG_FILE: So far, the log file has been placed next to the Excel file per default (VBA settings). This has been changed as it was
causing issues for files on SharePoint/OneDrive and Mac Excel 2016: The place where LOG_FILE = "" refers to depends on the OS and the Excel version.

Enhancements

	[Mac]: This version adds support for the VBA module on Mac Excel 2016 (i.e. the RunPython command) and is now feature equivalent
with Mac Excel 2011 (GH 206 [https://github.com/xlwings/xlwings/issues/206]).

Bug Fixes

	[Win]: On certain systems, the xlwings dlls weren’t found (GH 323 [https://github.com/xlwings/xlwings/issues/323]).

v0.6.1 (December 4, 2015)

Bug Fixes

	[Python 3]: The command line client has been fixed (GH 319 [https://github.com/xlwings/xlwings/issues/319]).

	[Mac]: It now works correctly with psutil>=3.0.0 (GH 315 [https://github.com/xlwings/xlwings/issues/315]).

v0.6.0 (November 30, 2015)

API changes

None

Enhancements

	User Defined Functions (UDFs) - currently Windows only

The ExcelPython [https://github.com/ericremoreynolds/excelpython/] project has been fully merged into xlwings. This means
that on Windows, UDF’s are now supported via decorator syntax. A simple example:

from xlwings import xlfunc

@xlfunc
def double_sum(x, y):
 """Returns twice the sum of the two arguments"""
 return 2 * (x + y)

For array formulas with or without NumPy, see the docs: User Defined Functions (UDFs)

	Command Line Client

The new xlwings command line client makes it easy to work with the xlwings template and the developer add-in
(the add-in is currently Windows-only). E.g. to create a new Excel spreadsheet from the template, run:

xlwings template open

For all commands, see the docs: Command Line Client (CLI)

	Other enhancements:

	New method: xlwings.Sheet.delete()

	New method: xlwings.Range.top()

	New method: xlwings.Range.left()

v0.5.0 (November 10, 2015)

API changes

None

Enhancements

This version adds support for Matplotlib! Matplotlib figures can be shown in Excel as pictures in just 2 lines of code:

[image: _images/matplotlib.png]

	Get a matplotlib figure object:

	via PyPlot interface:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3, 4, 5])

	via object oriented interface:

from matplotlib.figure import Figure
fig = Figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.plot([1, 2, 3, 4, 5])

	via Pandas:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot(kind='bar')
fig = ax.get_figure()

	Show it in Excel as picture:

plot = Plot(fig)
plot.show('Plot1')

See the full API: xlwings.Plot(). There’s also a new example available both on
GitHub [https://github.com/xlwings/xlwings/tree/master/examples/matplotlib/] and as download on the
homepage [http://www.xlwings.org/examples].

Other enhancements:

	New xlwings.Shape() class

	New xlwings.Picture() class

	The PYTHONPATH in the VBA settings now accepts multiple directories, separated by ; (GH 258 [https://github.com/xlwings/xlwings/issues/258])

	An explicit exception is raised when Range is called with 0-based indices (GH 106 [https://github.com/xlwings/xlwings/issues/106])

Bug Fixes

	Sheet.add was not always acting on the correct workbook (GH 287 [https://github.com/xlwings/xlwings/issues/287])

	Iteration over a Range only worked the first time (GH 272 [https://github.com/xlwings/xlwings/issues/272])

	[Win]: Sometimes, an error was raised when Excel was not running (GH 269 [https://github.com/xlwings/xlwings/issues/269])

	[Win]: Non-default Python interpreters (as specified in the VBA settings under PYTHON_WIN) were not found
if the path contained a space (GH 257 [https://github.com/xlwings/xlwings/issues/257])

v0.4.1 (September 27, 2015)

API changes

None

Enhancements

This release makes it easier than ever to connect to Excel from Python! In addition to the existing ways, you can now
connect to the active Workbook (on Windows across all instances) and if the Workbook is already open, it’s good enough
to refer to it by name (instead of having to use the full path). Accordingly, this is how you make a connection to…
(GH 30 [https://github.com/xlwings/xlwings/issues/30] and GH 226 [https://github.com/xlwings/xlwings/issues/226]):

	a new workbook: wb = Workbook()

	the active workbook [New!]: wb = Workbook.active()

	an unsaved workbook: wb = Workbook('Book1')

	a saved (open) workbook by name (incl. xlsx etc.) [New!]: wb = Workbook('MyWorkbook.xlsx')

	a saved (open or closed) workbook by path: wb = Workbook(r'C:\\path\\to\\file.xlsx')

Also, there are some new docs:

	连接到Excel工作簿

	缺失功能

Bug Fixes

	The Excel template was updated to the latest VBA code (GH 234 [https://github.com/xlwings/xlwings/issues/234]).

	Connections to files that are saved on OneDrive/SharePoint are now working correctly (GH 215 [https://github.com/xlwings/xlwings/issues/215]).

	Various issues with timezone-aware objects were fixed (GH 195 [https://github.com/xlwings/xlwings/issues/195]).

	[Mac]: A certain range of integers were not written to Excel (GH 227 [https://github.com/xlwings/xlwings/issues/227]).

v0.4.0 (September 13, 2015)

API changes

None

Enhancements

The most important update with this release was made on Windows: The methodology used to make a connection
to Workbooks has been completely replaced. This finally allows xlwings to reliably connect to multiple instances of
Excel even if the Workbooks are opened from untrusted locations (network drives or files downloaded from the internet).
This gets rid of the dreaded Filename is already open... error message that was sometimes shown in this
context. It also allows the VBA hooks (RunPython) to work correctly if the very same file is opened in various instances of
Excel.

Note that you will need to update the VBA module and that apart from pywin32 there is now a new dependency for the
Windows version: comtypes. It should be installed automatically though when installing/upgrading xlwings with
pip.

Other updates:

	Added support to manipulate named Ranges (GH 92 [https://github.com/xlwings/xlwings/issues/92]):

>>> wb = Workbook()
>>> Range('A1').name = 'Name1'
>>> Range('A1').name
>>> 'Name1'
>>> del wb.names['Name1']

	
	New Range properties (GH 81 [https://github.com/xlwings/xlwings/issues/81]):
	
	xlwings.Range.column_width()

	xlwings.Range.row_height()

	xlwings.Range.width()

	xlwings.Range.height()

	Range now also accepts Sheet objects, the following 3 ways are hence all valid (GH 92 [https://github.com/xlwings/xlwings/issues/92]):

r = Range(1, 'A1')
r = Range('Sheet1', 'A1')
sheet1 = Sheet(1)
r = Range(sheet1, 'A1')

	[Win]: Error pop-ups show now the full error message that can also be copied with Ctrl-C (GH 221 [https://github.com/xlwings/xlwings/issues/221]).

Bug Fixes

	The VBA module was not accepting lower case drive letters (GH 205 [https://github.com/xlwings/xlwings/issues/205]).

	Fixed an error when adding a new Sheet that was already existing (GH 211 [https://github.com/xlwings/xlwings/issues/211]).

v0.3.6 (July 14, 2015)

API changes

Application as attribute of a Workbook has been removed (wb is a Workbook object):

	Correct Syntax (as before)

	Removed

	Application(wkb=wb)

	wb.application

Enhancements

Excel 2016 for Mac Support (GH 170 [https://github.com/xlwings/xlwings/issues/170])

Excel 2016 for Mac is finally supported (Python side). The VBA hooks (RunPython) are currently not yet supported.
In more details:

	This release allows Excel 2011 and Excel 2016 to be installed in parallel.

	Workbook() will open the default Excel installation (usually Excel 2016).

	The new keyword argument app_target allows to connect to a different Excel installation, e.g.:

Workbook(app_target='/Applications/Microsoft Office 2011/Microsoft Excel')

Note that app_target is only available on Mac. On Windows, if you want to change the version of Excel that
xlwings talks to, go to Control Panel > Programs and Features and Repair the Office version that you want
as default.

	The RunPython calls in VBA are not yet available through Excel 2016 but Excel 2011 doesn’t get confused anymore if
Excel 2016 is installed on the same system - make sure to update your VBA module!

Other enhancements

	New method: xlwings.Application.calculate() (GH 207 [https://github.com/xlwings/xlwings/issues/207])

Bug Fixes

	[Win]: When using the OPTIMIZED_CONNECTION on Windows, Excel left an orphaned process running after
closing (GH 193 [https://github.com/xlwings/xlwings/issues/193]).

Various improvements regarding unicode file path handling, including:

	[Mac]: Excel 2011 for Mac now supports unicode characters in the filename when called via VBA’s RunPython
(but not in the path - this is a limitation of Excel 2011 that will be resolved in Excel 2016) (GH 154 [https://github.com/xlwings/xlwings/issues/154]).

	[Win]: Excel on Windows now handles unicode file paths correctly with untrusted documents.
(GH 154 [https://github.com/xlwings/xlwings/issues/154]).

v0.3.5 (April 26, 2015)

API changes

Sheet.autofit() and Range.autofit(): The integer argument for the axis has been removed (GH 186 [https://github.com/xlwings/xlwings/issues/186]).
Use string arguments rows or r for autofitting rows and columns or c for autofitting columns
(as before).

Enhancements

New methods:

	xlwings.Range.row() (GH 143 [https://github.com/xlwings/xlwings/issues/143])

	xlwings.Range.column() (GH 143 [https://github.com/xlwings/xlwings/issues/143])

	xlwings.Range.last_cell() (GH 142 [https://github.com/xlwings/xlwings/issues/142])

Example:

>>> rng = Range('A1').table
>>> rng.row, rng.column
(1, 1)
>>> rng.last_cell.row, rng.last_cell.column
(4, 5)

Bug Fixes

	The unicode bug on Windows/Python3 has been fixed (GH 161 [https://github.com/xlwings/xlwings/issues/161])

v0.3.4 (March 9, 2015)

Bug Fixes

	The installation error on Windows has been fixed (GH 160 [https://github.com/xlwings/xlwings/issues/160])

v0.3.3 (March 8, 2015)

API changes

None

Enhancements

	New class Application with quit method and properties screen_updating und calculation (GH 101 [https://github.com/xlwings/xlwings/issues/101],
GH 158 [https://github.com/xlwings/xlwings/issues/158], GH 159 [https://github.com/xlwings/xlwings/issues/159]). It can be
conveniently accessed from within a Workbook (on Windows, Application is instance dependent). A few examples:

>>> from xlwings import Workbook, Calculation
>>> wb = Workbook()
>>> wb.application.screen_updating = False
>>> wb.application.calculation = Calculation.xlCalculationManual
>>> wb.application.quit()

	New headless mode: The Excel application can be hidden either during Workbook instantiation or through the
application object:

>>> wb = Workbook(app_visible=False)
>>> wb.application.visible
False
>>> wb.application.visible = True

	Newly included Excel template which includes the xlwings VBA module and boilerplate code. This is currently
accessible from an interactive interpreter session only:

>>> from xlwings import Workbook
>>> Workbook.open_template()

Bug Fixes

	[Win]: datetime.date objects were causing an error (GH 44 [https://github.com/xlwings/xlwings/issues/44]).

	Depending on how it was instantiated, Workbook was sometimes missing the fullname attribute (GH 76 [https://github.com/xlwings/xlwings/issues/76]).

	Range.hyperlink was failing if the hyperlink had been set as formula (GH 132 [https://github.com/xlwings/xlwings/issues/132]).

	A bug introduced in v0.3.0 caused frozen versions (eg. with cx_Freeze) to fail (GH 133 [https://github.com/xlwings/xlwings/issues/133]).

	[Mac]: Sometimes, xlwings was causing an error when quitting the Python interpreter (GH 136 [https://github.com/xlwings/xlwings/issues/136]).

v0.3.2 (January 17, 2015)

API changes

None

Enhancements

None

Bug Fixes

	The xlwings.Workbook.save() method has been fixed to show the expected behavior (GH 138 [https://github.com/xlwings/xlwings/issues/138]): Previously,
calling save() without a path argument would always create a new file in the current working directory. This is
now only happening if the file hasn’t been previously saved.

v0.3.1 (January 16, 2015)

API changes

None

Enhancements

	New method xlwings.Workbook.save() (GH 110 [https://github.com/xlwings/xlwings/issues/110]).

	New method xlwings.Workbook.set_mock_caller() (GH 129 [https://github.com/xlwings/xlwings/issues/129]). This makes calling files from both
Excel and Python much easier:

import os
from xlwings import Workbook, Range

def my_macro():
 wb = Workbook.caller()
 Range('A1').value = 1

if __name__ == '__main__':
 # To run from Python, not needed when called from Excel.
 # Expects the Excel file next to this source file, adjust accordingly.
 path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'myfile.xlsm'))
 Workbook.set_mock_caller(path)
 my_macro()

	The simulation example on the homepage works now also on Mac.

Bug Fixes

	[Win]: A long-standing bug that caused the Excel file to close and reopen under certain circumstances has been
fixed (GH 10 [https://github.com/xlwings/xlwings/issues/10]): Depending on your security settings (Trust Center) and in connection with files downloaded from
the internet or possibly in connection with some add-ins, Excel was either closing the file and reopening it or giving
a “file already open” warning. This has now been fixed which means that the examples downloaded from the homepage should
work right away after downloading and unzipping.

v0.3.0 (November 26, 2014)

API changes

	To reference the calling Workbook when running code from VBA, you now have to use Workbook.caller(). This means
that wb = Workbook() is now consistently creating a new Workbook, whether the code is called interactively or
from VBA.

	New

	Old

	Workbook.caller()

	Workbook()

Enhancements

This version adds two exciting but still experimental features from
ExcelPython (Windows only!):

	Optimized connection: Set the OPTIMIZED_CONNECTION = True in the VBA settings. This will use a COM server that
will keep the connection to Python alive between different calls and is therefore much more efficient. However,
changes in the Python code are not being picked up until the pythonw.exe process is restarted by killing it
manually in the Windows Task Manager. The suggested workflow is hence to set OPTIMIZED_CONNECTION = False for
development and only set it to True for production - keep in mind though that this feature is still experimental!

	User Defined Functions (UDFs): Using ExcelPython’s wrapper syntax in VBA, you can expose Python functions as UDFs, see
User Defined Functions (UDFs) for details.

Note: ExcelPython’s developer add-in that autogenerates the VBA wrapper code by simply using Python decorators
isn’t available through xlwings yet.

Further enhancements include:

	New method xlwings.Range.resize() (GH 90 [https://github.com/xlwings/xlwings/issues/90]).

	New method xlwings.Range.offset() (GH 89 [https://github.com/xlwings/xlwings/issues/89]).

	New property xlwings.Range.shape (GH 109 [https://github.com/xlwings/xlwings/issues/109]).

	New property xlwings.Range.size (GH 109 [https://github.com/xlwings/xlwings/issues/109]).

	New property xlwings.Range.hyperlink and new method xlwings.Range.add_hyperlink() (GH 104 [https://github.com/xlwings/xlwings/issues/104]).

	New property xlwings.Range.color (GH 97 [https://github.com/xlwings/xlwings/issues/97]).

	The len built-in function can now be used on Range (GH 109 [https://github.com/xlwings/xlwings/issues/109]):

>>> len(Range('A1:B5'))
5

	The Range object is now iterable (GH 108 [https://github.com/xlwings/xlwings/issues/108]):

for cell in Range('A1:B2'):
 if cell.value < 2:
 cell.color = (255, 0, 0)

	[Mac]: The VBA module finds now automatically the default Python installation as per PATH variable on
.bash_profile when PYTHON_MAC = "" (the default in the VBA settings) (GH 95 [https://github.com/xlwings/xlwings/issues/95]).

	The VBA error pop-up can now be muted by setting SHOW_LOG = False in the VBA settings. To be used with
care, but it can be useful on Mac, as the pop-up window is currently showing printed log messages even if no error
occurred(GH 94 [https://github.com/xlwings/xlwings/issues/94]).

Bug Fixes

	[Mac]: Environment variables from .bash_profile are now available when called from VBA, e.g. by using:
os.environ['USERNAME'] (GH 95 [https://github.com/xlwings/xlwings/issues/95])

v0.2.3 (October 17, 2014)

API changes

None

Enhancements

	New method Sheet.add() (GH 71 [https://github.com/xlwings/xlwings/issues/71]):

>>> Sheet.add() # Place at end with default name
>>> Sheet.add('NewSheet', before='Sheet1') # Include name and position
>>> new_sheet = Sheet.add(after=3)
>>> new_sheet.index
4

	New method Sheet.count():

>>> Sheet.count()
3

	autofit() works now also on Sheet objects, not only on Range objects (GH 66 [https://github.com/xlwings/xlwings/issues/66]):

>>> Sheet(1).autofit() # autofit columns and rows
>>> Sheet('Sheet1').autofit('c') # autofit columns

	New property number_format for Range objects (GH 60 [https://github.com/xlwings/xlwings/issues/60]):

>>> Range('A1').number_format
'General'
>>> Range('A1:C3').number_format = '0.00%'
>>> Range('A1:C3').number_format
'0.00%'

Works also with the Range properties table, vertical, horizontal:

>>> Range('A1').value = [1,2,3,4,5]
>>> Range('A1').table.number_format = '0.00%'

	New method get_address for Range objects (GH 7 [https://github.com/xlwings/xlwings/issues/7]):

>>> Range((1,1)).get_address()
'A1'
>>> Range((1,1)).get_address(False, False)
'A1'
>>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, include_sheetname=True)
'Sheet1!A$1:C$3'
>>> Range('Sheet1', (1,1), (3,3)).get_address(True, False, external=True)
'[Workbook1]Sheet1!A$1:C$3'

	New method Sheet.all() returning a list with all Sheet objects:

>>> Sheet.all()
[<Sheet 'Sheet1' of Workbook 'Book1'>, <Sheet 'Sheet2' of Workbook 'Book1'>]
>>> [i.name.lower() for i in Sheet.all()]
['sheet1', 'sheet2']
>>> [i.autofit() for i in Sheet.all()]

Bug Fixes

	xlwings works now also with NumPy < 1.7.0. Before, doing something like Range('A1').value = 'Foo' was causing
a NotImplementedError: Not implemented for this type error when NumPy < 1.7.0 was installed (GH 73 [https://github.com/xlwings/xlwings/issues/73]).

	[Win]: The VBA module caused an error on the 64bit version of Excel (GH 72 [https://github.com/xlwings/xlwings/issues/72]).

	[Mac]: The error pop-up wasn’t shown on Python 3 (GH 85 [https://github.com/xlwings/xlwings/issues/85]).

	[Mac]: Autofitting bigger Ranges, e.g. Range('A:D').autofit() was causing a time out (GH 74 [https://github.com/xlwings/xlwings/issues/74]).

	[Mac]: Sometimes, calling xlwings from Python was causing Excel to show old errors as pop-up alert (GH 70 [https://github.com/xlwings/xlwings/issues/70]).

v0.2.2 (September 23, 2014)

API changes

	The Workbook qualification changed: It now has to be specified as keyword argument. Assume we have instantiated
two Workbooks like so: wb1 = Workbook() and wb2 = Workbook(). Sheet, Range and Chart classes will
default to wb2 as it was instantiated last. To target wb1, use the new wkb keyword argument:

	New

	Old

	Range('A1', wkb=wb1).value

	wb1.range('A1').value

	Chart('Chart1', wkb=wb1)

	wb1.chart('Chart1')

Alternatively, simply set the current Workbook before using the Sheet, Range or Chart classes:

wb1.set_current()
Range('A1').value

	Through the introduction of the Sheet class (see Enhancements), a few methods moved from the Workbook
to the Sheet class. Assume the current Workbook is: wb = Workbook():

	New

	Old

	Sheet('Sheet1').activate()

	wb.activate('Sheet1')

	Sheet('Sheet1').clear()

	wb.clear('Sheet1')

	Sheet('Sheet1').clear_contents()

	wb.clear_contents('Sheet1')

	Sheet.active().clear_contents()

	wb.clear_contents()

	The syntax to add a new Chart has been slightly changed (it is a class method now):

	New

	Old

	Chart.add()

	Chart().add()

Enhancements

	[Mac]: Python errors are now also shown in a Message Box. This makes the Mac version feature equivalent with the
Windows version (GH 57 [https://github.com/xlwings/xlwings/issues/57]):

[image: _images/mac_error.png]

	New Sheet class: The new class handles everything directly related to a Sheet. See the Python API section about
Sheet for details (GH 62 [https://github.com/xlwings/xlwings/issues/62]). A few examples:

>>> Sheet(1).name
'Sheet1'
>>> Sheet('Sheet1').clear_contents()
>>> Sheet.active()
<Sheet 'Sheet1' of Workbook 'Book1'>

	The Range class has a new method autofit() that autofits the width/height of either columns, rows or both
(GH 33 [https://github.com/xlwings/xlwings/issues/33]).

Arguments:

axis : string or integer, default None
 - To autofit rows, use one of the following: 'rows' or 'r'
 - To autofit columns, use one of the following: 'columns' or 'c'
 - To autofit rows and columns, provide no arguments

Examples:

Autofit column A
Range('A:A').autofit()
Autofit row 1
Range('1:1').autofit()
Autofit columns and rows, taking into account Range('A1:E4')
Range('A1:E4').autofit()
AutoFit rows, taking into account Range('A1:E4')
Range('A1:E4').autofit('rows')

	The Workbook class has the following additional methods: current() and set_current(). They determine the
default Workbook for Sheet, Range or Chart. On Windows, in case there are various Excel instances, when
creating new or opening existing Workbooks,
they are being created in the same instance as the current Workbook.

>>> wb1 = Workbook()
>>> wb2 = Workbook()
>>> Workbook.current()
<Workbook 'Book2'>
>>> wb1.set_current()
>>> Workbook.current()
<Workbook 'Book1'>

	If a Sheet, Range or Chart object is instantiated without an existing Workbook object, a user-friendly
error message is raised (GH 58 [https://github.com/xlwings/xlwings/issues/58]).

	New docs about 调试 and 数据结构教程.

Bug Fixes

	The atleast_2d keyword had no effect on Ranges consisting of a single cell and was raising an error when used in
combination with the asarray keyword. Both have been fixed (GH 53 [https://github.com/xlwings/xlwings/issues/53]):

>>> Range('A1').value = 1
>>> Range('A1', atleast_2d=True).value
[[1.0]]
>>> Range('A1', atleast_2d=True, asarray=True).value
array([[1.]])

	[Mac]: After creating two new unsaved Workbooks with Workbook(), any Sheet, Range or Chart
object would always just access the latest one, even if the Workbook had been specified (GH 63 [https://github.com/xlwings/xlwings/issues/63]).

	[Mac]: When xlwings was imported without ever instantiating a Workbook object, Excel would start upon
quitting the Python interpreter (GH 51 [https://github.com/xlwings/xlwings/issues/51]).

	[Mac]: When installing xlwings, it now requires psutil to be at least version 2.0.0 (GH 48 [https://github.com/xlwings/xlwings/issues/48]).

v0.2.1 (August 7, 2014)

API changes

None

Enhancements

	All VBA user settings have been reorganized into a section at the top of the VBA xlwings module:

PYTHON_WIN = ""
PYTHON_MAC = GetMacDir("Home") & "/anaconda/bin"
PYTHON_FROZEN = ThisWorkbook.Path & "\build\exe.win32-2.7"
PYTHONPATH = ThisWorkbook.Path
LOG_FILE = ThisWorkbook.Path & "\xlwings_log.txt"

	Calling Python from within Excel VBA is now also supported on Mac, i.e. Python functions can be called like
this: RunPython("import bar; bar.foo()"). Running frozen executables (RunFrozenPython) isn’t available
yet on Mac though.

Note that there is a slight difference in the way that this functionality behaves on Windows and Mac:

	Windows: After calling the Macro (e.g. by pressing a button), Excel waits until Python is done. In case there’s an
error in the Python code, a pop-up message is being shown with the traceback.

	Mac: After calling the Macro, the call returns instantly but Excel’s Status Bar turns into “Running…” during the
duration of the Python call. Python errors are currently not shown as a pop-up, but need to be checked in the
log file. I.e. if the Status Bar returns to its default (“Ready”) but nothing has happened, check out the log file
for the Python traceback.

Bug Fixes

None

Special thanks go to Georgi Petrov for helping with this release.

v0.2.0 (July 29, 2014)

API changes

None

Enhancements

	Cross-platform: xlwings is now additionally supporting Microsoft Excel for Mac. The only functionality that is not
yet available is the possibility to call the Python code from within Excel via VBA macros.

	The clear and clear_contents methods of the Workbook object now default to the active
sheet (GH 5 [https://github.com/xlwings/xlwings/issues/5]):

wb = Workbook()
wb.clear_contents() # Clears contents of the entire active sheet

Bug Fixes

	DataFrames with MultiHeaders were sometimes getting truncated (GH 41 [https://github.com/xlwings/xlwings/issues/41]).

v0.1.1 (June 27, 2014)

API Changes

	If asarray=True, NumPy arrays are now always at least 1d arrays, even in the case of a single cell (GH 14 [https://github.com/xlwings/xlwings/issues/14]):

>>> Range('A1', asarray=True).value
array([34.])

	Similar to NumPy’s logic, 1d Ranges in Excel, i.e. rows or columns, are now being read in as flat lists or 1d arrays.
If you want the same behavior as before, you can use the atleast_2d keyword (GH 13 [https://github.com/xlwings/xlwings/issues/13]).

备注

The table property is also delivering a 1d array/list, if the table Range is really a column or row.

[image: _images/1d_ranges.png]

>>> Range('A1').vertical.value
[1.0, 2.0, 3.0, 4.0]
>>> Range('A1', atleast_2d=True).vertical.value
[[1.0], [2.0], [3.0], [4.0]]
>>> Range('C1').horizontal.value
[1.0, 2.0, 3.0, 4.0]
>>> Range('C1', atleast_2d=True).horizontal.value
[[1.0, 2.0, 3.0, 4.0]]
>>> Range('A1', asarray=True).table.value
array([1., 2., 3., 4.])
>>> Range('A1', asarray=True, atleast_2d=True).table.value
array([[1.],
 [2.],
 [3.],
 [4.]])

	The single file approach has been dropped. xlwings is now a traditional Python package.

Enhancements

	xlwings is now officially suppported on Python 2.6-2.7 and 3.1-3.4

	Support for Pandas Series has been added (GH 24 [https://github.com/xlwings/xlwings/issues/24]):

>>> import numpy as np
>>> import pandas as pd
>>> from xlwings import Workbook, Range
>>> wb = Workbook()
>>> s = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.])
>>> s
0 1.1
1 3.3
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
>>> Range('A1').value = s
>>> Range('D1', index=False).value = s

[image: _images/pandas_series.png]

	Excel constants have been added under their original Excel name, but categorized under their enum (GH 18 [https://github.com/xlwings/xlwings/issues/18]),
e.g.:

Extra long version
import xlwings as xl
xl.constants.ChartType.xlArea

Long version
from xlwings import constants
constants.ChartType.xlArea

Short version
from xlwings import ChartType
ChartType.xlArea

	Slightly enhanced Chart support to control the ChartType (GH 1 [https://github.com/xlwings/xlwings/issues/1]):

>>> from xlwings import Workbook, Range, Chart, ChartType
>>> wb = Workbook()
>>> Range('A1').value = [['one', 'two'],[10, 20]]
>>> my_chart = Chart().add(chart_type=ChartType.xlLine,
 name='My Chart',
 source_data=Range('A1').table)

alternatively, the properties can also be set like this:

>>> my_chart = Chart().add() # Existing Charts: my_chart = Chart('My Chart')
>>> my_chart.name = 'My Chart'
>>> my_chart.chart_type = ChartType.xlLine
>>> my_chart.set_source_data(Range('A1').table)

[image: _images/chart_type.png]

	pytz is no longer a dependency as datetime object are now being read in from Excel as time-zone naive (Excel
doesn’t know timezones). Before, datetime objects got the UTC timezone attached.

	The Workbook class has the following additional methods: close()

	The Range class has the following additional methods: is_cell(), is_column(), is_row(),
is_table()

Bug Fixes

	Writing None or np.nan to Excel works now (GH 16 [https://github.com/xlwings/xlwings/issues/16] & GH 15 [https://github.com/xlwings/xlwings/issues/15]).

	The import error on Python 3 has been fixed (GH 26 [https://github.com/xlwings/xlwings/issues/26]).

	Python 3 now handles Pandas DataFrames with MultiIndex headers correctly (GH 39 [https://github.com/xlwings/xlwings/issues/39]).

	Sometimes, a Pandas DataFrame was not handling nan correctly in Excel or numbers were being truncated
(GH 31 [https://github.com/xlwings/xlwings/issues/31]) & (GH 35 [https://github.com/xlwings/xlwings/issues/35]).

	Installation is now putting all files in the correct place (GH 20 [https://github.com/xlwings/xlwings/issues/20]).

v0.1.0 (March 19, 2014)

Initial release of xlwings.

软件许可协议

xlwings (Open Source)

xlwings (Open Source) is a distributed under a BSD-3-Clause license. xlwings (Open Source) includes all files in the xlwings package except the pro folder, i.e., the xlwings.pro subpackage.

	xlwings (Open Source) License [https://github.com/xlwings/xlwings/blob/main/LICENSE.txt]

xlwings PRO

xlwings PRO is source available [https://en.wikipedia.org/wiki/Source-available_software] and dual-licensed under one of the following licenses:

	PolyForm Noncommercial License 1.0.0 [https://polyformproject.org/licenses/noncommercial/1.0.0] (noncommercial use is free)

	xlwings PRO License [https://github.com/xlwings/xlwings/blob/main/LICENSE_PRO.txt] (commercial use requires a paid plan [https://www.xlwings.org/pricing])

Third-party Open Source Licenses

For the licenses of third-party Open Source dependencies, see Open Source Licenses.

API Reference

顶层函数

	顶层函数
	load()

	view()

UDF装饰器

	UDF装饰器
	xlwings.func()

	xlwings.sub()

	xlwings.arg()

	xlwings.ret()

xlwings Object Model

	App
	App
	App.activate()

	App.alert()

	App.api

	App.books

	App.calculate()

	App.calculation

	App.cut_copy_mode

	App.display_alerts

	App.enable_events

	App.hwnd

	App.interactive

	App.kill()

	App.macro()

	App.path

	App.pid

	App.properties()

	App.quit()

	App.range()

	App.render_template()

	App.screen_updating

	App.selection

	App.startup_path

	App.status_bar

	App.version

	App.visible

	Apps
	Apps
	Apps.active

	Apps.add()

	Apps.cleanup()

	Apps.count

	Apps.keys()

	Book
	Book
	Book.activate()

	Book.api

	Book.app

	Book.caller()

	Book.close()

	Book.fullname

	Book.json()

	Book.macro()

	Book.name

	Book.names

	Book.render_template()

	Book.save()

	Book.selection

	Book.set_mock_caller()

	Book.sheet_names

	Book.sheets

	Book.to_pdf()

	Books
	Books
	Books.active

	Books.add()

	Books.open()

	Characters
	Characters
	Characters.api

	Characters.font

	Characters.text

	Chart
	Chart
	Chart.api

	Chart.chart_type

	Chart.delete()

	Chart.height

	Chart.left

	Chart.name

	Chart.parent

	Chart.set_source_data()

	Chart.to_pdf()

	Chart.to_png()

	Chart.top

	Chart.width

	Charts
	Charts
	Charts.add()

	Charts.api

	Charts.count

	Font
	Font
	Font.api

	Font.bold

	Font.color

	Font.italic

	Font.name

	Font.size

	Name
	Name
	Name.api

	Name.delete()

	Name.name

	Name.refers_to

	Name.refers_to_range

	Names
	Names
	Names.add()

	Names.api

	Names.count

	Note
	Note
	Note.api

	Note.delete()

	Note.text

	PageSetup
	PageSetup
	PageSetup.api

	PageSetup.print_area

	Picture
	Picture
	Picture.api

	Picture.delete()

	Picture.height

	Picture.left

	Picture.lock_aspect_ratio

	Picture.name

	Picture.parent

	Picture.top

	Picture.update()

	Picture.width

	Pictures
	Pictures
	Pictures.add()

	Pictures.api

	Pictures.count

	Range
	Range
	Range.add_hyperlink()

	Range.address

	Range.api

	Range.autofill()

	Range.autofit()

	Range.clear()

	Range.clear_contents()

	Range.clear_formats()

	Range.color

	Range.column

	Range.column_width

	Range.columns

	Range.copy()

	Range.copy_picture()

	Range.count

	Range.current_region

	Range.delete()

	Range.end()

	Range.expand()

	Range.formula

	Range.formula2

	Range.formula_array

	Range.get_address()

	Range.has_array

	Range.height

	Range.hyperlink

	Range.insert()

	Range.last_cell

	Range.left

	Range.merge()

	Range.merge_area

	Range.merge_cells

	Range.name

	Range.note

	Range.number_format

	Range.offset()

	Range.options()

	Range.paste()

	Range.raw_value

	Range.resize()

	Range.row

	Range.row_height

	Range.rows

	Range.select()

	Range.shape

	Range.sheet

	Range.size

	Range.table

	Range.to_pdf()

	Range.to_png()

	Range.top

	Range.unmerge()

	Range.value

	Range.width

	Range.wrap_text

	RangeColumns
	RangeColumns
	RangeColumns.autofit()

	RangeColumns.count

	RangeRows
	RangeRows
	RangeRows.autofit()

	RangeRows.count

	Reports

	Shape
	Shape
	Shape.activate()

	Shape.api

	Shape.delete()

	Shape.height

	Shape.left

	Shape.name

	Shape.parent

	Shape.scale_height()

	Shape.scale_width()

	Shape.text

	Shape.top

	Shape.type

	Shape.width

	Shapes
	Shapes
	Shapes.api

	Shapes.count

	Sheet
	Sheet
	Sheet.activate()

	Sheet.api

	Sheet.autofit()

	Sheet.book

	Sheet.cells

	Sheet.charts

	Sheet.clear()

	Sheet.clear_contents()

	Sheet.clear_formats()

	Sheet.copy()

	Sheet.delete()

	Sheet.index

	Sheet.name

	Sheet.names

	Sheet.page_setup

	Sheet.pictures

	Sheet.range()

	Sheet.render_template()

	Sheet.select()

	Sheet.shapes

	Sheet.tables

	Sheet.to_html()

	Sheet.to_pdf()

	Sheet.used_range

	Sheet.visible

	Sheets
	Sheets
	Sheets.active

	Sheets.add()

	Table
	Table
	Table.api

	Table.data_body_range

	Table.display_name

	Table.header_row_range

	Table.insert_row_range

	Table.name

	Table.parent

	Table.range

	Table.resize()

	Table.show_autofilter

	Table.show_headers

	Table.show_table_style_column_stripes

	Table.show_table_style_first_column

	Table.show_table_style_last_column

	Table.show_table_style_row_stripes

	Table.show_totals

	Table.table_style

	Table.totals_row_range

	Table.update()

	Tables
	Tables
	Tables.add()

顶层函数

	
load(index=1, header=1, chunksize=5000)

	Loads the selected cell(s) of the active workbook into a pandas DataFrame. If you
select a single cell that has adjacent cells, the range is auto-expanded (via
current region) and turned into a pandas DataFrame. If you don’t have pandas
installed, it returns the values as nested lists.

备注

Only use this in an interactive context like e.g. a Jupyter notebook! Don’t use
this in a script as it depends on the active book.

参数

	indexbool or int, default 1
	Defines the number of columns on the left that will be turned into the
DataFrame’s index

	headerbool or int, default 1
	Defines the number of rows at the top that will be turned into the DataFrame’s
columns

	chunksizeint, default 5000
	Chunks the loading of big arrays.

示例

>>> import xlwings as xw
>>> xw.load()

See also: view

在 0.23.1 版本发生变更.

	
view(obj, sheet=None, table=True, chunksize=5000)

	缺省情况下会创建一个新的工作簿并在第一个工作表上显示一个对象。如果提供了一个工作表对象，在显示对象之前会清除工作表里面的内容。

备注

Only use this in an interactive context like e.g., a Jupyter notebook! Don’t use
this in a script as it depends on the active book.

参数

	objany type with built-in converter
	the object to display, e.g. numbers, strings, lists, numpy arrays, pandas
DataFrames

	sheetSheet, default None
	工作表对象。如果没有提供这个参数，会使用一个新建工作簿的第一个工作表。

	tablebool类型, 缺省值为True
	If your object is a pandas DataFrame, by default it is formatted as an Excel
Table

	chunksizeint, default 5000
	Chunks the loading of big arrays.

示例

>>> import xlwings as xw
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
>>> xw.view(df)

See also: load

在 0.22.0 版本发生变更.

UDF装饰器

	
xlwings.func(category='xlwings', volatile=False, call_in_wizard=True)

	在运行 “Import Python UDFs” 的时候，被 xlwings.func 装饰过的函数会被作为 Function(函数) 导入到Excel。

Arguments:

	categoryint 或 str, 缺省值 “xlwings”
	1-14代表内置类别，用户定义类别使用字符串

Added in version 0.10.3.

	volatilebool类型, 缺省值为False
	把一个用户定义函数标记为易变的。当工作表中的任意单元格发生计算的时候，都必须重新计算易变的函数的值。非易变函数只有在输入变量变化的时候才重新进行计算。当不在用于计算工作表的单元格的用户定义函数中是，此方法不起作用。

Added in version 0.10.3.

	call_in_wizardbool类型, 缺省值为True
	设置为False时，抑制公式向导中的函数调用。

Added in version 0.10.3.

	
xlwings.sub()

	使用装饰器 xlwings.sub 装饰的函数，在运行”Import Python UDFs”时，会被作为 Sub (例如：宏)导入到Excel。

	
xlwings.arg(arg, convert=None, **options)

	对参数应用转换器及其选项，参见 Range.options() 。

示例：

把 x 转换为2维numpy数组:

import xlwings as xw
import numpy as np

@xw.func
@xw.arg('x', np.array, ndim=2)
def add_one(x):
 return x + 1

	
xlwings.ret(convert=None, **options)

	对返回值应用转换器及其选项，参见 Range.options() 。

示例：

	抑制返回的DataFrame中的索引和表头:

import pandas as pd

@xw.func
@xw.ret(index=False, header=False)
def get_dataframe(n, m):
 return pd.DataFrame(np.arange(n * m).reshape((n, m)))

	动态数组：

备注

If your version of Excel supports the new native dynamic arrays, then you don’t have to do anything special,
and you shouldn’t use the expand decorator! To check if your version of Excel supports it, see if you
have the =UNIQUE() formula available. Native dynamic arrays were introduced in Office 365 Insider Fast
at the end of September 2018.

expand='table' 把UDF转变为动态数组。目前在动态数组中不能使用易变函数，比如，不能用 =TODAY() 作为动态数组的一部分。同时注意动态数组需要在右边和底部有一个空的行或列(以便确定区域范围)而且在覆盖数据时不会发出提醒信息。

不像标准的Excel数组，动态数组是在一个单元格中作为标准函数使用的，它会根据返回数组的范围自动扩展:

import xlwings as xw
import numpy as np

@xw.func
@xw.ret(expand='table')
def dynamic_array(n, m):
 return np.arange(n * m).reshape((n, m))

Added in version 0.10.0.

App

	
class App(visible=None, spec=None, add_book=True, impl=None)

	An app corresponds to an Excel instance and should normally be used as context
manager to make sure that everything is properly cleaned up again and to prevent
zombie processes. New Excel instances can be fired up like so:

import xlwings as xw

with xw.App() as app:
 print(app.books)

一个app对象是apps集合中的一员:

>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])
>>> xw.apps[1668] # get the available PIDs via xw.apps.keys()
<Excel App 1668>
>>> xw.apps.active
<Excel App 1668>

参数

	visiblebool, default None
	返回或设置一个决定app是否可见的布尔值。缺省情况下保持状态不变，或者对象还不存在的情况下设置visible=True。

	specstr, default None
	仅用于Mac系统, 使用Excel程序的全路径，例如： /Applications/Microsoft Office 2011/Microsoft Excel 或 /Applications/Microsoft Excel

在Windows系统中, 如果想改变xlwings调用的Excel版本，到 控制面板 > 程序和功能 把Office 修复 到需要用的那个版本。

备注

在Mac系统里, 虽然xlwings允许多个Excel同时运行，但这不是Mac版的Excel官方支持的功能：不像在Windows系统里，当文件已经在另外一个Excel实例中打开的时候，不会要求你打开一个只读版本。就是说你得自己小心注意，避免同样的文件被不同的Excel实例重写。

	
activate(steal_focus=False)

	激活让一个Excel应用程序

参数

	steal_focusbool类型, 缺省值为False
	如果为True, 让Excel程序变为最前台的应用，并且把焦点从Python切换到Excel。

Added in version 0.9.0.

	
alert(prompt, title=None, buttons='ok', mode=None, callback=None)

	This corresponds to MsgBox in VBA, shows an alert/message box and returns
the value of the pressed button. For xlwings Server, instead of
returning a value, the function accepts the name of a callback to which it will
supply the value of the pressed button.

参数

	promptstr, default None
	The message to be displayed.

	titlestr, default None
	The title of the alert.

	buttonsstr, default "ok"
	Can be either "ok", "ok_cancel", "yes_no", or
"yes_no_cancel".

	modestr, default None
	Can be "info" or "critical". Not supported by Google Sheets.

	callbackstr, default None
	Only used by xlwings Server: you can provide the name of a
function that will be called with the value of the pressed button as
argument. The function has to exist on the client side, i.e., in VBA or
JavaScript.

返回

	button_value: str or None
	Returns None when used with xlwings Server, otherwise the value
of the pressed button in lowercase: "ok", "cancel", "yes",
"no".

Added in version 0.27.13.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.9.0.

	
property books

	当前打开的所有工作簿对象的集合。

Added in version 0.9.0.

	
calculate()

	把所以打开的工作簿中的公式重新计算一遍。

Added in version 0.3.6.

	
property calculation

	返回或设置calculation的值，这个值表示了工作簿的计算模式，有: 'manual'(手动) , 'automatic'(自动) , 'semiautomatic'(半自动)

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.app.calculation = 'manual'

在 0.9.0 版本发生变更.

	
property cut_copy_mode

	Gets or sets the status of the cut or copy mode.
Accepts False for setting and returns None,
copy or cut when getting the status.

Added in version 0.24.0.

	
property display_alerts

	缺省值为True。通过设置为False可以关闭正在运行的代码的报警信息；如果报警信息是需要响应的，Excel会选择默认的响应方式。

Added in version 0.9.0.

	
property enable_events

	True if events are enabled. Read/write boolean.

Added in version 0.24.4.

	
property hwnd

	返回Window句柄(仅用于Windows)。

Added in version 0.9.0.

	
property interactive

	True if Excel is in interactive mode. If you set this property to False,
Excel blocks all input from the keyboard and mouse (except input to dialog boxes
that are displayed by your code). Read/write Boolean.
NOTE: Not supported on macOS.

Added in version 0.24.4.

	
kill()

	通过杀掉进程强制Excel app退出。

Added in version 0.9.0.

	
macro(name)

	运行一个不属于特定工作簿但是属于加载项的Excel VBA的过程(sub)或函数。

Arguments

	nameName of Sub or Function with or without module name,
	e.g., 'Module1.MyMacro' or 'MyMacro'

示例

下面这个VBA函数:

Function MySum(x, y)
 MySum = x + y
End Function

可以这样调用:

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

Types are supported too:

Function MySum(x as integer, y as integer)
 MySum = x + y
End Function

>>> import xlwings as xw
>>> app = xw.App()
>>> my_sum = app.macro('MySum')
>>> my_sum(1, 2)
3

However typed arrays are not supported. So the following won’t work

Function MySum(arr() as integer)
 ' code here
End Function

参考: Book.macro()

Added in version 0.9.0.

	
property path

	Returns the path to where the App is installed.

Added in version 0.28.4.

	
property pid

	返回app的PID。

Added in version 0.9.0.

	
properties(**kwargs)

	Context manager that allows you to easily change the app’s properties
temporarily. Once the code leaves the with block, the properties are changed
back to their previous state.
Note: Must be used as context manager or else will have no effect. Also, you can
only use app properties that you can both read and write.

示例

import xlwings as xw
app = App()

Sets app.display_alerts = False
with app.properties(display_alerts=False):
 # do stuff

Sets app.calculation = 'manual' and app.enable_events = True
with app.properties(calculation='manual', enable_events=True):
 # do stuff

Makes sure the status bar is reset even if an error happens in the with block
with app.properties(status_bar='Calculating...'):
 # do stuff

Added in version 0.24.4.

	
quit()

	退出应用，不保存任何工作簿。

Added in version 0.3.3.

	
range(cell1, cell2=None)

	活动工作簿中活动工作表的区域对象, 参考 Range() 。

Added in version 0.9.0.

	
render_template(template=None, output=None, book_settings=None, **data)

	This function requires xlwings PRO.

This is a convenience wrapper around mysheet.render_template

Writes the values of all key word arguments to the output file according to
the template and the variables contained in there (Jinja variable syntax).
Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames, pictures
and Matplotlib/Plotly figures.

参数

	template: str or path-like object
	Path to your Excel template, e.g. r'C:\Path\to\my_template.xlsx'

	output: str or path-like object
	Path to your Report, e.g. r'C:\Path\to\my_report.xlsx'

	book_settings: dict, default None
	A dictionary of xlwings.Book parameters, for details see:
xlwings.Book.
For example: book_settings={'update_links': False}.

	data: kwargs
	All key/value pairs that are used in the template.

返回

wb: xlwings Book

Added in version 0.24.4.

	
property screen_updating

	关掉屏幕刷新(设置为 False)来加速脚本运行。虽然看不到脚本的运行情况，但是会让它运行更快。脚本运行完毕之后，记住把screen_updating属性值改回 True。

Added in version 0.3.3.

	
property selection

	把选中的单元格作为区域返回。

Added in version 0.9.0.

	
property startup_path

	Returns the path to XLSTART which is where the xlwings add-in gets
copied to by doing xlwings addin install.

Added in version 0.19.4.

	
property status_bar

	Gets or sets the value of the status bar.
Returns False if Excel has control of it.

Added in version 0.20.0.

	
property version

	返回Excel版本号对象。

示例

>>> import xlwings as xw
>>> xw.App().version
VersionNumber('15.24')
>>> xw.apps[10559].version.major
15

在 0.9.0 版本发生变更.

	
property visible

	取得或者设置Excel的visible属性值，可以为 True 或 False 。

Added in version 0.3.3.

Apps

	
class Apps(impl)

	是所有 app 对象的集合:

>>> import xlwings as xw
>>> xw.apps
Apps([<Excel App 1668>, <Excel App 1644>])

	
property active

	返回活动的app。

Added in version 0.9.0.

	
add(**kwargs)

	创建一个新的App。这个新的App会变成活动app。返回这个App对象。

	
cleanup()

	Removes Excel zombie processes (Windows-only). Note that this is automatically
called with App.quit() and App.kill() and when the Python interpreter
exits.

Added in version 0.30.2.

	
property count

	返回app的总数。

Added in version 0.9.0.

	
keys()

	提供一组PID，它们是App集合中各个Excel实例的键名。

Added in version 0.13.0.

Book

	
class Book(fullname=None, update_links=None, read_only=None, format=None, password=None, write_res_password=None, ignore_read_only_recommended=None, origin=None, delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None, local=None, corrupt_load=None, impl=None, json=None, mode=None, engine=None)

	一个book对象是books集合中的一个成员:

>>> import xlwings as xw
>>> xw.books[0]
<Book [Book1]>

连接工作簿的最容易方法是由 xw.Book 提供的: 它在所有的app实例中查找需要的book对象。如果碰到同样的book在多个实例中被打开就返回一个错误。连接到活动app实例中的一个工作簿对象用 xw.books 如果要特别指定具体的app, 可以用下列方法:

>>> app = xw.App() # or xw.apps[10559] (get the PIDs via xw.apps.keys())
>>> app.books['Book1']

	
	xw.Book

	xw.books

	新建工作簿

	xw.Book()

	xw.books.add()

	未保存的工作簿

	xw.Book('Book1')

	xw.books['Book1']

	带有全路径名的工作簿

	xw.Book(r'C:/path/to/file.xlsx')

	xw.books.open(r'C:/path/to/file.xlsx')

参数

	fullnamestr or path-like object, default None
	已经存在的工作簿的文件名或全路径名(包括后缀 xlsx , xlsm 等)或者还未保存的工作簿的名字。没有全路径时，在当前工作目录中寻找该文件。

	update_linksbool, default None
	如果这个参数被省略，会提示用户确定更新链接的方式。

	read_onlybool类型, 缺省值为False
	值为 True 时以只读方式打开工作簿

	formatstr
	如果打开的是文本文件，本参数指明分隔符。

	passwordstr
	用于打开工作簿的密码。

	write_res_passwordstr
	用于向工作簿写入数据时的密码。

	ignore_read_only_recommendedbool类型, 缺省值为False
	设置为 True 时会关闭推荐只读的提示

	originint
	For text files only. Specifies where it originated. Use Platform constants.

	delimiterstr
	如果参数format的值是6，这个参数指明分隔符。

	editablebool类型, 缺省值为False
	这个选择只用于老的Excel4.0的加载项。

	notifybool类型, 缺省值为False
	当一个文件暂时无法在读写模式中打开，在文件可以打开的时候提示用户。

	converterint
	打开文件时，首先尝试使用的文件转换器对应的索引

	add_to_mrubool类型, 缺省值为False
	把这个工作簿加到最近增加的工作簿列表中。

	localbool类型, 缺省值为False
	If True, saves files against the language of Excel, otherwise against the
language of VBA. Not supported on macOS.

	corrupt_loadint, default xlNormalLoad
	可以是xlNormalLoad、xlRepairFile或xlExtractData中的一个，在macOS上不支持此参数。

	jsondict
	A JSON object as delivered by the MS Office Scripts or Google Apps Script
xlwings module but in a deserialized form, i.e., as dictionary.

Added in version 0.26.0.

	modestr, default None
	Either "i" (interactive (default)) or "r" (read). In interactive mode,
xlwings opens the workbook in Excel, i.e., Excel needs to be installed. In read
mode, xlwings reads from the file directly, without requiring Excel to be
installed. Read mode requires xlwings PRO.

Added in version 0.28.0.

	
activate(steal_focus=False)

	激活工作簿

参数

	steal_focusbool类型, 缺省值为False
	如果是True, 把窗口显示到最上层，并且把焦点从Python切换到Excel。

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.9.0.

	
property app

	返回创建工作簿的app对象。

Added in version 0.9.0.

	
classmethod caller()

	References the calling book when the Python function is called from Excel via
RunPython. Pack it into the function being called from Excel, e.g.:

import xlwings as xw

 def my_macro():
 wb = xw.Book.caller()
 wb.sheets[0].range('A1').value = 1

为了能够从Python中唤醒以便调试, 可以使用 xw.Book.set_mock_caller() 。

Added in version 0.3.0.

	
close()

	放弃保存直接关闭工作簿。

Added in version 0.1.1.

	
property fullname

	返回对象名称字符串，包括在磁盘上的路径。是只读字符串。

	
json()

	Returns a JSON serializable object as expected by the MS Office Scripts or
Google Apps Script xlwings module. Only available with book objects that have
been instantiated via xw.Book(json=...).

Added in version 0.26.0.

	
macro(name)

	在Excel VBA中运行一个过程或者函数。

Arguments

name : Name of Sub or Function with or without module name, e.g.,
'Module1.MyMacro' or 'MyMacro'

示例

下面这个VBA函数:

Function MySum(x, y)
 MySum = x + y
End Function

可以这样调用:

>>> import xlwings as xw
>>> wb = xw.books.active
>>> my_sum = wb.macro('MySum')
>>> my_sum(1, 2)
3

参考： App.macro()

Added in version 0.7.1.

	
property name

	返回工作簿名称字符串。

	
property names

	返回一个指定工作簿中的定义过的所有命名区域的集合，包括那些和特定工作表有关的命名区域。

在 0.9.0 版本发生变更.

	
render_template(**data)

	This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the book
with the keyword argument of the same name.

Added in version 0.25.0.

参数

	data: kwargs
	All key/value pairs that are used in the template.

示例

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.render_template(myvar='test')

	
save(path=None, password=None)

	Saves the Workbook. If a path is provided, this works like SaveAs() in
Excel. If no path is specified and if the file hasn’t been saved previously,
it’s saved in the current working directory with the current filename.
Existing files are overwritten without prompting. To change the file type,
provide the appropriate extension, e.g. to save myfile.xlsx in the xlsb
format, provide myfile.xlsb as path.

Arguments

	pathstr or path-like object, default None
	Path where you want to save the Book.

	passwordstr, default None
	Protection password with max. 15 characters

Added in version 0.25.1.

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.save()
>>> wb.save(r'C:\path\to\new_file_name.xlsx')

Added in version 0.3.1.

	
property selection

	把选中的单元格作为区域返回。

Added in version 0.9.0.

	
set_mock_caller()

	当源代码是直接从Pyhton调用而不是从Excel中通过RunPyton调用的时候，设置一个文件，模仿从这个文件中用 xw.Book.caller() 调用这些源代码。

示例

This code runs unchanged from Excel via RunPython and from Python directly
import os
import xlwings as xw

def my_macro():
 sht = xw.Book.caller().sheets[0]
 sht.range('A1').value = 'Hello xlwings!'

if __name__ == '__main__':
 xw.Book('file.xlsm').set_mock_caller()
 my_macro()

Added in version 0.3.1.

	
property sheet_names

	
返回

	sheet_namesList
	List of sheet names in order of appearance.

Added in version 0.28.1.

	
property sheets

	返回工作簿中所有工作表的集合。

Added in version 0.9.0.

	
to_pdf(path=None, include=None, exclude=None, layout=None, exclude_start_string='#', show=False, quality='standard')

	Exports the whole Excel workbook or a subset of the sheets to a PDF file.
If you want to print hidden sheets, you will need to list them explicitely
under include.

参数

	pathstr or path-like object, default None
	Path to the PDF file, defaults to the same name as the workbook, in the same
directory. For unsaved workbooks, it defaults to the current working
directory instead.

	includeint or str or list, default None
	Which sheets to include: provide a selection of sheets in the form of sheet
indices (1-based like in Excel) or sheet names. Can be an int/str for a
single sheet or a list of int/str for multiple sheets.

	excludeint or str or list, default None
	Which sheets to exclude: provide a selection of sheets in the form of sheet
indices (1-based like in Excel) or sheet names. Can be an int/str for a
single sheet or a list of int/str for multiple sheets.

	layoutstr or path-like object, default None
	This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for
headers and footers as well as borderless printing of graphics/artwork. The
PDF file either needs to have only 1 page (every report page uses the same
layout) or otherwise needs the same amount of pages as the report (each
report page is printed on the respective page in the layout PDF).

Added in version 0.24.3.

	exclude_start_stringstr, default '#'
	Sheet names that start with this character/string will not be printed.

Added in version 0.24.4.

	showbool类型, 缺省值为False
	Once created, open the PDF file with the default application.

Added in version 0.24.6.

	qualitystr, default 'standard'
	Quality of the PDF file. Can either be 'standard' or 'minimum'.

Added in version 0.26.2.

示例

>>> wb = xw.Book()
>>> wb.sheets[0]['A1'].value = 'PDF'
>>> wb.to_pdf()

See also xlwings.Sheet.to_pdf()

Added in version 0.21.1.

Books

	
class Books(impl)

	是 工作簿对象 的集合:

>>> import xlwings as xw
>>> xw.books # active app
Books([<Book [Book1]>, <Book [Book2]>])
>>> xw.apps[10559].books # specific app, get the PIDs via xw.apps.keys()
Books([<Book [Book1]>, <Book [Book2]>])

Added in version 0.9.0.

	
property active

	返回活动工作簿。

	
add()

	创建一个新的工作簿。新工作簿变成活动工作簿。返回一个工作簿对象。

	
open(fullname=None, update_links=None, read_only=None, format=None, password=None, write_res_password=None, ignore_read_only_recommended=None, origin=None, delimiter=None, editable=None, notify=None, converter=None, add_to_mru=None, local=None, corrupt_load=None, json=None)

	如果一个工作簿尚未打开，就打开并返回该工作簿。如果该工作簿已经打开了，不会触发异常，只是简单地返回该工作簿对象。

参数

	fullnamestr or path-like object
	文件名或全路径文件名，例如 r'C:\path\to\file.xlsx' 或 'file.xlsm' 。如果不是全路径，会在当前工作目录下寻找该文件。

	Other Parameters
	参考： xlwings.Book()

返回

Book : Book that has been opened.

Characters

object is a Range or Shape object.

	
class Characters(impl)

	The characters object can be accessed as an attribute of the range or shape object.

	mysheet['A1'].characters

	mysheet.shapes[0].characters

备注

On macOS, characters are currently not supported due to bugs/lack of
support in AppleScript.

Added in version 0.23.0.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.23.0.

	
property font

	Returns or sets the text property of a characters object.

>>> sheet['A1'].characters[1:3].font.bold = True
>>> sheet['A1'].characters[1:3].font.bold
True

Added in version 0.23.0.

	
property text

	Returns or sets the text property of a characters object.

>>> sheet['A1'].value = 'Python'
>>> sheet['A1'].characters[:3].text
Pyt

Added in version 0.23.0.

Chart

	
class Chart(name_or_index=None, impl=None)

	chart对象是 charts 集合中的一员:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.charts[0] # or sht.charts['ChartName']
<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.9.0.

	
property chart_type

	Returns and sets the chart type of the chart.
The following chart types are available:

3d_area,
3d_area_stacked,
3d_area_stacked_100,
3d_bar_clustered,
3d_bar_stacked,
3d_bar_stacked_100,
3d_column,
3d_column_clustered,
3d_column_stacked,
3d_column_stacked_100,
3d_line,
3d_pie,
3d_pie_exploded,
area,
area_stacked,
area_stacked_100,
bar_clustered,
bar_of_pie,
bar_stacked,
bar_stacked_100,
bubble,
bubble_3d_effect,
column_clustered,
column_stacked,
column_stacked_100,
combination,
cone_bar_clustered,
cone_bar_stacked,
cone_bar_stacked_100,
cone_col,
cone_col_clustered,
cone_col_stacked,
cone_col_stacked_100,
cylinder_bar_clustered,
cylinder_bar_stacked,
cylinder_bar_stacked_100,
cylinder_col,
cylinder_col_clustered,
cylinder_col_stacked,
cylinder_col_stacked_100,
doughnut,
doughnut_exploded,
line,
line_markers,
line_markers_stacked,
line_markers_stacked_100,
line_stacked,
line_stacked_100,
pie,
pie_exploded,
pie_of_pie,
pyramid_bar_clustered,
pyramid_bar_stacked,
pyramid_bar_stacked_100,
pyramid_col,
pyramid_col_clustered,
pyramid_col_stacked,
pyramid_col_stacked_100,
radar,
radar_filled,
radar_markers,
stock_hlc,
stock_ohlc,
stock_vhlc,
stock_vohlc,
surface,
surface_top_view,
surface_top_view_wireframe,
surface_wireframe,
xy_scatter,
xy_scatter_lines,
xy_scatter_lines_no_markers,
xy_scatter_smooth,
xy_scatter_smooth_no_markers

Added in version 0.1.1.

	
delete()

	删除图表。

	
property height

	返回图表的高度，单位是 point 。

	
property left

	返回或者设置图表的水平位置，单位是 point 。

	
property name

	返回图表的名字。

	
property parent

	返回图表所属的对象。

Added in version 0.9.0.

	
set_source_data(source)

	设置图表的数据源区域。

Arguments

	sourceRange
	区域对象，例如 xw.books['Book1'].sheets[0].range('A1')

	
to_pdf(path=None, show=None, quality='standard')

	Exports the chart as PDF.

参数

	pathstr or path-like, default None
	Path where you want to store the pdf. Defaults to the name of the chart in
the same directory as the Excel file if the Excel file is stored and to the
current working directory otherwise.

	showbool类型, 缺省值为False
	Once created, open the PDF file with the default application.

	qualitystr, default 'standard'
	Quality of the PDF file. Can either be 'standard' or 'minimum'.

Added in version 0.26.2.

	
to_png(path=None)

	Exports the chart as PNG picture.

参数

	pathstr or path-like, default None
	Path where you want to store the picture. Defaults to the name of the chart
in the same directory as the Excel file if the Excel file is stored and to
the current working directory otherwise.

Added in version 0.24.8.

	
property top

	返回或者设置图表的垂直位置，单位是 point 。

	
property width

	返回图表的宽度，单位是 point 。

Charts

	
class Charts(impl)

	指定工作表中所有图表对象(chart)的集合:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].charts
Charts([<Chart 'Chart 1' in <Sheet [Book1]Sheet1>>,
 <Chart 'Chart 1' in <Sheet [Book1]Sheet1>>])

Added in version 0.9.0.

	
add(left=0, top=0, width=355, height=211)

	在指定的工作表中创建一个新的图表。

Arguments

	leftfloat, default 0
	左边起点，单位是 point 。

	topfloat, default 0
	上边的起点，单位是 point 。

	widthfloat, default 355
	宽带，单位是 point 。

	heightfloat, default 211
	高度，单位是 point 。

返回

Chart

示例

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.range('A1').value = [['Foo1', 'Foo2'], [1, 2]]
>>> chart = sht.charts.add()
>>> chart.set_source_data(sht.range('A1').expand())
>>> chart.chart_type = 'line'
>>> chart.name
'Chart1'

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

	
property count

	返回集合中的对象数。

Font

	
class Font(impl)

	The font object can be accessed as an attribute of the range or shape object.

	mysheet['A1'].font

	mysheet.shapes[0].font

Added in version 0.23.0.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.23.0.

	
property bold

	Returns or sets the bold property (boolean).

>>> sheet['A1'].font.bold = True
>>> sheet['A1'].font.bold
True

Added in version 0.23.0.

	
property color

	Returns or sets the color property (tuple).

>>> sheet['A1'].font.color = (255, 0, 0) # or '#ff0000'
>>> sheet['A1'].font.color
(255, 0, 0)

Added in version 0.23.0.

	
property italic

	Returns or sets the italic property (boolean).

>>> sheet['A1'].font.italic = True
>>> sheet['A1'].font.italic
True

Added in version 0.23.0.

	
property name

	Returns or sets the name of the font (str).

>>> sheet['A1'].font.name = 'Calibri'
>>> sheet['A1'].font.name
Calibri

Added in version 0.23.0.

	
property size

	Returns or sets the size (float).

>>> sheet['A1'].font.size = 13
>>> sheet['A1'].font.size
13

Added in version 0.23.0.

Name

	
class Name(impl)

	一个name对象是names集合中的一员:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.names[0] # or sht.names['MyName']
<Name 'MyName': =Sheet1!A3>

Added in version 0.9.0.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.9.0.

	
delete()

	删除名称。

Added in version 0.9.0.

	
property name

	返回或者设置命名对象的名称。

Added in version 0.9.0.

	
property refers_to

	返回或者设置名称引用的公式，公式以等号开头，采用 A1表示法 。

Added in version 0.9.0.

	
property refers_to_range

	返回命名对象引用的区域对象。

Added in version 0.9.0.

Names

	
class Names(impl)

	工作簿中所有名称(name)对象的集合:

>>> import xlwings as xw
>>> book = xw.books['Book1'] # book scope and sheet scope
>>> book.names
[<Name 'MyName': =Sheet1!A3>]
>>> book.sheets[0].names # sheet scope only

Added in version 0.9.0.

	
add(name, refers_to)

	为一个单元格组成的区域定义名称。

参数

	namestr
	指定作为名称的文字。名称中不能包含空格，也不能是单元格的引用。

	refers_tostr
	使用英语，按照 A1表示法 描述名称引用的具体内容

返回

Name

Added in version 0.9.0.

	
property api

	Returns the native object (pywin32 or appscript obj)
of the engine beingused.

Added in version 0.9.0.

	
property count

	返回集合中的对象数。

Note

	
class Note(impl)

	
	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.24.2.

	
delete()

	Delete the note.

Added in version 0.24.2.

	
property text

	Gets or sets the text of a note. Keep in mind that the note must already exist!

示例

>>> sheet = xw.Book(...).sheets[0]
>>> sheet['A1'].note.text = 'mynote'
>>> sheet['A1'].note.text
>>> 'mynote'

Added in version 0.24.2.

PageSetup

	
class PageSetup(impl)

	
	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.24.2.

	
property print_area

	Gets or sets the range address that defines the print area.

示例

>>> mysheet.page_setup.print_area = 'A1:B3'
>>> mysheet.page_setup.print_area
'A1:B3'
>>> mysheet.page_setup.print_area = None # clear the print_area

Added in version 0.24.2.

Picture

	
class Picture(impl=None)

	图片对象是 pictures 集合中的一员：

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.pictures[0] # or sht.charts['PictureName']
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

在 0.9.0 版本发生变更.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.9.0.

	
delete()

	删除图片。

Added in version 0.5.0.

	
property height

	获得或者设置图片的高度，单位是 point。

Added in version 0.5.0.

	
property left

	获得或者设置图片的水平位置，单位是 point。

Added in version 0.5.0.

	
property lock_aspect_ratio

	True will keep the original proportion,
False will allow you to change height and width independently of each other
(read/write).

Added in version 0.24.0.

	
property name

	获得或者设置图片的名字。

Added in version 0.5.0.

	
property parent

	返回图片所属的对象。

Added in version 0.9.0.

	
property top

	获得或者设置图片的垂直位置，单位是 point。

Added in version 0.5.0.

	
update(image, format=None, export_options=None)

	用新的图片替换原有的图片，继承原来图片的属性。

Arguments

	imagestr or path-like object or matplotlib.figure.Figure
	是文件路径名或者是Matplotlib图形对象。

	formatstr, default None
	See under Pictures.add()

	export_optionsdict, default None
	See under Pictures.add()

Added in version 0.5.0.

	
property width

	获得或者设置图片的宽度，单位是 point。

Added in version 0.5.0.

Pictures

	
class Pictures(impl)

	指定工作表中图片(picture)对象的集合:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].pictures
Pictures([<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>,
 <Picture 'Picture 2' in <Sheet [Book1]Sheet1>>])

Added in version 0.9.0.

	
add(image, link_to_file=False, save_with_document=True, left=None, top=None, width=None, height=None, name=None, update=False, scale=None, format=None, anchor=None, export_options=None)

	在指定的工作表中增加一个图片。

Arguments

	imagestr or path-like object or matplotlib.figure.Figure
	是文件路径名或者是Matplotlib图形对象。

	leftfloat, default None
	Left position in points, defaults to 0. If you use top/left, you
must not provide a value for anchor.

	topfloat, default None
	Top position in points, defaults to 0. If you use top/left,
you must not provide a value for anchor.

	widthfloat, default None
	Width in points. Defaults to original width.

	heightfloat, default None
	Height in points. Defaults to original height.

	namestr, default None
	Excel picture name. Defaults to Excel standard name if not provided,
e.g., ‘Picture 1’.

	updatebool类型, 缺省值为False
	替换指定名字的图片，需要指定图片名字。

	scalefloat, default None
	Scales your picture by the provided factor.

	formatstr, default None
	Only used if image is a Matplotlib or Plotly plot. By default, the plot is
inserted in the “png” format, but you may want to change this to a
vector-based format like “svg” on Windows (may require Microsoft 365) or
“eps” on macOS for better print quality. If you use 'vector', it will be
using 'svg' on Windows and 'eps' on macOS. To find out which formats
your version of Excel supports, see:
https://support.microsoft.com/en-us/topic/support-for-eps-images-has-been-turned-off-in-office-a069d664-4bcf-415e-a1b5-cbb0c334a840

	anchor: xw.Range, default None
	The xlwings Range object of where you want to insert the picture. If you use
anchor, you must not provide values for top/left.

Added in version 0.24.3.

	export_optionsdict, default None
	For Matplotlib plots, this dictionary is passed on to image.savefig()
with the following defaults: {"bbox_inches": "tight", "dpi": 200}, so
if you want to leave the picture uncropped and increase dpi to 300, use:
export_options={"dpi": 300}. For Plotly, the options are passed to
write_image().

Added in version 0.27.7.

返回

Picture

示例

	Picture

>>> import xlwings as xw
>>> sht = xw.Book().sheets[0]
>>> sht.pictures.add(r'C:\path\to\file.png')
<Picture 'Picture 1' in <Sheet [Book1]Sheet1>>

	Matplotlib

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.plot([1, 2, 3, 4, 5])
>>> sht.pictures.add(fig, name='MyPlot', update=True)
<Picture 'MyPlot' in <Sheet [Book1]Sheet1>>

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

	
property count

	返回集合中的对象数。

Range

	
class Range(cell1=None, cell2=None, **options)

	返回一个区域对象，可以代表一个单元格，也可以是一个区域。

Arguments

	cell1str or tuple or Range
	区域左上角的名字，可以是A1表示法、坐标元组、名字或者是xw.Range对象。也可用用区域操作符号(例如 ‘A1:B2’)来表示。

	cell2str or tuple or Range, default None
	区域右下角角的名字，可以是A1表示法、坐标元组、名字或者是 xw.Range 对象。

示例

import xlwings as xw
sheet1 = xw.Book("MyBook.xlsx").sheets[0]

sheet1.range("A1")
sheet1.range("A1:C3")
sheet1.range((1,1))
sheet1.range((1,1), (3,3))
sheet1.range("NamedRange")

Or using index/slice notation
sheet1["A1"]
sheet1["A1:C3"]
sheet1[0, 0]
sheet1[0:4, 0:4]
sheet1["NamedRange"]

	
add_hyperlink(address, text_to_display=None, screen_tip=None)

	在指定的区域(单个单元格)中加一个超链接

Arguments

	addressstr
	超链接地址。

	text_to_displaystr, default None
	超链接的显示字符串，缺省为超链接地址本身。

	screen_tip: str, default None
	当鼠标停留在超链接上方是显示的屏幕提示。缺省情况下设置为’<address> - 单击一次可跟踪超链接，单击并按住不放选择此单元格。’

Added in version 0.3.0.

	
property address

	Returns a string value that represents the range reference.
Use get_address() to be able to provide parameters.

Added in version 0.9.0.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.9.0.

	
autofill(destination, type_='fill_default')

	Autofills the destination Range. Note that the destination Range must include
the origin Range.

Arguments

	destinationRange
	The origin.

	type_str, default "fill_default"
	One of the following strings: "fill_copy", "fill_days",
"fill_default", "fill_formats", "fill_months",
"fill_series", "fill_values", "fill_weekdays", "fill_years",
"growth_trend", "linear_trend", "flash_fill

Added in version 0.30.1.

	
autofit()

	使得区域内所有单元格的宽度和高度进行自适应。

	To autofit only the width of the columns use
myrange.columns.autofit()

	To autofit only the height of the rows use
myrange.rows.autofit()

在 0.9.0 版本发生变更.

	
clear()

	清除区域的内容和格式。

	
clear_contents()

	清除区域的内容，保留格式。

	
clear_formats()

	Clears the format of a Range but leaves the content.

Added in version 0.26.2.

	
property color

	获取指定区域的背景色。

To set the color, either use an RGB tuple (0, 0, 0) or a hex string
like #efefef or an Excel color constant.
To remove the background, set the color to None, see Examples.

返回

RGB : tuple

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = xw.sheets[0]
>>> sheet1.range('A1').color = (255, 255, 255) # or '#ffffff'
>>> sheet1.range('A2').color
(255, 255, 255)
>>> sheet1.range('A2').color = None
>>> sheet1.range('A2').color is None
True

Added in version 0.3.0.

	
property column

	返回指定区域的第一列的值，只读。

返回

Integer

Added in version 0.3.5.

	
property column_width

	获取或者设置区域的宽度(单位是字符数)。 Normal 风格中一个列宽单位就是一个字符宽度。 对于等宽字体，用的单位宽度是字符0(数字0)的宽度。

如果区域中的列宽相同，返回宽度。如果各个列宽不同，返回 None 。

列宽必须在下列范围内: 0 <= 列宽 <= 255

注意: 如果区域不在工作表已经使用的区域内，并且区域内的各列的宽度不同，返回第一列的宽度。

返回

float

Added in version 0.4.0.

	
property columns

	返回一个 RangeColumns 对象，它代表指定区域内的列。

Added in version 0.9.0.

	
copy(destination=None)

	把一个区域拷贝到目的区域或者剪贴板。

参数

	destinationxlwings.Range
	xlwings Range to which the specified range will be copied. If omitted,
the range is copied to the clipboard.

返回

None

	
copy_picture(appearance='screen', format='picture')

	Copies the range to the clipboard as picture.

参数

	appearancestr, default ‘screen’
	Either ‘screen’ or ‘printer’.

	formatstr, default ‘picture’
	Either ‘picture’ or ‘bitmap’.

Added in version 0.24.8.

	
property count

	返回单元格数量。

	
property current_region

	返回一个区域，这个区域由空行、空列或者工作表的边界围成的(不包含围绕区域的空行或空列)。这个和Windows中的 Ctrl-* 及Mac上的 shift-Ctrl-Space 一致。

返回

Range object

	
delete(shift=None)

	删除一个单元格或者一个区域的单元格。

参数

	shiftstr, default None
	使用 left 或 up 。如果省略，Excel根据区域的形状决定。

返回

None

	
end(direction)

	返回区域内的边界单元格，得到的结果与按 Ctrl+Up , Ctrl+down , Ctrl+left , 或 Ctrl+right 组合键得到的结果相同。

参数

direction : One of ‘up’, ‘down’, ‘right’, ‘left’

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = xw.sheets[0]
>>> sheet1.range('A1:B2').value = 1
>>> sheet1.range('A1').end('down')
<Range [Book1]Sheet1!A2>
>>> sheet1.range('B2').end('right')
<Range [Book1]Sheet1!B2>

Added in version 0.9.0.

	
expand(mode='table')

	根据要求的模式扩展单元格，不管左上角是否为空。(不像 Range.end()).

参数

	modestr, default ‘table’
	可以取 'down' , 'right' ,``’table’`` (=down + right)。

返回

Range

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range('A1').value = [[None, 1], [2, 3]]
>>> sheet1.range('A1').expand().address
A1:B2
>>> sheet1.range('A1').expand('right').address
A1:B1

Added in version 0.9.0.

	
property formula

	对于给定的区域，获取或者设置公式。

	
property formula2

	Gets or sets the formula2 for the given Range.

	
property formula_array

	对于给定的区域，获取或者设置数组公式。

Added in version 0.7.1.

	
get_address(row_absolute=True, column_absolute=True, include_sheetname=False, external=False)

	用指定的格式返回区域的地址。当所有参数都是缺省的时候，和用 address 属性得到的结果是相同的。

Arguments

	row_absolutebool类型, 缺省值为True
	设为 True 时，返回行部分的绝对引用。

	column_absolutebool类型, 缺省值为True
	设为 True 时，返回列部分的绝对引用。

	include_sheetnamebool类型, 缺省值为False
	设为 True 时，返回的地址中包含工作表名。如果 external=True ，不管这里的设置如何，都带工作表名。

	externalbool类型, 缺省值为False
	设为 True 时，返回带有工作簿名和工作表名的外部引用地址。

返回

str

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range((1,1)).get_address()
'A1'
>>> sheet1.range((1,1)).get_address(False, False)
'A1'
>>> sheet1.range((1,1), (3,3)).get_address(True, False, True)
'Sheet1!A$1:C$3'
>>> sheet1.range((1,1), (3,3)).get_address(True, False, external=True)
'[Book1]Sheet1!A$1:C$3'

Added in version 0.2.3.

	
property has_array

	True if the range is part of a legacy CSE Array formula
and False otherwise.

	
property height

	返回区域的高度，单位是点。 只读。

返回

float

Added in version 0.4.0.

	
property hyperlink

	返回指定区域的超链接(仅适合单个单元格)

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range('A1').value
'www.xlwings.org'
>>> sheet1.range('A1').hyperlink
'http://www.xlwings.org'

Added in version 0.3.0.

	
insert(shift, copy_origin='format_from_left_or_above')

	在工作表中插入一个单元格或者一个区域。

参数

	shiftstr
	Use right or down.

	copy_originstr, default format_from_left_or_above
	Use format_from_left_or_above or format_from_right_or_below.
Note that copy_origin is only supported on Windows.

返回

None

在 0.30.3 版本发生变更: shift is now a required argument.

	
property last_cell

	返回指定区域的右下角单元格。只读。

返回

Range

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> myrange = sheet1.range('A1:E4')
>>> myrange.last_cell.row, myrange.last_cell.column
(4, 5)

Added in version 0.3.5.

	
property left

	返回A列的左边缘到区域的左边界的距离，单位点(point)，只读。

返回

float

Added in version 0.6.0.

	
merge(across=False)

	Creates a merged cell from the specified Range object.

参数

	acrossbool类型, 缺省值为False
	True to merge cells in each row of the specified Range as separate merged
cells.

	
property merge_area

	Returns a Range object that represents the merged Range containing the
specified cell. If the specified cell isn’t in a merged range, this property
returns the specified cell.

	
property merge_cells

	Returns True if the Range contains merged cells, otherwise False

	
property name

	获取或者设置区域的名字。

Added in version 0.4.0.

	
property note

	Returns a Note object.
Before the introduction of threaded comments, a Note was called a Comment.

Added in version 0.24.2.

	
property number_format

	获取或者设置区域的数字格式(number_format)。

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> sheet1 = wb.sheets[0]
>>> sheet1.range('A1').number_format
'General'
>>> sheet1.range('A1:C3').number_format = '0.00%'
>>> sheet1.range('A1:C3').number_format
'0.00%'

Added in version 0.2.3.

	
offset(row_offset=0, column_offset=0)

	返回一个从指定单元格为起始点的区域对象。

返回

Range object : Range

Added in version 0.3.0.

	
options(convert=None, **options)

	允许用户设定转换器和相关的选项。转换器定义了Excel的区域及其值在读写过程中如何转换。如果没有明确指定转换器，会使用基转换器(base converter)。参考： 转换器及选项 。

Arguments

	convertobject, default None
	转换器名称，例如：dict, np.array, pd.DataFrame, pd.Series 等, 缺省时使用缺省转换器。

关键词参数

	ndimint, default None
	维数

	numberstype, default None
	数字类型，如 int

	datestype, default None
	例如 datetime.date ，缺省时是 datetime.datetime 。

	emptyobject, default None
	空白单元格的转换

	transposeBoolean, default False
	是否转置

	expandstr, default None
	可以取下列值： 'table' , 'down' , 'right' 。

	chunksizeint
	Use a chunksize, e.g. 10000 to prevent timeout or memory issues when
reading or writing large amounts of data. Works with all formats, including
DataFrames, NumPy arrays, and list of lists.

	err_to_strBoolean, default False
	If True, will include cell errors such as #N/A as strings. By
default, they will be converted to None.

Added in version 0.28.0.

=> 与转换器有关的选项，参考： 转换器及选项 。

返回

Range object

	
paste(paste=None, operation=None, skip_blanks=False, transpose=False)

	从剪贴板里拷贝一个区域到指定区域

参数

	pastestr, default None
	可以取下列值： all_merging_conditional_formats, all, all_except_borders, all_using_source_theme, column_widths, comments, formats, formulas, formulas_and_number_formats, validation, values, values_and_number_formats.

	operationstr, default None
	可以取下列值： “add”, “divide”, “multiply”, “subtract”。

	skip_blanksbool类型, 缺省值为False
	设为 True 时忽略空白单元格

	transposebool类型, 缺省值为False
	设为 True 时对行列转置

返回

None

	
property raw_value

	Gets and sets the values directly as delivered from/accepted by the engine that
s being used (pywin32 or appscript) without going through any of
xlwings’ data cleaning/converting. This can be helpful if speed is an issue but
naturally will be engine specific, i.e. might remove the cross-platform
compatibility.

	
resize(row_size=None, column_size=None)

	重新调整指定区域的大小。

Arguments

	row_size: int > 0
	新的区域的行数(如果为 None , 区域保持原来的行数不变)。

	column_size: int > 0
	新的区域的列数(如果为 None , 区域保持原来的列数不变)。

返回

Range object: Range

Added in version 0.3.0.

	
property row

	返回区域第一行的行号。只读。

返回

Integer

Added in version 0.3.5.

	
property row_height

	取得或者设置区域的行高，单位是 point 。 如果区域内所有的行高度都一样，就返回这个高度。如果不一样，就返回 None 。

row_height必须在下列范围内: 0 <= row_height <= 409.5

注意：如果区域不在工作表已用区域内并且行高不同，返回第一行的高度。

返回

float

Added in version 0.4.0.

	
property rows

	返回一个代表指定区域内的行的 RangeRows 对象。

Added in version 0.9.0.

	
select()

	选中区域。只能在活动的工作簿中选。

Added in version 0.9.0.

	
property shape

	表示区域范围的元组。

Added in version 0.3.0.

	
property sheet

	返回区域所属的工作表对象。

Added in version 0.9.0.

	
property size

	区域内的单元格数量。

Added in version 0.3.0.

	
property table

	Returns a Table object if the range is part of one, otherwise None.

Added in version 0.21.0.

	
to_pdf(path=None, layout=None, show=None, quality='standard')

	Exports the range as PDF.

参数

	pathstr or path-like, default None
	Path where you want to store the pdf. Defaults to the address of the range
in the same directory as the Excel file if the Excel file is stored and to
the current working directory otherwise.

	layoutstr or path-like object, default None
	This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for
headers and footers as well as borderless printing of graphics/artwork. The
PDF file either needs to have only 1 page (every report page uses the same
layout) or otherwise needs the same amount of pages as the report (each
report page is printed on the respective page in the layout PDF).

	showbool类型, 缺省值为False
	Once created, open the PDF file with the default application.

	qualitystr, default 'standard'
	Quality of the PDF file. Can either be 'standard' or 'minimum'.

Added in version 0.26.2.

	
to_png(path=None)

	Exports the range as PNG picture.

参数

	pathstr or path-like, default None
	Path where you want to store the picture. Defaults to the name of the range
in the same directory as the Excel file if the Excel file is stored and to
the current working directory otherwise.

Added in version 0.24.8.

	
property top

	返回从第一行的边缘到区域边缘的距离，单位是 point ，只读。

返回

float

Added in version 0.6.0.

	
unmerge()

	Separates a merged area into individual cells.

	
property value

	Gets and sets the values for the given Range. See xlwings.Range.options()
about how to set options, e.g., to transform it into a DataFrame or how to set
a chunksize.

返回

	objectreturned object depends on the converter being used,
	see xlwings.Range.options()

	
property width

	返回一个区域的宽度，单位是 point ，只读。

返回

float

Added in version 0.4.0.

	
property wrap_text

	Returns True if the wrap_text property is enabled and False if it’s
disabled. If not all cells have the same value in a range, on Windows it returns
None and on macOS False.

Added in version 0.23.2.

RangeColumns

	
class RangeColumns(rng)

	代表一个区域的所有行。不要直接创建这个类，应该使用 Range.columns 。

示例

import xlwings as xw

wb = xw.Book("MyFile.xlsx")
sheet1 = wb.sheets[0]
myrange = sheet1.range('A1:C4')

assert len(myrange.columns) == 3 # or myrange.columns.count

myrange.columns[0].value = 'a'

assert myrange.columns[2] == sheet1.range('C1:C4')
assert myrange.columns(2) == sheet1.range('B1:B4')

for c in myrange.columns:
 print(c.address)

	
autofit()

	自动调整列宽。

	
property count

	返回列的数量。

Added in version 0.9.0.

RangeRows

	
class RangeRows(rng)

	代表一个区域内的所有行。不要直接创建这个对象，而是应该用 Range.rows 。

示例

import xlwings as xw

wb = xw.Book("MyBook.xlsx")
sheet1 = wb.sheets[0]
myrange = sheet1.range('A1:C4')

assert len(myrange.rows) == 4 # or myrange.rows.count

myrange.rows[0].value = 'a'

assert myrange.rows[2] == sheet1.range('A3:C3')
assert myrange.rows(2) == sheet1.range('A2:C2')

for r in myrange.rows:
 print(r.address)

	
autofit()

	自动调整行高。

	
property count

	返回行数。

Added in version 0.9.0.

Reports

Shape

	
class Shape(*args, **options)

	是 shapes 集合中的一员:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.shapes[0] # or sht.shapes['ShapeName']
<Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>

在 0.9.0 版本发生变更.

	
activate()

	激活形状(shape)。

Added in version 0.5.0.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.19.2.

	
delete()

	删除形状。

Added in version 0.5.0.

	
property height

	返回或者设置形状的高度，单位是 point 。

Added in version 0.5.0.

	
property left

	返回或者设置代表形状的水平位置，单位是 point 。

Added in version 0.5.0.

	
property name

	返回形状的名称

Added in version 0.5.0.

	
property parent

	返回形状所属的对象。

Added in version 0.9.0.

	
scale_height(factor, relative_to_original_size=False, scale='scale_from_top_left')

	
	factorfloat
	For example 1.5 to scale it up to 150%

	relative_to_original_sizebool, optional
	If False, it scales relative to current height (default).
For True must be a picture or OLE object.

	scalestr, optional
	One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

Added in version 0.19.2.

	
scale_width(factor, relative_to_original_size=False, scale='scale_from_top_left')

	
	factorfloat
	For example 1.5 to scale it up to 150%

	relative_to_original_sizebool, optional
	If False, it scales relative to current width (default).
For True must be a picture or OLE object.

	scalestr, optional
	One of scale_from_top_left (default), scale_from_bottom_right,
scale_from_middle

Added in version 0.19.2.

	
property text

	Returns or sets the text of a shape.

Added in version 0.21.4.

	
property top

	返回或设置形状的垂直位置，单位为 point 。

Added in version 0.5.0.

	
property type

	返回形状的类型。

Added in version 0.9.0.

	
property width

	返回或者设置形状的宽度，单位是 point 。

Added in version 0.5.0.

Shapes

	
class Shapes(impl)

	在指定的工作表中的所有形状对象(shape)的集合:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].shapes
Shapes([<Shape 'Oval 1' in <Sheet [Book1]Sheet1>>,
 <Shape 'Rectangle 1' in <Sheet [Book1]Sheet1>>])

Added in version 0.9.0.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

	
property count

	返回集合中的对象数。

Sheet

	
class Sheet(sheet=None, impl=None)

	一个sheet对象是sheets集合中的一员:

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets[0]
<Sheet [Book1]Sheet1>
>>> wb.sheets['Sheet1']
<Sheet [Book1]Sheet1>
>>> wb.sheets.add()
<Sheet [Book1]Sheet2>

在 0.9.0 版本发生变更.

	
activate()

	激活sheet并把它返回。

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

Added in version 0.9.0.

	
autofit(axis=None)

	在整个工作表中对行、列或者两者同时根据内容进行自适应。

Arguments

	axisstring, default None
	
	要做行自适应，用 rows 或 r

	要做列自适应，用 columns 或 c

	同时做行和列的自适应，不需要参数。

示例

>>> import xlwings as xw
>>> wb = xw.Book()
>>> wb.sheets['Sheet1'].autofit('c')
>>> wb.sheets['Sheet1'].autofit('r')
>>> wb.sheets['Sheet1'].autofit()

Added in version 0.2.3.

	
property book

	返回指定工作表所属的工作簿。只读。

	
property cells

	返回一个代表工作表上所有单元格的区域对象(不仅仅是那些正在使用中的单元格)。

Added in version 0.9.0.

	
property charts

	参见 Charts

Added in version 0.9.0.

	
clear()

	重新格式化工作表，清除所有内容及格式。

	
clear_contents()

	清除工作表的所有内容但是保留原有格式。

	
clear_formats()

	Clears the format of the whole sheet but leaves the content.

Added in version 0.26.2.

	
copy(before=None, after=None, name=None)

	Copy a sheet to the current or a new Book. By default, it places the copied
sheet after all existing sheets in the current Book. Returns the copied sheet.

Added in version 0.22.0.

Arguments

	beforesheet object, default None
	The sheet object before which you want to place the sheet

	aftersheet object, default None
	The sheet object after which you want to place the sheet,
by default it is placed after all existing sheets

	namestr, default None
	The sheet name of the copy

返回

	Sheet object: Sheet
	The copied sheet

示例

Create two books and add a value to the first sheet of the first book
first_book = xw.Book()
second_book = xw.Book()
first_book.sheets[0]['A1'].value = 'some value'

Copy to same Book with the default location and name
first_book.sheets[0].copy()

Copy to same Book with custom sheet name
first_book.sheets[0].copy(name='copied')

Copy to second Book requires to use before or after
first_book.sheets[0].copy(after=second_book.sheets[0])

	
delete()

	删除工作表。

Added in version 0.6.0.

	
property index

	返回工作表的索引值(按照Excel的方式，从1开始的)。

	
property name

	取得或者设置工作表的名字。

	
property names

	返回所有名字与本工作表有关的命名区域的集合(名字定义中包含”SheetName!” (工作表名!)前缀)。

Added in version 0.9.0.

	
property page_setup

	Returns a PageSetup object.

Added in version 0.24.2.

	
property pictures

	参见 Pictures

Added in version 0.9.0.

	
range(cell1, cell2=None)

	从活动工作簿的活动工作表中返回一个区域对象, 参见 Range() 。

Added in version 0.9.0.

	
render_template(**data)

	This method requires xlwings PRO.

Replaces all Jinja variables (e.g {{ myvar }}) in the sheet with the keyword
argument that has the same name. Following variable types are supported:

strings, numbers, lists, simple dicts, NumPy arrays, Pandas DataFrames,
PIL Image objects that have a filename and Matplotlib figures.

Added in version 0.22.0.

参数

	data: kwargs
	All key/value pairs that are used in the template.

示例

>>> import xlwings as xw
>>> book = xw.Book()
>>> book.sheets[0]['A1:A2'].value = '{{ myvar }}'
>>> book.sheets[0].render_template(myvar='test')

	
select()

	选定工作表。只能在活动工作簿中选择。

Added in version 0.9.0.

	
property shapes

	参见 Shapes

Added in version 0.9.0.

	
property tables

	See Tables

Added in version 0.21.0.

	
to_html(path=None)

	Export a Sheet as HTML page.

参数

	pathstr or path-like, default None
	Path where you want to save the HTML file. Defaults to Sheet name in the
current working directory.

Added in version 0.28.1.

	
to_pdf(path=None, layout=None, show=False, quality='standard')

	Exports the sheet to a PDF file.

参数

	pathstr or path-like object, default None
	Path to the PDF file, defaults to the name of the sheet in the same
directory of the workbook. For unsaved workbooks, it defaults to the current
working directory instead.

	layoutstr or path-like object, default None
	This argument requires xlwings PRO.

Path to a PDF file on which the report will be printed. This is ideal for
headers and footers as well as borderless printing of graphics/artwork. The
PDF file either needs to have only 1 page (every report page uses the same
layout) or otherwise needs the same amount of pages as the report (each
report page is printed on the respective page in the layout PDF).

Added in version 0.24.3.

	showbool类型, 缺省值为False
	Once created, open the PDF file with the default application.

Added in version 0.24.6.

	qualitystr, default 'standard'
	Quality of the PDF file. Can either be 'standard' or 'minimum'.

Added in version 0.26.2.

示例

>>> wb = xw.Book()
>>> sheet = wb.sheets[0]
>>> sheet['A1'].value = 'PDF'
>>> sheet.to_pdf()

See also xlwings.Book.to_pdf()

Added in version 0.22.3.

	
property used_range

	工作表中用过的区域。

返回

xw.Range

Added in version 0.13.0.

	
property visible

	Gets or sets the visibility of the Sheet (bool).

Added in version 0.21.1.

Sheets

	
class Sheets(impl)

	全部工作表对象 sheet 的集合:

>>> import xlwings as xw
>>> xw.sheets # active book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])
>>> xw.Book('Book1').sheets # specific book
Sheets([<Sheet [Book1]Sheet1>, <Sheet [Book1]Sheet2>])

Added in version 0.9.0.

	
property active

	返回活动的工作表(Sheet)。

	
add(name=None, before=None, after=None)

	创建一个新的工作表并设为活动工作表。

参数

	namestr, default None
	新工作表的名字，如果没有就使用Excel给的缺省名字。

	beforeSheet, default None
	在新增工作表前面的工作表对象。

	afterSheet, default None
	在新增工作表后面的工作表对象。

返回

	sheetSheet
	Added sheet object

Table

	
class Table(*args, **options)

	The table object is a member of the tables collection:

>>> import xlwings as xw
>>> sht = xw.books['Book1'].sheets[0]
>>> sht.tables[0] # or sht.tables['TableName']
<Table 'Table 1' in <Sheet [Book1]Sheet1>>

Added in version 0.21.0.

	
property api

	返回正在使用的引擎的原生对象(pywin32 或 appscript 对象)。

	
property data_body_range

	Returns an xlwings range object that represents the range of values,
excluding the header row

	
property display_name

	Returns or sets the display name for the specified Table object

	
property header_row_range

	Returns an xlwings range object that represents the range of the header row

	
property insert_row_range

	Returns an xlwings range object representing the row where data is going to
be inserted. This is only available for empty tables, otherwise it’ll return
None

	
property name

	Returns or sets the name of the Table.

	
property parent

	Returns the parent of the table.

	
property range

	Returns an xlwings range object of the table.

	
resize(range)

	Resize a Table by providing an xlwings range object

Added in version 0.24.4.

	
property show_autofilter

	Turn the autofilter on or off by setting it to True or False
(read/write boolean)

	
property show_headers

	Show or hide the header (read/write)

	
property show_table_style_column_stripes

	Returns or sets if the Column Stripes table style is used for
(read/write boolean)

	
property show_table_style_first_column

	Returns or sets if the first column is formatted (read/write boolean)

	
property show_table_style_last_column

	Returns or sets if the last column is displayed (read/write boolean)

	
property show_table_style_row_stripes

	Returns or sets if the Row Stripes table style is used
(read/write boolean)

	
property show_totals

	Gets or sets a boolean to show/hide the Total row.

	
property table_style

	Gets or sets the table style.
See Tables.add for possible values.

	
property totals_row_range

	Returns an xlwings range object representing the Total row

	
update(data, index=True)

	Updates the Excel table with the provided data.
Currently restricted to DataFrames.

在 0.24.0 版本发生变更.

Arguments

	datapandas DataFrame
	Currently restricted to pandas DataFrames.

	indexbool类型, 缺省值为True
	Whether or not the index of a pandas DataFrame should be written to the
Excel table.

返回

Table

示例

import pandas as pd
import xlwings as xw

sheet = xw.Book('Book1.xlsx').sheets[0]
table_name = 'mytable'

Sample DataFrame
nrows, ncols = 3, 3
df = pd.DataFrame(data=nrows * [ncols * ['test']],
 columns=['col ' + str(i) for i in range(ncols)])

Hide the index, then insert a new table if it doesn't exist yet,
otherwise update the existing one
df = df.set_index('col 0')
if table_name in [table.name for table in sheet.tables]:
 sheet.tables[table_name].update(df)
else:
 mytable = sheet.tables.add(source=sheet['A1'],
 name=table_name).update(df)

Tables

	
class Tables(impl)

	A collection of all table objects on the specified sheet:

>>> import xlwings as xw
>>> xw.books['Book1'].sheets[0].tables
Tables([<Table 'Table1' in <Sheet [Book11]Sheet1>>,
 <Table 'Table2' in <Sheet [Book11]Sheet1>>])

Added in version 0.21.0.

	
add(source=None, name=None, source_type=None, link_source=None, has_headers=True, destination=None, table_style_name='TableStyleMedium2')

	Creates a Table to the specified sheet.

Arguments

	sourcexlwings range, default None
	An xlwings range object, representing the data source.

	namestr, default None
	The name of the Table. By default, it uses the autogenerated name that is
assigned by Excel.

	source_typestr, default None
	This currently defaults to xlSrcRange, i.e. expects an xlwings range
object. No other options are allowed at the moment.

	link_sourcebool, default None
	Currently not implemented as this is only in case source_type is
xlSrcExternal.

	has_headersbool or str, default True
	Indicates whether the data being imported has column labels. Defaults to
True. Possible values: True, False, 'guess'

	destinationxlwings range, default None
	Currently not implemented as this is used in case source_type is
xlSrcExternal.

	table_style_namestr, default ‘TableStyleMedium2’
	Possible strings: 'TableStyleLightN' (where N is 1-21),
'TableStyleMediumN' (where N is 1-28),
'TableStyleDarkN' (where N is 1-11)

返回

Table

示例

>>> import xlwings as xw
>>> sheet = xw.Book().sheets[0]
>>> sheet['A1'].value = [['a', 'b'], [1, 2]]
>>> table = sheet.tables.add(source=sheet['A1'].expand(), name='MyTable')
>>> table
<Table 'MyTable' in <Sheet [Book1]Sheet1>>

索引

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	activate() （App 方法）

 	activate() （Book 方法）

 	activate() （Shape 方法）

 	activate() （Sheet 方法）

 	active（Apps 属性）

 	active（Books 属性）

 	active（Sheets 属性）

 	add() （Apps 方法）

 	add() （Books 方法）

 	add() （Charts 方法）

 	add() （Names 方法）

 	add() （Pictures 方法）

 	add() （Sheets 方法）

 	add() （Tables 方法）

 	add_hyperlink() （Range 方法）

 	address（Range 属性）

 	alert() （App 方法）

 	api（App 属性）

 	api（Book 属性）

 	api（Characters 属性）

 	api（Chart 属性）

 	
 	api（Charts 属性）

 	api（Font 属性）

 	api（Name 属性）

 	api（Names 属性）

 	api（Note 属性）

 	api（PageSetup 属性）

 	api（Picture 属性）

 	api（Pictures 属性）

 	api（Range 属性）

 	api（Shape 属性）

 	api（Shapes 属性）

 	api（Sheet 属性）

 	api（Table 属性）

 	Apps（xlwings.main 中的类）

 	app（Book 属性）

 	App（xlwings 中的类）

 	autofill() （Range 方法）

 	autofit() （Range 方法）

 	autofit() （RangeColumns 方法）

 	autofit() （RangeRows 方法）

 	autofit() （Sheet 方法）

B

 	
 	bold（Font 属性）

 	books（App 属性）

 	Books（xlwings.main 中的类）

 	book（Sheet 属性）

 	Book（xlwings 中的类）

 	
 	
 built-in function

 	xlwings.arg()

 	xlwings.func()

 	xlwings.ret()

 	xlwings.sub()

C

 	
 	calculate() （App 方法）

 	calculation（App 属性）

 	caller()（Book 类方法）

 	cells（Sheet 属性）

 	Characters（xlwings.main 中的类）

 	chart_type（Chart 属性）

 	charts（Sheet 属性）

 	Charts（xlwings.main 中的类）

 	Chart（xlwings 中的类）

 	cleanup() （Apps 方法）

 	clear() （Range 方法）

 	clear() （Sheet 方法）

 	clear_contents() （Range 方法）

 	clear_contents() （Sheet 方法）

 	clear_formats() （Range 方法）

 	clear_formats() （Sheet 方法）

 	close() （Book 方法）

 	
 	color（Font 属性）

 	color（Range 属性）

 	column_width（Range 属性）

 	columns（Range 属性）

 	column（Range 属性）

 	copy() （Range 方法）

 	copy() （Sheet 方法）

 	copy_picture() （Range 方法）

 	count（Apps 属性）

 	count（Charts 属性）

 	count（Names 属性）

 	count（Pictures 属性）

 	count（Range 属性）

 	count（RangeColumns 属性）

 	count（RangeRows 属性）

 	count（Shapes 属性）

 	current_region（Range 属性）

 	cut_copy_mode（App 属性）

D

 	
 	data_body_range（Table 属性）

 	delete() （Chart 方法）

 	delete() （Name 方法）

 	delete() （Note 方法）

 	delete() （Picture 方法）

 	
 	delete() （Range 方法）

 	delete() （Shape 方法）

 	delete() （Sheet 方法）

 	display_alerts（App 属性）

 	display_name（Table 属性）

E

 	
 	enable_events（App 属性）

 	
 	end() （Range 方法）

 	expand() （Range 方法）

F

 	
 	font（Characters 属性）

 	Font（xlwings.main 中的类）

 	formula2（Range 属性）

 	
 	formula_array（Range 属性）

 	formula（Range 属性）

 	fullname（Book 属性）

G

 	
 	get_address() （Range 方法）

H

 	
 	has_array（Range 属性）

 	header_row_range（Table 属性）

 	height（Chart 属性）

 	height（Picture 属性）

 	
 	height（Range 属性）

 	height（Shape 属性）

 	hwnd（App 属性）

 	hyperlink（Range 属性）

I

 	
 	index（Sheet 属性）

 	insert() （Range 方法）

 	
 	insert_row_range（Table 属性）

 	interactive（App 属性）

 	italic（Font 属性）

J

 	
 	json() （Book 方法）

K

 	
 	keys() （Apps 方法）

 	
 	kill() （App 方法）

L

 	
 	last_cell（Range 属性）

 	left（Chart 属性）

 	left（Picture 属性）

 	
 	left（Range 属性）

 	left（Shape 属性）

 	load()（在 xlwings 模块中）

 	lock_aspect_ratio（Picture 属性）

M

 	
 	macro() （App 方法）

 	macro() （Book 方法）

 	merge() （Range 方法）

 	
 	merge_area（Range 属性）

 	merge_cells（Range 属性）

 	
 module

 	xlwings

N

 	
 	names（Book 属性）

 	names（Sheet 属性）

 	Names（xlwings.main 中的类）

 	name（Book 属性）

 	name（Chart 属性）

 	name（Font 属性）

 	name（Name 属性）

 	name（Picture 属性）

 	
 	name（Range 属性）

 	name（Shape 属性）

 	name（Sheet 属性）

 	name（Table 属性）

 	Name（xlwings 中的类）

 	note（Range 属性）

 	Note（xlwings.main 中的类）

 	number_format（Range 属性）

O

 	
 	offset() （Range 方法）

 	
 	open() （Books 方法）

 	options() （Range 方法）

P

 	
 	page_setup（Sheet 属性）

 	PageSetup（xlwings.main 中的类）

 	parent（Chart 属性）

 	parent（Picture 属性）

 	parent（Shape 属性）

 	parent（Table 属性）

 	paste() （Range 方法）

 	
 	path（App 属性）

 	pictures（Sheet 属性）

 	Pictures（xlwings.main 中的类）

 	Picture（xlwings 中的类）

 	pid（App 属性）

 	print_area（PageSetup 属性）

 	properties() （App 方法）

Q

 	
 	quit() （App 方法）

R

 	
 	range() （App 方法）

 	range() （Sheet 方法）

 	RangeColumns（xlwings 中的类）

 	RangeRows（xlwings 中的类）

 	range（Table 属性）

 	Range（xlwings 中的类）

 	raw_value（Range 属性）

 	refers_to_range（Name 属性）

 	
 	refers_to（Name 属性）

 	render_template() （App 方法）

 	render_template() （Book 方法）

 	render_template() （Sheet 方法）

 	resize() （Range 方法）

 	resize() （Table 方法）

 	row_height（Range 属性）

 	rows（Range 属性）

 	row（Range 属性）

S

 	
 	save() （Book 方法）

 	scale_height() （Shape 方法）

 	scale_width() （Shape 方法）

 	screen_updating（App 属性）

 	select() （Range 方法）

 	select() （Sheet 方法）

 	selection（App 属性）

 	selection（Book 属性）

 	set_mock_caller() （Book 方法）

 	set_source_data() （Chart 方法）

 	shapes（Sheet 属性）

 	Shapes（xlwings.main 中的类）

 	shape（Range 属性）

 	Shape（xlwings 中的类）

 	sheet_names（Book 属性）

 	
 	sheets（Book 属性）

 	Sheets（xlwings.main 中的类）

 	sheet（Range 属性）

 	Sheet（xlwings 中的类）

 	show_autofilter（Table 属性）

 	show_headers（Table 属性）

 	show_table_style_column_stripes（Table 属性）

 	show_table_style_first_column（Table 属性）

 	show_table_style_last_column（Table 属性）

 	show_table_style_row_stripes（Table 属性）

 	show_totals（Table 属性）

 	size（Font 属性）

 	size（Range 属性）

 	startup_path（App 属性）

 	status_bar（App 属性）

T

 	
 	table_style（Table 属性）

 	tables（Sheet 属性）

 	Tables（xlwings.main 中的类）

 	table（Range 属性）

 	Table（xlwings.main 中的类）

 	text（Characters 属性）

 	text（Note 属性）

 	text（Shape 属性）

 	to_html() （Sheet 方法）

 	to_pdf() （Book 方法）

 	
 	to_pdf() （Chart 方法）

 	to_pdf() （Range 方法）

 	to_pdf() （Sheet 方法）

 	to_png() （Chart 方法）

 	to_png() （Range 方法）

 	top（Chart 属性）

 	top（Picture 属性）

 	top（Range 属性）

 	top（Shape 属性）

 	totals_row_range（Table 属性）

 	type（Shape 属性）

U

 	
 	unmerge() （Range 方法）

 	update() （Picture 方法）

 	
 	update() （Table 方法）

 	used_range（Sheet 属性）

V

 	
 	value（Range 属性）

 	version（App 属性）

 	
 	view()（在 xlwings 模块中）

 	visible（App 属性）

 	visible（Sheet 属性）

W

 	
 	width（Chart 属性）

 	width（Picture 属性）

 	
 	width（Range 属性）

 	width（Shape 属性）

 	wrap_text（Range 属性）

X

 	
 	
 xlwings

 	module

 	
 xlwings.arg()

 	built-in function

 	
 xlwings.func()

 	built-in function

 	
 	
 xlwings.ret()

 	built-in function

 	
 xlwings.sub()

 	built-in function

Open Source Licenses

Depending on the platform and features that you use, xlwings requires various Open Source dependencies.

	The licenses of the compiled code are available in a separate document

	All other licenses are listed below

pywin32 (used for interactive mode on Windows)

com subpackage

Unless stated in the specific source file, this work is
Copyright (c) 1996-2008, Greg Stein and Mark Hammond.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

Neither names of Greg Stein, Mark Hammond nor the name of contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS
IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

win32 subpackage

Unless stated in the specfic source file, this work is
Copyright (c) 1994-2008, Mark Hammond
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

Neither name of Mark Hammond nor the name of contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS
IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Pythonwin subpackage

Unless stated in the specfic source file, this work is
Copyright (c) 1994-2008, Mark Hammond
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

Neither name of Mark Hammond nor the name of contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS
IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

psutil (used for interactive mode on macOS)

BSD 3-Clause License

Copyright (c) 2009, Jay Loden, Dave Daeschler, Giampaolo Rodola’
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the psutil authors nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Appscript (used for interactive mode on macOS)

Appscript is released into the public domain, except for the following code:

	
portions of ae.c, which are Copyright (C) the original authors:

Original code taken from _AEmodule.c, _CFmodule.c, _Launchmodule.c

Copyright (C) 2001-2008 Python Software Foundation.

License: https://docs.python.org/3/license.html.

	
SendThreadSafe.h/SendThreadSafe.m, which are modified versions of Apple

code (https://developer.apple.com/library/archive/samplecode/AESendThreadSafe):

Written by: DTS

Copyright: Copyright (c) 2007 Apple Inc. All Rights Reserved.

Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc.

(“Apple”) in consideration of your agreement to the following
terms, and your use, installation, modification or
redistribution of this Apple software constitutes acceptance of
these terms. If you do not agree with these terms, please do
not use, install, modify or redistribute this Apple software.
In consideration of your agreement to abide by the following
terms, and subject to these terms, Apple grants you a personal,
non-exclusive license, under Apple’s copyrights in this
original Apple software (the “Apple Software”), to use,
reproduce, modify and redistribute the Apple Software, with or
without modifications, in source and/or binary forms; provided
that if you redistribute the Apple Software in its entirety and
without modifications, you must retain this notice and the
following text and disclaimers in all such redistributions of
the Apple Software. Neither the name, trademarks, service marks
or logos of Apple Inc. may be used to endorse or promote
products derived from the Apple Software without specific prior
written permission from Apple. Except as expressly stated in
this notice, no other rights or licenses, express or implied,
are granted by Apple herein, including but not limited to any
patent rights that may be infringed by your derivative works or
by other works in which the Apple Software may be incorporated.
The Apple Software is provided by Apple on an “AS IS” basis.

APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING
THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN
COMBINATION WITH YOUR PRODUCTS.
IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY
OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION
OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY
OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR
OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Mistune

BSD 3-Clause License

Copyright (c) 2014, Hsiaoming Yang

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

	Neither the name of the creator nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

VBA-Dictionary (used in VBA add-in & modules)

The MIT License (MIT)

Copyright (c) 2020 Tim Hall

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

VBA-Web (used in VBA add-in & modules)

The MIT License (MIT)

Copyright (c) 2016-2019 Tim Hall

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

watchgod (used in xlwings.exe)

The MIT License (MIT)

Copyright (c) 2017, 2018, 2019, 2020, 2021, 2022 Samuel Colvin

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

msal (used in xlwings.exe)

The MIT License (MIT)

Copyright (c) Microsoft Corporation.
All rights reserved.

This code is licensed under the MIT License.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

core-js (used in xlwings.js)

Copyright (c) 2014-2023 Denis Pushkarev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Bootstrap (used in xlwings-alert.html in connection with xlwings.js)

The MIT License (MIT)

Copyright (c) 2011-2023 The Bootstrap Authors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

bootstrap-ie11 (used in xlwings-alert.html in connection with xlwings.js)

The MIT License (MIT)

Copyright (c) 2022 Christian Oliff

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Webpack (used in xlwings.js)

Copyright JS Foundation and other contributors

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 _static/favicon.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 xlwings - 让Excel跑得飞快!

_images/1d_ranges.png
B

_images/addin_version.png
File Home Insert Page Layout Formulas Data Review View Developer xlwings

Interpreter: pythonw fx UDF Modules: Log File:
PYTHONPATH: | [] Debug UDFs [] RunPython: Use UDF Server
mport
Functions O Restart UDF Server Version: 0.11.4

Python User Defined Functions (UDFs) Advanced

_images/array_formula.png
e |{=add_one(A1:82)}

_images/chart_type.png
My Chart

seriest ||

two

16
17 |

_images/debugging_error.png
Error =]

y Traceback (most recent calllast):

\DEV\hwings\ examples\fibonaccifibonacci.py’, line 31, in
«l fibonacci

seq = fibonace(n)

NameEror: global name ‘fibonacc s not defined

Press Ctrl+C to copy this message to the clipboard.

o

_images/df_converter.png
myfunction(A1:05)}

=

5

13

B:

@ ssmoa

@ cTaw®

~ oo~

e

_images/custom_addin_vba_properties.png
t| Microsoft Visual Basic for Applications - myproject
& File Edit View Insert Format Debug Run

~d »om
Project - MyAddin &
=] =

= & MyAddin (myproject.xlam)
=3 Microsoft Excel Objects
1Sheet? (xlwings.conf)
kbook

>

4% Modulel
L RibbonMyAddin
L lwings

Class Modules

v
— e PN

Properties - ThisWorkbook X
ThisWorkbook Workbook |
Alphabetic ‘Categorized

(Name) ThisWorkbook ~
AccuracyVersion 0

AutoSaveOn False

AutoUpdateFrequency 0
ChangeHistoryDuration 0
ChartDataPointTrack False

CheckCompatibility False
ConflictResolution 1 - xlUserResolution
Date1904 False

DisplayDrawingObjects -4104 - xIDisplayShapes
DisplayInkComments True
DoNotPromptForConvert False

EnableAutoRecover True
EncryptionProvider

EnvelopeVisible False
Final False
ForceFullCalculation False

HighlightChangesOnScree False
nactivel i e isil e

_images/custom_ribbon_addin.png
Book1 - Excel O Search

|

AutoSave

&l D

File Home Insert Page Layout Formulas Data Review View Developer Help MyAddin
Run
My Group
Al - fx
A B < 13 3 F €] H | J K
)

_images/dynamic_array1.png
Home Insert Page Layout Formulas Data Review

B4 ~ fx =dynamic_array(B2,C2)

| C D E
rows: columns:
5 2

2.01156647] -0.0985618

-0.2152179 -0.7541961
0.37168657 -0.1978662
-1.0643897 1.37592295
0.5272535 -0.0508628

_images/dynamic_array2.png
Home Insert Page Layout Formulas Data Review View xlwings

B4 ~ fx =dynamic_array(B2,C2)

A ‘ B | C D E F
rows: columns:
2 5

-0.6788379| -1.0009999 -0.6342434 -0.9362773 1.02582914
-2.1803953 0.18511092 0.3121721 0.20600051 0.3799863

_images/dict_converter.png

_images/double_sum.png
fe | =double_sum(1, 2)

K3

_images/embedded_code2.png
AutoSave @ oFF /ﬁ\ H o 0 O = ?gemb...

Home Insert Draw Q Tell me what you want to do & Share (] Comments
F8 s f v
A B G D
1 |import random
2
3 |def get_random_number():
4 return random.random()
5]
6
v
8
9
10
11
4 > Sheet1 random_numbers.py utils.py
ﬂ‘ [l m - e — 4 100%

_images/excel_table_report.png
)mumm&ww»—-l

A

Title

col 0 col 1 col 2
test test test
test test test
test test test

Some static text.

_images/embedded_code1.png
AutoSave @0 @& H © v O D s Remb.

Home Insert Draw Q Tell me what you want to do & Share (] Comments

G10 - fx v

1 |import xlwings as xw
2 import utils

3]

4 def main():

5 wb = xw.Book.caller()
6 wb.sheets[@]["A1"].value = utils.get_random_number()
7 wb.sheets[@]["A2"].value = utils.get_random_number()
8

9

10]

11

Sheet1 random_numbers.py utils.py +
T B E] = e+ 100%

_images/formatter_reports.png
il
2
3]
4
5
F =

A B
{{ df | formatter("table") }}

1
2
3
4

500.0%
600.0%
700.0%
800.0%

_images/frame_report.png
Table 3

1 Table 1

11

n ©

14 15

13

7 |Table 2

o

Table 4

10
11
12
13

12

15

11

10
13

14

_images/excel_table_template.png
A B
Title <frame>

Some static text.

_images/formatter.png
U1 A W N R

1
2
B]
4

500.0%
600.0%
700.0%
800.0%

_images/gh_edit_requirements.png
2 lines (1 sloc) 22 Bytes Raw Blame [

xlwings [pro]l==0.20.8

_images/frame_template.png
A B F G
1 Table 1 ‘\<frame> Table 3 ‘\<frame>
2 [S
3]
4
5 |Table 2 Table 4
6
i

_images/gh_create_release.png
<> Code () Issues 1% Pull requests (») Actions [M1] Projects () Security

Releases Tags
Draft a new release

_images/gh_releases.png
No releases published
Create a new release

_images/mac_error.png
Error

Traceback (most recent call last)
File *<string>", line 1, in <module>
File */Users/Felix/Desktop/ fibonacci.py’, line 31, in
x_fibonacc
Seq = fibonacc(n)
NameError: global name fibonacc' is not defined

o

_images/gh_installer_download.png
Draft a new release

12.0

©1.20
Frumsteln released this 3 days 2go
-O-7321e85 ‘ Vs ag
e added more deps

®

v~ Assets 4

@ installer.sh 1.67 KB

@ xlwings-runtime-1.2.0-x64.exe | ¢——————— 83.1MB

[2) Source code (zip)

[2) Source code (tar.gz)

_images/gh_publish_release.png
@ ¥ Target: main ~

or create a new tag on publish

Release title

Write Preview

Describe this release

Attach files by dragging & dropping, selecting or pasting them.

\]/ Attach binaries by dropping them here or selecting them.

This is a pre-release
We'll point out that this release is identified as non-production ready.

Publish release Save draft

_images/markdown2.png
N =

Title

Text bold and italic

Q A first bullet
Q A second bullet

Another Title

This paragraph has a line break.

| Another line.

Title

Text bold and italic

@ Afirst bullet
@ Asecond bullet

Another Title

This paragraph has a line break.
Another line.

_images/markdown_template.png
{{ myplaceholder }}

el

{{ myplaceholder }}

_images/mac_ribbon.png
Home Insert Page Layout Formulas Data Review View Developer xlwings

Interpreter: python Log File:

PYTHONPATH: Version: 0.11.4

Python Advanced

_images/markdown1.png
Title
Text bold and italic

o A first bullet
* A second bullet

Another Title

This paragraph has a line break.
Another line.

Title

Text bold and italic

¢ Afirst bullet
¢ Asecond bullet

Another Title

This paragraph has a line break.
Another line.

_images/matplotlib.png
////

&

_images/mpl_basic.png

_images/pandas_series.png
11
23

11
23

_images/myreport.png
A

MyTitle
My DataFrame
one two

1

_images/mytemplate.png
i
2
3

n noS

A
{{ title }}

My DataFrame
)

_images/pythonpath_conf.png
.
File Edit. View
“UDF MODULES™,"my_udf™

INTERPRETER_WIN",
"PYTHONPATH", "C: \py_folder™

_images/reports_chart1.png
F6

<«

nA WN R

North
South

Q1

_images/plotly.png
AutoSave D
Home Insert Draw Page Layout Formulas Data Review View Developer xlw
036 v fx
A © D E F G H J
il
2
3]
4 8 species
5 ® setosa
. . . N
6 7.5 L . errs‘m‘olor
7 e ® virginica
. . .
8 7 e
9 o 6¥8
. : . .
0/ £ s e
11 g‘ e . o
12 %' 6 (] = H .
13 <3 eee N ° .
u| R sEsit :
5.5 LI) .
15 . 3 H .
16 >
17 5 . O— + (3 .o =
18 | s H
se e |
19 4.5 . . %
20
21 2 2.5 3 3.5 4 4.5
;: sepal_width
24
25
26
27

N
o

)
)

_images/pythonpath.png
Interpreter:

Run PYTHONPATH: Ci\py_folder

main (/] Add workbook to PYTHONPATH
Python

_images/reports_chart2.png
69 = BV -

y_ A B G D
8 courni B a1 Koz L1
2 |North 1 2
3 South 3 4
4
3

_static/plus.png

_static/minus.png

_images/mpl_udf.png
=myplot(B1)

5

Plotted with n=5.0

4.0 T T

©

D

351

3.0

251

2.0

15

101

05}

15

2.0

25

3.0

35

4.0

_images/reports_pdf_layout.png
template.xlsx

| B | F G |

S}

‘ml\“ m‘m‘.z; w

[Mon

{{ summary_text }}

monthly_layout.pdf

report.pdf

Monthly Report May 21 E{I‘a XlWingS

Lorem ipsum dolor

Consectetur adipiscing elit. Praesent odio justo, luctus eget enim eu, vulputate pellentesque mi.
Maecenas lacinia_dictum lorem, a laoreet sapien. Morbi eu tristique elit. Maccenas nec magna
aliquet, mollis risus vestibulum, ultrices nibh. Cras vitae libero lobortis, rutrum metus vitae,
vestibulum elit. Mauris hendrerit, augue vitae rhoncus porttitor, ante nisi vulputate sapien,
pretium posuere purus quam eget lorem. Phasellus bibendum arcu vel orci evismod, nec
consectetur leo faucibus. Morbi at leo nec nunc tristique laoreet eget nec metus. Nulla blandit
erat vitae purus semper convalls. Mauris et viverra fels, eu malesuada ipsum. Nullam ac iaculis
dui. Nunc et lorem arcu.

Quisque elementum purus in ligula elementum

Non porta nis! consectetur. Fusce orci felis, mollis vitae ex id, gravida tempor est. Morbi dui ex,
aliquet et gravida sit amet, commodo ac lacus. Nulla auctor rutrum tortor vel pulvinar. Ut
vestibulum nulla lorem, et varius erat imperdiet consectetur. Nullam fringila eleifend neque, non
convallis lectus tristique eu. Sed nunc metus, dapibus nec quam nec, consectetur ultricies odio.
Fusce placerat consectetur posuere. Etiam gravida aliquet elic, id fermentum leo bibendum nec.
Phasellus bibendum nunc et ipsum feugiat, sit amet fermentum orci fringila. Donec matis ipsum
ac orci aliquam sagittis.

uam erat volutpat. Curabitur sit amet facil h.

Fusce faucibus velit justo, et efficitur sapien molls nec. Duis dictum vitae est quis condimentum.
Pellentesque scelerisque nis! et tempor pulvinar. Pellentesque suscipit quam sit amet tellus mollis
porttitor. Phasellus ut euismod lectus. Etiam in ante sit amet sem varius scelerisque non e
sapien. Pellentesque velic augue, ornare non ultrices porttitor, gravida imperdiet quam. Etiam
suscipit nunc at mollis bibendum. Donec vel massa ac metus malesuada ornare. Maecenas et purus
ullamcorper, gravida mauris vitae, dictum libero. Nulla horeet vl ligula sit amet accumsan.
Acnean varius hendrerit ultrices. Quisque iaculis consequat sem, vel rutrum ligula incerdum non.
Etiam sodales nisl dui, vel interdum elit ultrices at.

Aenean aliquet vel sapien ac rutrum. Vivamus sit amet purus sollicitudin

viverra justo ac, posuere diam. Suspendisse sagitts, clit nec rhoncus condimentum, velit est
volutpat nulla, sed eleifend neque erat eu leo. Nunc varius ligula ut purus fringilla bibendum.
Praesent sed tristique nunc, § dign massa. Morbi pretium pulvinar blandit. Phasellus fa
vulputate sodales. Nullam inferdum sapien eget velit tristique, a imperdiet ipsum laoreet. Donec
Iaoreet metus sit amet commodo lacinia. Fusce eleifend sem id risus dictum, quis ultrices lorem
lacinia. In non purus tortor.

Curabitur diam purus, vulputate ut mattis a, accumsan commodo justo

Duis id nisi sapien. Duis pellentesque lorem consectetur leo vestibulum viverra. Aliquam rutrum
urna a tempus malesuada. Integer arcu lacus, euismod nec aliquet vitae, tempor ut sem. Nullam eu
finibus est. Sed quis maximus orci. Cras sit amet rhoncus felis. Ut sed faucibus metus, eget luctus
metus. Nullam sed erat sed nulla varius iaculis ut ut ligula. Vestibulum quis tristique nunc. Donec
ac nunc velit.

_images/ribbon.png
File Home Insert Page Layout Formulas Data Review View Developer Help xlwings

[> Interpreter: Conda Path:]SC UDF Modules: RunPython: Use UDF Server
PYTHONPATH: Conda Env: Debug UDFs Show Console

Run Import

main Functions “** Restart UDF Server Version: dev

Python Conda User Defined Functions (UDFs) Advanced

_images/reports_chart5.png
N56 s fx
A B © D =

il Columnl R4 Q1 A Q2 hd Q3 v

2 North 1000 4000 7000

3 South 2000 5000 8000

4 |West 3000 6000 9000,

5]

6

7 | 10000

8 | 9000

9 | 8000
10 | 7000
11| 6000
12 | so00
13 | 4000
14 | 3000
15| 2000 I
16 | 1000
17 0 - I
18 North South West
19 mQl mQ2 =Q3
20
21
22
22

4 > template report +

_images/reports_df_filters.png
O 0N U WN

R R R R R R
Ny W NG O

A

{{df }} 1
2
3
4
5
6
{{ df | noheader }} 7
8
9
10
11
12
{{ df | sortdesc(1) | columns(O, None, 1) }} 13
14
15
16
(G I I R 17
3 template report + 4

one

one

B C
two three
1 4 7
2 5 8
3 6 9
1 4 7
2 5 8
3 6 9
two
3 6
2 5
1 4

template report +

_images/shape_text_template.png
1o LA WN R

The temperature today is {{ temperature }} degrees celsius.

_images/sheet_rendering1.png
Y0 N O U A WN R

A
{{ title }}

{{ table }}

template

+

_images/series_conv.png
A [

date series name
o1/01/01
02/03/01
03/01/01
04/01/01
05/01/01
08/01/01

[
o1/01/01
02/03/01
03/01/01
04/01/01
05/01/01
08/01/01

_images/shape_text_report.png
o N ;S O

_images/reports_chart3.png
M33

<>

fx

North i 2

South 3 4J

N -

45

WK NO U AW

35

3
25
2
15
L
0

North South

B R R R R R R R
©NOU S WN PR O
-

19 mQl mQ2

_images/reports_chart4.png
D

© NV A WN

L
s WN RO

16

12

08

0.6

04

0.2

Dummy

mColumn2

> template + |

_images/vmerge.png
O 00NV WN

N
)

_images/workbook_config.png
o U W N

A B

Interpreter pythonw
PYTHONPATH

UDF Modules

Debug UDFs FALSE
Log File

Use UDF Server FALSE

_images/udf_modules.png
UDF Modules: [my_udf
ﬁc my.

Import
Functions O3 Restart UDF Server
User Defined Functions (UDFs)

Debug UDFs:

_images/vba_reference.png
References - VBAProject

Available References: OK

isual Basic For Applications ~ Cancel
rosoft Excel 16.0 Object Library
LE Automation
icrosoft Office 16.0 Object Library Browse...
[IMicrosoft Forms 2.0 Object Library -
[_IRef Edit Control +
[_ISolver
Priority
[AccessibilityCplAdmin 1.0 Type Library Help
|| Acrobat Access 3.0 Type Library .
[AcroBrokerLib
[_Active DS Type Library
|| ActiveMovie control type library
| AdHocReportinaExcelClientLib

< >

_images/xw_load.png
osave @ orr " Jupyter Untitled @ Logon

Home Insert Draw Q Tellme |2 Share (] Comments

File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O
A
Al . fx Date v
+ & D 4 & PR B C M code v =

A B G D E F G
1 IDate .IOpen High Low Close Adj Close Volume
2 1/27/20 161.149994 163.380005 160.199997 162.279999 160.578888 32078100
3 1/28/20 163.779999 165.759995 163.070007 165460007 163.725555 24899900 X .
4 1/29/20 167.839996 168.75 165.690002 168.039993 166.278503 34754500 In [1]: from xlwings import load
5 1/30/20 174.050003 174.050003 170.789993 172.779999 170.968826 51597500
6 1/31/20 172.210007 172.399994 169.580002 170.229996 168.445557 36142700 In [2]: load()
7 2/3/20 170.429993 174.5 170399994 174.380005 172552048 30149100
8 2/4/20 177.139999 180.639999 176.309998 180.119995 178.231873 36433300 out[2]:
9 2/5/20 184.029999 184.199997 178.410004 179.899994 178.014191 39186300 Open High Low Close Adj Close Volume
10 2/6/20 180.970001 183.820007 180.059998 183.630005 181.705093 27751400
1 2/7/20 182.850006 185.630005 182.479996 183.889999 181.962357 33529100 Date
12| 2/10/20 183580002 188.839996 18325 188.699997 186.721939 35844300
13| 2/11/20] 190.64954| 190.699997 183.5| 184.440002| 182.506607| 53159900 2020-01-27 161.149994 163.380005 160.199997 162.279999 160.578888 32078100.0

14 2/12/20 185.580002 185.850006 181.850006 184.710007 182.773773 47062900
15 2/13/20 183.080002 186.229996 182.869995 183.710007 181.784271 35295800

2020-01-28 163.779999 165.759995 163.070007 165.460007 163.725555 24899900.0

16| 2/14/20 18325 185.410004 182.649994 185.350006 183.407059 23149500 2020-01-20 167.839996 168.750000 165.690002 168.039993 166.278503 34754500.0
17 2/18/20 185610001 187.699997 185.5 187.229996 185267365 27792200
18| 2/19/20] 188.059908| 188 179993 | 186.470001] 187.279999| 185.622998] 29987500 2020-01-30 174.050003 174.050003 170.789993 172779999 170.968826 51597500.0
19| 2/20/20| 186.949997| 187.25| 181.100006| 184.419998| 182.985229) 36862400 2020-01-31 172210007 172.399994 169.580002 170.229996 168.445557 36142700.0
20 2/21/20 183.169998 1835 177.25 178589996 177.200607 48572600

21} 2/24/20 167.770004 174.550003 163.229996 170.889999 169.560516 68311100
22 2/25/20 174.199997 174.839996 167.649994 168.070007 166.762451 68073300

23 2/26/20 169.710007 173.259995 168.210007 170.169998 168.8461 56206100 2021-01-21 224.699997 226.300003 222.419998 224.970001 224.970001 30749600.0
L 2/27/20] 163320007 167.029999, 157979996 | 158.179993, 156.949387] 93174500 2021-01-22 227.080002 230.070007 225.800003 225.949997 225.949997 30172700.0
25 2/28/20 152.410004 163.710007 152 162.009995 160.749588 97073600
26 3/2/70 165308888 172.818888 167308898 172.783883 1714457724 71030800 2021-01-25 229.119995 229.779999 224220001 229.529999 229.529999 33152100.0
27 3/3/20 173.800003 175 162.259995 164.509995 163.230148 71677000
28 3/4/20 168.490005 170.699997 165.619995 170.550003 169.223145 49814400 2021-01-26 231.860001 234.179993 230.080002 232.330002 232.330002 48699200.0
29 3/5/20 166.050003 170.869995 165.690002 166.270004 164.97644 47817300
30 3/6/20 162.610001 163.110001 156 161.570007 160.313034 72821100 2021-01-27 238.000000 240.440002 230.740005 238.979996 238.979996 28153959.0
31! 3/9/20 151 157.75 150 150.619995 149.448196 70419300

32 3/10/20 158.160004 161.029999 152.580002 160.919998 159.668076 65354400 254 rows x 6 columns

_images/xw_view.png
00@ hutosae QG T~ Jupyter Untitled

Home Insert Draw Q

File Edit View Insert Cell Kernel Widgets Help Trusted
Al - fx index

+ < @ B 424 ¥ PRuin B C » code v E

A B © D
.
2 0 0 5]
3 1 1 6 .
3 2 2 7 In [1]: import pandas as pd
5 3 3 8 from xlwings import view
6 4 4 9
; In [2]: df = pd.DataFrame(data={'one': [0, 1, 2, 3, 4],
'two': [5, 6, 7, 8, 91})

2 af
10
il out[2]:
12

one two
13
14 0 0 5
15
16 1 1 6
17

2 7

18 2
19 3 3 8
20
21 4 4 9
22
23

In [3]: view(df)

Logout

| Python 3 O

_images/sql.png
fx | =sql(A14,A1:D11,G1:H8)

id

H
email

Mariam@Alt

Shenita@Truelove

Evelyn@Braddy

Rogello@Mote

Solomon@Okamura

Latashia@Alire

W O U [W|N |-

Roselee@Tarwater

Al6 N
A B C D E
1 id first_name |last_name |age
2 1|Mariam Alt 12
B 2|Shenita Truelove 55
4 3|Evelyn Braddy 30
5 4|Shery Sam 35
6 5|Rogello Mote 88
7 6|Solomon |Okamura 33
8 7|Jessica Buelow 10
) 8|Latashia |Alire 19
10 9|Roselee Tarwater 28
il 10|Kiera Saulsbury 55
12
13
14 |SELECT a.id, a.first_name, a.last_name, b.email FROM a INNER JOIN b ON a.id = b.id
15
16 |id _ﬁrst_name last_name email
1177 1 Mariam Alt Mariam@Alt
18 2 Shenita Truelove Shenita@Truelove
19 3 Evelyn Braddy Evelyn@Braddy
20 5 Rogello Mote Rogello@Mote
21 6 Solomon Okamura Solomon@Okamura
22 8 Latashia Alire Latashia@Alire
23 9 Roselee Tarwater Roselee@Tarwater

_images/udf_debugging.png
NN
BRBRNRE

NN

=]
=]

9
S P
Mo

R ERE TR

At e

& Debugger [B] Console +*) 3 y

%

_images/sheet_rendering2.png
A Demo!

template

report

